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In this paper, we reflect the origins of singular mixture copulas, going back to statistical 
considerations of sea water levels in 2009, see [4]. 
More elaborate treatments of singular mixture copulas can be fond in [2] and [3], including 
discussions of tail dependence. 
 
Consider the following parameterized distribution function F : 
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The following pictures show different graphs of this function for three values of a and 
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As can immediately be seen, the distribution function F of the continuous uniform distribution 
over [ ]0,1  can be obtained as a suitable mixture of such distribution functions: 
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Now let X be a random variable with a continuous uniform distribution over [ ]0,1 ,  and I be a 

random variable, independent of X, with a binomial (1, )B a -distribution. Define the random 
variable Y by 
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Then, by the statement above, Y also follows a continuous uniform distribution over [ ]0,1 ,  

independent of the particular choices of a, b and c, and the distribution function of the pair 
( , )X Y  is a certain singular copula, given by 
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(cf. [3], p.166). In particular, under 0 1,c a b< < < <  
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From here we see that this copula can have a strong dependence in both tails, given by the 
corresponding tail dependence coefficients, which are given by 
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 The following picture shows the corresponding empirical copula for the choice 

0.3; 0.6; 0.2; 0.25a b c a= = = =  for 10000 samples, together with a Q-Q-plot for Y: 
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Note that we have, in general,  
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A similar approach to singular copulas has been considered in [1], section 3.2 (Geometric 
Methods), however with a different setup related to “shuffles of M”. 
 
The above construction gives immediately rise to various non-singular copulas (called 
singular mixture copulas), if we choose the parameters ( , , )a b c  suitably in a random way 
such that the side condition 
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remains valid. Note that in this case, 
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Example 1. Let c follow a continuous uniform distribution over [ ]0,1 ,  and define 
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with fixed constants (parameters) ( ), 0,1g d Î  such that .g d<  Then the side condition (*) is 

valid with a non-random .
g

a
d

=  The following picture shows two empirical copulas for the 

choices 0.5; 1; 0.5g d a= = =  and 0.4; 0.8; 0.5g d a= = =  for 500 samples each: 
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We can also evaluate upper and lower coefficients of tail dependence here, since by 
Lebesgue’s theorem of dominated convergence, we can simply take expectations, i.e.  
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In our particular cases, we obtain 
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Example 2. Let b follow a continuous uniform distribution over [ ]0,1 ,  and define 
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 The following pictures show an empirical copula for the choices 

1,5; 2g d= =  for 500 samples, together with a Q-Q-plot for Y: 
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Note that in all example cases considered here, the support of the singular mixing copulas is a 
compact convex subset of the unit square, and that these copulas seem to be suitable for 
modelling extreme positive dependence structures in both tails. 
 



 5

Example 3. Let a follow a continuous uniform distribution over [ ]0,1 ,  and define 
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Construct the pair ( , )X Y  as above and, independently thereof, a 
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variable J and let  
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(symmetrization). The following picture shows an empirical copula for this construction 

(pairs ( ),X Y
 

) with the choice 0,5g =  for 500 samples: 

 

 
                                                                       Fig.10 
 
Final comment. This paper was motivated by a study of joint high sea water levels in the 
German bight during 100 years in the past, see [4]. The following picture shows an empirical 
copula of 500 high sea water levels from gauge stations in Cuxhaven and Helgoland in 2009, 
which resembles very much the pictures obtained above. 
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