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Abstract We consider a portfolio of n risks 1, , , ,Î nX X n  which are assumed to be independent and 

identically distributed with a finite expectation ( )m= kE X  and finite variance ( )2 , 1, , .s = = kVar X k n  

Moreover, we assume that only a certain random portion p of the contracts will be affected during the 
insurance period, and that multiple claims are not possible. In order to model this aspect we assume that 

1, , , ,Î nJ J n  are additional conditionally independent binomially distributed random variables with a 

random success parameter ( ) ( )1 1 0 , 1, , ,= = = - = = k kp P J P J k n  being Beta-distributed with shape 

parameters 0a> and 0b>   which are also independent of the risks under consideration.  
 
1. Introduction We investigate a portfolio of n risks 1, , , ,Î nX X n  being independent and identically 

distributed as X with a finite expectation ( )m= E X  and finite variance ( )2 .s =Var X  Additionally, we 

assume that only a certain random portion p of the contracts will be affected during the insurance period, and 

that multiple claims are not possible. In order to model this aspect we assume that 1, , , ,Î nJ J n  are 

additional conditionally independent binomially distributed random variables with a random success 

parameter ( ) ( )1 1 0 , 1, , ,= = = - = = k kp P J P J k n  being Beta-distributed with shape parameters 

0a> and 0b>  which are also independent of the risks under consideration. This model has been 

investigated recently in Pfeifer [5] (2022). We have, as is well-known,  
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(cf. Johnson et al. [1], Chapter 3, p. 217). Then the total aggregate risk nS  is given by 
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that the distribution of nS  is stochastically equivalent to the distribution of 
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follows a Beta-Binomial distribution with parameters 
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(cf. Johnson et al. [2], Chapter 6.2.2, p. 253). Note that for all ,În nN  and the { } Îk k
X  are independent. It 

follows that we have 
 

( ) ( ) ( )m m= ⋅ = ⋅ ⋅nE S E N n E p   and 
 

( ) { } ( )2 2 2( ) ( ) ( ) ( ) ( ) ( )s a b m= ⋅ + ⋅ = ⋅ ⋅ + ⋅ ⋅ + + ⋅nVar S E N Var X Var N E X n E p n Var p n   
 

Clearly, these moment relations follow from Wald’s well-known formula and the Blackwell-Girshick-

formula in collective risk theory (cf. Klugman [3], relation (9.9), p.143, or Rotar [6], Chapter 4, Propositions 

1 and 2, p.200). 
 

2.Approximations  If ( )nE N  is large enough and ( )nVar N  is small enough it seems reasonable to 

approximate the distribution of nS  by a normal law (cf. Rotar [6], Chapter 4.1.1, p. 228). Note, however, that 

condition (4.1.6) or (4.1.7) of Theorem 12 in Rotar [6], p. 231 is not satisfied if a  and b  are constant since 

in this case, 
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Alternatively, we may assume a  and b  to be dependent on n, say a g= n  and b d= n  with fixed , 0.g d>  

in this case, 
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We can observe that for large values of n the corresponding Beta-Binomial distribution is close to the 

binomial distribution with success parameter .
g

g d
=

+
p  Likewise, the corresponding Beta-Binomial 

distribution can be approximated by a normal law itself. We present some graphs for a visualization. The red 

line in Fig. 1 to Fig. 4 represents the counting density of the Beta-Binomial distribution, the blue line 

represents the counting density of the Binomial distribution. Fig. 5 to Fig. 8 show Quantile-Quantile-Plots for 

100 simulated Beta-Binomial distributions each, cf. Pfeifer [4] (2019). T denotes the corresponding 

correlation based test statistic. 
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                                                Fig. 1                                                              Fig. 2 
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                                                Fig. 7                                                                 Fig. 8 
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Since the Binomial distribution fulfils the conditions of Theorem 12 in Rotar [6], p. 231, and the 

approximation of the Beta-Binomial distribution by a normal law under the conditions discussed above seems 

acceptable it seems reasonable to approximate the distribution of the total aggregate risk nS  itself by a 

normal law. 

 

3 A Case Study  In this section, we consider a portfolio with 50.000=n  insurance contracts and assume for 

simplicity that the sums insured follow a lognormal distribution with expectation 0m >SI  and standard 

deviation 0.s >SI  further, we assume that the individual loss realized is a beta distributed multiple of the 

individual sum insured, independent of  the sums insured. The corresponding beta parameters are aSI  and 

.bSI  The expectation of the loss factor then is ( )
a

m
a b

= =
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SI SI
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 while the expectation of the realized loss is m m m= ⋅factor SI  and its 

standard deviation ( ) ( )2 2 2 2 2 .s s m s m m= + ⋅ + -SI SI factor factor  Fig. 9 to Fig. 13 show Quantile-Quantile-Plots for 

100 simulated aggregated losses, cf. Pfeifer [4] (2019). 

 

Parameters a  b ( )nE N  aSI bSI m factor s factor mSI  sSI  m s

Fig. 9 70 2.730 1.250 2 398 0,5% 0,35% 100.000 10.000 500 357,50

Fig. 10 90 4.410 1.000 2 198 1,0% 0,70% 100.000 10.000 1.000 712,36

Fig. 11 70 2.730 1.250 2 398 0,5% 0,35% 100.000 20.000 500 372,86

Fig. 12 70 2.263,3 1.500 2 198 1,0% 0,70% 100.000 20.000 1.000 743,13

Fig. 13 70 2.263,3 1.500 2 198 1,0% 0,70% 100.000 50.000 1.000 930,41

 

 



 5

   
                                       Fig. 9                                                                          Fig. 10 

                      5, 2584,  63,54%= =T p                                           6, 4951,  99,77%= =T p  

 

   
                                       Fig. 11                                                                          Fig. 12 

                       ,5421,  82,055 %= =T p                                           5,0173,  44,47%= =T p  

 

 
 

Fig. 13   
 4,5438,  13,74%= =T p  
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