
PSEUDO–POISSON APPROXIMATION FOR MARKOV CHAINS

K. A. Borovkov

Statistics Department, University of Melbourne, Australia

D. Pfeifer

Fachbereich Mathematik, Universität Hamburg, Germany

We consider the problem of approximating the distribution of a Markov chain with ‘rare’

transitions in an arbitrary state space by that of the corresponding pseudo–Poisson pro-

cess. Sharp estimates for both first– and second–order approximations are obtained. The

remarkable fact is that the convergence rate in this setup can be better than that in the

ordinary Poisson theorem: the ergodicity of the embedded ‘routing’ Markov chain im-

proves essentially the degree of approximation. This is of particular importance if the

accumulated transition intensity of the chain is of a moderate size so that neither the

usual estimates from the Poisson theorem nor the existence of a stationary distribution

alone provide good approximation results. On the other hand, the estimates also improve

the known results in the ordinary Poisson theorem.
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1. Introduction and main results

Let X1, . . . , Xn be independent Bernoulli random variables with success probabili-
ties

P(Xk = 1) = 1−P(Xk = 0) = pk, 0 ≤ pk ≤ 1, k = 1, . . . , n. (1.1)

The problem of approximating the distribution of the sum Sn = X1 + . . .+Xn by
a Poisson distribution has already a long history since Poisson (1837) proved the
convergence of the binomial distributions B(n, p) (as n→∞, p = λ/n) to the law
which was named later after him, and since von Bortkewitsch (1898) demonstrated
the role of this convergence in the statistical analysis of rare events. A lot of
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publications has been devoted to the estimation of convergence rates in the Poisson
limit theorem, and some of the related results will be discussed briefly below.

In the present paper, we consider a more general problem of pseudo–Poisson
approximation of Markov chains. Although in some cases this can be reduced to
ordinary Poisson approximation, we should stress that even then our results given
here are new and improve the known estimates for the latter. Our approach here
is a development of the semigroup method used in Deheuvels and Pfeifer (1986,
1988).

Let Sk, k ≥ 0, be a Markov chain in an arbitrary state space (X , S) with initial
distribution m0 and transition function

Pk(x,B) = P(Sk ∈ B|Sk−1 = x), x ∈ X , B ∈ S, k ≥ 1.

Suppose that
Pk = (1− pk)I + pkRk, 0 ≤ pk ≤ 1, k ≥ 1, (1.2)

where I(x,B) = 1(x ∈ B), and the Rk are some stochastic kernels. Thus, on the
k–th step, no changes occur with probability 1−pk, and, with probability pk, there
occurs a transition governed by the kernel Rk. Clearly, the sums Sk of independent
indicators considered in the first paragraph form the simplest chain of the sort with
X = Z and transition function (1.2) with Rk = P , where P (i, {j}) is 1 if i = j and
0 otherwise. Thus our notations for this classical case and for more general Markov
chain case under consideration are consistent and should cause no confusion.

The total variation distance between two measures m1 and m2 on (X , S) will
correspondingly be denoted by

d(m1,m2) = sup
B∈S
|m1(B)−m2(B)|.

The pseudo–Poisson process Yt is defined as a homogeneous Markov process with
transition function

Qt(x,B) = P(Yt+s ∈ B| Ys = x) = exp(t(P − I)) = e−t
∞∑
k=0

1
k!
tkP k

(cf. e.g. Feller (1971), X,1). Here P k = P k−1P and, for two kernels P and R,

PR(x,B) =
∫
X

R(x, dy)P (y,B).

We shall also use the notation Rm(B) =
∫
X
m(dx)R(x,B) for a kernel R and a

measure m. In this notation, L(Sn) = Pn . . . P2P1m0.
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Pseudo–Poisson processes form an important class of Markov processes, which
are used for modeling throughout many areas of science and engineering. They can
be also used to approximate homogeneous Markov processes, an analytical coun-
terpart of this situation being closely related to the theory of semigroups (see e.g.
Chapter X in Feller (1971)). On the other hand, the assumption of exponential dis-
tributions for interarrival times in queueing systems, lifetimes in reliability theory
etc., is closely related to the lack of memory (aging) property. Sometimes this is
only an approximation to the real situation when time is discrete – as is typically the
case in computing systems, so that during each quantum of time, we have indepen-
dent Bernoulli trials with small success probability. Hence each success ‘switches
on’ a transition of the system, which can often be described by a Markov transi-
tion function of the type (1.2). When these time quanta are sufficiently small, the
approximation of these models by pseudo–Poisson models is justified by the usual
Poisson theorem. However, if one has to deal with more delicate ‘intermediate’ sit-
uations, when the size of the quanta is relatively large, the question of whether such
an approximation is appropriate becomes non–trivial. Our paper is also devoted to
solving this problem.

We now give some relevant results on the behaviour of the total variation
distance between the laws L(Sn) of the sum Sn in (1.1) and the approximating
Poisson distribution

Πλ({k}) = e−λλk/k!, k ∈ Z+

with mean λ. Denote by π(λ) a random variable having the law Πλ and recall that
the total variation distance

d(L(Sn), Πλ) = sup
M⊂Z

|P(Sn ∈M)−P(π(λ) ∈M)| =

=
1
2

∞∑
k=0

|P(Sn = k)−P(π(λ) = k)|.

Let

λk =
n∑
j=1

pkj , λ = λ1, θ =
λ2

λ
, p0 = max

1≤j≤n
pj .

Some of the first estimates for the non–i.i.d. case were obtained by Le Cam (1960):

d(L(Sn), Πλ) ≤ λ2, and d(L(Sn), Πλ) ≤ 8 θ if p0 ≤ 1/4,

as well as by Kerstan (1964):

d(L(Sn), Πλ) ≤ 1.05 θ if p0 ≤ 1/4.
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For small pj , the choice of q =
n∑
j=1

qj , qj = − log(1 − pj), for the mean of the

approximating Poisson law is preferable; A. Borovkov (1976) showed that

d(L(Sn), Πq) ≤
1
2
λ+

2 , λ+
2 =

n∑
j=1

p2
j (1 + pj) ≤ (1 + p0)λ2 (1.3)

(Serfling (1978) obtained independently almost the same result). Later, Deheuvels
and Pfeifer (1986) proved that this choice is, in a sense, almost optimal.

By a different approach, taking account of what happens when λ becomes
large, Barbour and Hall (1984) obtained the estimate

d(L(Sn), Πλ) ≤ (1− e−λ)θ. (1.4)

The following results, giving the asymptotic behaviour of the distance between the
distributions of Sn and π(λ), were obtained in Deheuvels and Pfeifer (1986, 1988).
Let

G(t) =
e−t

2

(
tr

+−1(r+ − t)
r+!

− tr
−−1(r− − t)

r−!

)
,

with r± =
⌊
t+ 1/2±

√
(t+ 1/4)

⌋
, where b·c denotes the integer part; note that

G(t) ∼ 1/(t
√

2πe) as t→∞. Then

d(L(Sn), Πλ) =


G(λ)λ2 + 2.6ε

λ3

λ
≤
(

1
e

+ 2.6 p0

)
θ for p0 ≤ 1/4,

G(λ)λ2 +
εη3

2(1− η)
≤
(

1
e

+
η

1− η

)
θ for θ < 1/2,

(1.5)

where η = (2θ)1/2 and |ε| < 1 in both cases.
Thus, if θ → 0 as n→∞, then

d(L(Sn), Πλ) ∼ G(λ)λ2, (1.6)

and if λ → ∞, the latter is ∼ θ/
√

2πe. Note that in the i.i.d. case (i.e. when
L(Sn) = B(n, p) with θ = p, λ = np), Prokhorov (1953) obtained an estimate with
the same main term.

We mention here also the papers by Franken (1966), Presman (1983), Witte
(1990, 1993) concerning the case of independent X’s, and by Sevastyanov (1972),
Banis (1975), Grigelionis (1966), Brown (1983), Serfozo (1986), Wang (1981) in
which various schemes of dependent variables have been treated; unfortunately, it
is impossible to mention here all the papers devoted to the problem. Recently a
special monograph by Barbour et al. (1992) has been published devoted mainly to
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the use of the Stein – Chen method for approximating the distributions of the sums
of both independent and dependent random indicators.

These results show the limitations of Poisson approximations; in many situa-
tions, when the number of summands is sufficiently large to make direct computa-
tions rather cumbersome, the values of θ (or λ2) are not so small that the desired
accuracy of approximation can be ensured. Thus, a refinement of Poisson approxi-
mation is both of practical and theoretical interest. Here we mention the work by
Shorgin (1977), Barbour and Hall (1984), Kruopis (1986), K. Borovkov (1988), and
Barbour et al. (1992). In particular, note the following results on the ‘second–order’
approximation. Denote by Πt,s the (generally speaking, signed) measure on Z with
generating function

∞∑
k=0

zkΠt,s({k}) = exp
(
t(z − 1)− s(z2 − 1)

)
. (1.7)

Note that the coefficients rk = Πt,s

(
{k}
)

admit a straightforward calculation. A
simple recursive formula for them can e.g. be found in Johnson and Kotz (1969):

r−1 := 0, r0 := e−t+s, rk+1 =
1

k + 1
(
trk − 2srk−1

)
, k ≥ 0. (1.8)

Kruopis (1986) showed that, for Λ =
n∑
j=1

pj(1− pj),

d(L(Sn),Πλ+λ2, λ2/2) ≤

≤5e2p0λ3 min
(

1.2 Λ−3/2 + 4.2λ2Λ−3, 2 + Λ + 3.4λ2

)
, (1.9)

Further, it was proved by K. Borovkov (1988) that, for another choice of pa-
rameters of the approximation, one can get a better coefficient in the main term λ3

of the bound. Put

µj =
pj

1− pj
, ν1 =

n∑
j=1

µj , ν2 =
n∑
j=1

(µj − log(1 + µj)), ν4 =
n∑
j=1

µ4
j .

Then
d(L(Sn), Πν1, ν2) ≤ 1

6
(eν2 + 1)(λ3 + 3ν4). (1.10)

The estimate (1.9) is preferable for large values of λ, while (1.10) is better for
small and moderate values of λ. Moreover, the latter estimate remains valid —
as well as the estimate (1.3) — also for the total variation distance between the
corresponding approximant and the law of the whole sequence (S1, . . . , Sn). This
is due to the coupling method employed in the proofs of both estimates. Note also
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that if, instead of Πν1, ν2 in (1.10), we use the law Πν1 ∗ eν2(I0 − ν2I2), where Ik
is the degenerate probability measure at point k, then we should add to the right
hand side of (1.10) the term 1

2 (eν2 − 1)2 (which is ∼ 1
2λ

2
2 for small λ2).

A somewhat different approximation was proposed in Barbour and Hall (1984).
Let 1(B) be the indicator random variable of the event B and

Π∗λ,λ2
(A) =Πλ(A)− λ2

2λ2
E
[
1(π(λ) ∈ A)

(
π(λ)2 − (2λ+ 1)π(λ) + λ2

)]
=

=
∑
k∈A

e−λ
λk

k!

(
1− λ2

2λ2

(
k2 − (2λ+ 1)k + λ2

))
.

Then

d(L(Sn), Π∗λ, λ2
) ≤ 2

1− e−λ

λ
min(1, 1.4λ−1/2)λ3 + 2(1− e−λ)2θ2 ≤

≤ 4(1− e−λ)(1− 1
2

e−λ)λ3λ
−1. (1.11)

Note that in the relation (1.11), as in the above–mentioned modification of
(1.10), there is a term containing λ2

2 (or θ2), which is due to the structure of the
approximant and can be estimated only by a term of the order λ3λ

−1. For the
Πt,s–approximant, as one can see from (1.9) and from our Theorem 2 below, it is
possible to get an estimate of the order λ3λ

−3/2.
Note also that, for both (1.10) and (1.11), similar higher order expansions are

available from K. Borovkov (1988) and Barbour et al. (1992) respectively, but we
restrict ourselves here only to ‘second order’ approximations.

Shur (1984) was apparently the first to consider the problem of estimating the
rates of approximation in the general Markov chain setup with kernels (1.2). He
put

U = exp(Pn − I) . . . exp(P2 − I) exp(P1 − I)

and used Um0 to approximate the law L(Sn) (in the case when X = Z). Note
that in general operators with kernels Pk do not commute, so that Um0 cannot be
expressed in a ‘more computable’ form of the distribution of the pseudo–Poisson
process Qλm0, where the kernel

Qλ = exp

(
n∑
k=1

(Pk − I)

)
= exp(λ(P − I)),

has ‘spectral mixture’ P = λ−1
n∑
k=1

pkRk. He applied a straightforward argument

using the properties of the exponential in a Banach algebra (cf. Section 2 below)
to get the estimate

d(L(Sn), Um0) ≤ λ2 (1.12)
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for any initial distribution m0.
However, it is easy to see that the coupling argument (see e.g. Serfozo (1986)

and K. Borovkov (1988) for the use of the latter in a similar situation for compound
Poisson approximation) applies equally in this case (to the indicators of non–trivial
transitions on particular steps, which occur with probabilities pk) and yields the
same estimate. Moreover, the choice of parameters qk for the exponentials:

Ũ = exp(rn(Pn − I)) . . . exp(r2(P2 − I)) exp(r1(P1 − I)), rk = qk/pk,

leads to the following estimate (parallel to (1.3)): for any initial distribution m0,

d(L(Sn), Ũm0) ≤ 1
2
λ+

2 . (1.13)

In what follows we consider a narrower class of Markov chains, which could
be called ‘semi–homogeneous’, and which occur quite often in applications (for an
example see Section 4 below). Namely, we suppose that all Rk in (1.9) coincide:
for a common stochastic kernel P ,

Pk = (1− pk)I + pkP, 0 ≤ pk ≤ 1, k ≥ 1. (1.14)

Clearly, in this case all Pk commute, so that (1.12) and (1.13) now take the form

d(L(Sn), Qλm0) ≤ λ2, d(L(Sn), Qqm0) ≤ 1
2
λ+

2

(obviously, P̃ = P and Q̃q = Qq for (1.14)). Moreover, it is not difficult to see
that the estimate (1.4) and the inequalities in (1.5) continue to hold in this setup,
too (this follows from the corresponding estimates for indicators of non–trivilal
transitions, governed by the kernel P , which are independent Bernoulli random
variables with success probabilities pk).

However, the equalities in (1.5) and hence the asymptotics of the form (1.6)
need not hold in the case of a general semi–homogeneous Markov chain, since the
existence of an invariant distribution can essentially improve the rate of convergence
when λ becomes large. Our main results here provide rather sharp estimates for
these cases. On the other hand, these estimates improve also the known results for
the ordinary scheme of Bernoulli summands, as this scheme is just a special case of
our setup. Thus, the estimates (1.15) and (1.24) of our Theorems 1 and 2 below are
valid for this scheme, too. In ‘regular cases’ (when λ2 is small), these are several
times better than the estimates (1.4) and (1.11), respectively. For example, in the
i.i.d. case, when pi ≡ λ/n, we have, say, the following values of the ratios of the
(appropriate parts of the) right hand sides of these inequalities: for n = 100,

λ = 2 :
r.h.s. of (1.4)
r.h.s. of (1.15)

= 2.942,
r.h.s. of (1.11)
r.h.s. of (1.24)

= 3.792,

λ = 3 :
r.h.s. of (1.4)
r.h.s. of (1.15)

= 2.206,
r.h.s. of (1.11)
r.h.s. of (1.24)

= 7.573.
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Note that for n = 1000, the last ratio is 8.901.
Now we formulate our main results. To take account of the ergodicity of the

kernel P , it will be convenient to introduce the following functions. For a function
δ· : R+ 7→ R+, characterizing the rate of convergence of the iterations P k, we put

l(t) = lδ(t) = Eδπ(t), L(t) = Lδ(t) = E

∣∣∣∣π(t)
t
− 1
∣∣∣∣ δπ(t).

Set
τ = λ2 +

8
3
λ3e2p0 + 2p0.

Theorem 1. For any initial distribution m0,

d(L(Sn), Qλm0) ≤
{

eτ−λλ2 for λ ≤ 2,
eτ−1θ for all λ > 0.

(1.15)

If, for some distribution m∞ on (X , S),

d(P km0, m∞) ≤ δk, k ≥ 0, Pm∞ = m∞, (1.16)

then

d(L(Sn), Qλm0) ≤ 2eτ l(λ)λ2. (1.17)

If (1.16) holds uniformly for all probability measures m0 on (X , S), then, for any

initial distribution m0, one has, in addition to (1.17), the estimate

d(L(Sn), Qλm0) ≤ eτL2(λ/2)λ2. (1.18)

In particular, if P is uniformly ergodic (see Nummelin (1984)), then there exists
a stationary distribution m∞, and the function δk can be chosen identical for all
m0 and decreasing exponentially fast:

d(P km0, m∞) ≤ δk = Cρk, 0 < C <∞, 0 < ρ < 1. (1.19)

To specify the form of the estimates (1.17) and (1.18) in this special case, we shall
need the function

Mρ(t) = ρE

∣∣∣∣π(ρt)
ρt
− 1
∣∣∣∣ = 2ρe−ρt

(ρt)bρtc

bρtc!
, (1.20)

where again btc is the integer part of t. Since

2e−t
tbtc

btc!
= 2e−t for 0 ≤ t ≤ 1 and ≤

√
2/et for all t > 0 (1.21)
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(note also that left hand side of (1.21) is ∼
√

2/πt as t → ∞, see e.g. Deheuvels
and Pfeifer (1988)), we have the estimates

Mρ(λ) ≤
{

2ρe−ρλ for λ ≤ ρ−1,√
2ρ/eλ for all λ > 0.

(1.22)

Corollary 1. If (1.19) holds for all m0, then

d(L(Sn), Qλm0) ≤ C min
{

2, C
(
Mρ(λ/2) + 1− ρ

)2} eτ−(1−ρ)λλ2. (1.23)

To formulate the next result, we introduce the two–parameter signed kernel

Qt,s = exp
(
t(P − I)− s(P 2 − I)

)
=
∞∑
k=0

P k Πt,s({k}),

recall (1.7) and (1.8). Put τ ′ = τ + λ2.

Theorem 2. For any initial distribution m0,

d(L(Sn), Qλ+λ2, λ2/2m0) ≤
{

eτ
′−λ ( 4

3λ3 + λ4

)
for λ ≤ 3,

eτ
′
(c1λ3λ

−3/2 + c2λ4λ
−2) for all λ > 0,

(1.24)

where c1 =
√

6e−3/2 ≤ 0.547, c2 = 4e−2 ≤ 0.542. If (1.16) holds for some distribu-

tion m∞ on (X , S), then

d(L(Sn), Qλ+λ2, λ2/2m0) ≤ 2eτ
′
l(λ)

(
4
3
λ3 + λ4

)
. (1.25)

If (1.16) holds uniformly for all probability measures m0 on (X , S), then, for any

initial distribution m0, one has, in addition to (1.25), the estimate

d(L(Sn), Qλ+λ2, λ2/2m0) ≤ eτ
′
(

4
3
L3(λ/3)λ3 + L4(λ/4)λ4

)
. (1.26)

Corollary 2. If (1.19) holds for all m0, then

d(L(Sn), Qλ+λ2, λ2/2m0) ≤

≤ Ceτ
′−(1−ρ)λ

(4
3

min{2, C2
(
Mρ(λ/3) + 1− ρ

)3}λ3+

+ min{2, C3
(
Mρ(λ/4) + 1− ρ

)4}λ4

)
.

(1.27)
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Remark 1. By the presence of the factor eτ (or eτ
′
) in the above estimates,

a significant improvement is evidently only achieved if the term λ2 is sufficiently
small. It should, however, be stressed that in the general case, even for large values
of λ2, this factor is often compensated by the presence of the term l(λ) which can
for instance result in the leading factor e−(1−ρ)λ.

2. Auxiliary results for Banach algebras

Since the transition rule in a Markov chain reduces just to the multiplication of
integral operators, which form a Banach algebra, our problem can be re–formulated
as an approximation problem for products in a Banach algebra. In this section we
prove two lemmas in this more abstract setup, which are also of independent interest
(see e.g. Kato (1980), Ch.IX, 2, on approximation of a continuous semigroup by
discrete ones). But first we carry out the above–mentioned re–formulation of the
problem.

Let M be the space of finite signed measures m on (X ,S) endowed with the
total variation norm ‖m‖ = |m(X )|, where |m| is the total variation of m. Note
that, if m(X ) = 0, then

sup
C∈S
|m(C)| = 1

2
‖m‖. (2.1)

Denote by A the set of integral operators on M:

(Am)( · ) =
∫
A(x, · )m(dx),

with kernels A(x,C), x ∈ X , C ∈ S, having finite norm

‖A‖ = sup
x∈X
‖A(x, · )‖.

Multiplication is defined in A in a natural way by

(AB)(x, · ) =
∫
A(y, · )B(x, dy).

It is not hard to verify that A forms a Banach algebra with unity I having the
kernel I(x,C) = 1(x ∈ C).

Further, it is clear that if m0 is the initial distribution of the Markov chain {Sk}
with transition function Pk, then Sn has distribution Pn . . . P2P1m0, and hence in
the case (1.14) one has

Pn . . . P2P1m0 =
n∏
i=1

(I + piA)m0, A = P − I. (2.2)
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The pseudo–Poisson process Yt with transition function P of the embedded chain
then follows the distribution

exp(tA)m0, (2.3)

and we come to the problem of approximating the product (2.2) by the expression
(2.3).

In the rest of the section, A is an abstract Banach algebra with norm ‖ · ‖ and
unit element I. Denote, for an element A ∈ A and a set of reals pi, i = 1, . . . , n,

P = A+ I, α = α(A) = ‖P‖+ 1 = ‖A+ I‖+ 1,

∆1 = exp(λA)−
n∏
i=1

(I + piA),

∆2 = exp(λA− 1
2
λ2A

2)−
n∏
i=1

(I + piA),

γ = γ(α) =
(α2

2
− 1
)
λ2 +

α3

3
eαp0λ3 + αp0, β = max{0, α2/2− 1},

recall that λk =
n∑
j=1

pkj , λ = λ1, p0 = max
1≤j≤n

pj .

Remark 2. Note that, in the special context of the Banach algebra of integral
operators, when P is a probability transition function, one has ‖P‖ = 1. Hence one
has α = 2, β = 1 in this case, and therefore the quantity γ = γ(2) is equal now to
τ introduced before formulating Theorem 1.

Lemma 1. For any element A ∈ A and any pi ≥ 0, i = 1, . . . , n, with p0 =
max1≤j≤n pj ≤ min {21/2, α/β},

‖∆1‖ ≤eγ‖A2eλA‖λ2

2
, (2.4)

‖∆2‖ ≤eγ+βλ2

(
‖A3eλA‖λ3

3
+ ‖A4eλA‖λ4

8

)
. (2.5)

Proof. Since all the elements under consideration commute (they are either poly-
nomials of A or exponentials of such polynomials), we have, putting

F (t) = e−tA(I + tA) and εi = eλA
(
I − F (pi)

)
,

by the ‘telescoping argument’, that

∆1 =
n∏
j=1

epjA −
n∏
j=1

(I + pjA) =

=
n∑
i=1

(i−1∏
j=1

(I + pjA)
)(

epiA − I − piA
)

exp
{ n∑
k=i+1

pkA
}

=

=
n∑
i=1

(i−1∏
j=1

F (pj)
)
εi.

(2.6)
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First note that

F (t) =I +

t∫
0

F ′(u) du = I −A2

t∫
0

ue−uAdu =

=I − 1
2
t2A2 +A2

t∫
0

u(I − e−uA) du = (2.7)

=I − 1
2
t2A2 +A3

t∫
0

u du

u∫
0

e−vAdv,

where we have made use of the relation

I − e−uA = A

u∫
0

e−vAdv. (2.8)

Further, since P = A+ I, we see that

I − 1
2
t2A2 =

(
1− t2

2

)
I +

t2

2
(2P − P 2),

and therefore, for t2 ≤ 2,

‖I − 1
2
t2A2‖ ≤ 1− t2

2
+
t2

2
(
2(α− 1) + (α− 1)2

)
= 1 +

(
α2

2
− 1
)
t2 ≤ 1 + βt2.

To estimate the last term in (2.7), note that ‖A‖ ≤ α and, for v ≥ 0,

‖e−vA‖ ≤ ev‖A‖ ≤ eαv. (2.9)

Hence it follows from (2.7) that

‖F (t)‖ ≤1 + βt2 + α3 eαt
t∫

0

u du

u∫
0

dv =

=1 + βt2 +
α3

3
t3eαt ≤ exp

{
βt2 +

α3

3
t3eαt

}
, 0 ≤ t ≤ 21/2,

(2.10)

and thus∥∥∥ i−1∏
j=1

F (pj)
∥∥∥ ≤ i−1∏

j=1

‖F (pj)‖ ≤ (2.11)

≤ exp
{
β
i−1∑
j=1

p2
j +

α3

3
eαp0

i−1∑
j=1

p3
j

}
≤ exp

{
βλ2 +

α3

3
eαp0λ3

}
.
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To complete the proof of (2.4), it remains to estimate ‖εi‖. We have, similar
to (2.8),

I − F (t) = A2

t∫
0

ue−uAdu, (2.12)

so that it follows from (2.9) that

‖εi‖ =
∥∥eλA

(
I − F (pi)

)∥∥ ≤ ∥∥A2eλA
∥∥ eαp0

pi∫
0

u du = ‖A2eλA‖ 1
2
p2
i e
αp0 . (2.13)

The first estimate of Lemma 1 follows from (2.6), (2.11), and (2.13).
Now we shall estimate the norm of ∆2. Similar to (2.6), we have, for

H(t) = exp
{
−1

2
t2A2

}
− e−tA(I + tA) and ε′i = eλAH(pi),

the representation

∆2 =
n∑
i=1

(i−1∏
j=1

F (pj)
)

exp
{
−1

2
A2

n∑
k=i+1

p2
k

}
ε′i. (2.14)

Since

−1
2
t2A2 = −1

2
t2(P 2−I)+t2(P−I), ‖et

2(P−I)‖ = e−t
2
‖et

2P ‖ ≤ exp{t2(‖P‖−1)},

and ‖P‖ = α− 1, one has∥∥∥ exp
{
−1

2
t2A2

}∥∥∥ ≤ exp
{
t2

2
(
‖P‖2 + 1

)
+ t2(‖P‖ − 1)

}
= (2.15)

= exp
{
t2

2
(
(α− 1)2 + 1

)
+ t2(α− 2)

}
= exp

{(
α2

2
− 1
)
t2
}
≤ eβt

2
.

Now it follows from the estimates (2.11) and (2.15) that the norm of the ith sum-
mand on the right hand side of (2.14) does not exceed

(i−1∏
j=1

‖F (pj)‖
)

eβλ2‖ε′i‖ ≤ exp
{

2βλ2 +
α3

3
eαp0λ3

}
‖ε′i‖,

so that

‖∆2‖ ≤ exp
{

2βλ2 +
α3

3
eαp0λ3

} n∑
i=1

‖ε′i‖. (2.16)

It remains to estimate the last sum. Since

H ′(t) = A2t

[
e−tA − exp

{
−1

2
t2A2

}]
,

13



we have

H(t) =

t∫
0

H ′(u) du = A2

t∫
0

u

[(
e−uA − I

)
+
(
I − exp

{
−1

2
u2A2

})]
du =

=−A3

t∫
0

u

u∫
0

e−vA dv du+A4

t∫
0

u

u2/2∫
0

e−vA
2
dv du,

and hence

ε′i =eλAH(pi) =

=−A3eλA
pi∫

0

u

u∫
0

e−vA dv du+A4eλA
pi∫

0

u

u2/2∫
0

e−vA
2
dv du.

(2.17)

Note that (2.15) yields, for 0 ≤ v ≤ p2
i /2,∥∥e−vA

2∥∥ ≤ eβp
2
i ≤ eβp

2
0 , i = 1, . . . , n,

and hence (2.9) and (2.17) imply the estimate

‖ε′i‖ ≤‖A3eλA‖eαp0

pi∫
0

u du+ ‖A4eλA‖eβp
2
0

pi∫
0

u

1
2∫

0

u3 du =

=‖A3eλA‖eαp0
p3
i

3
+ ‖A4eλA‖eβp

2
0
p4
i

8
.

(2.18)

Since βp2
0 ≤ αp0 from the assumptions of Lemma 1, the estimate (2.5) follows

now from (2.16) and (2.18).

The right hand sides of (2.4) and (2.5) contain terms of the form ‖AkeλA‖
with k = 2, 3, 4. The next lemma provides estimates for these quantities. Note
that the second of the estimates in the case of α = 2 follows from (3.8) and (3.15)
in Deheuvels and Pfeifer (1988).

Lemma 2. Let A ∈ A and α = ‖A+ I‖+ 1. Then, for all k ≥ 1,

‖AketA‖ ≤


e(α−2)t

(
2(α− 1)e−(α−1)t/k + |α− 2|

)k
for 0 < t ≤ k/(α− 1),

e(α−2)t

((
2k(α− 1)

et

)1/2

+ |α− 2|

)k
for all t > 0.

Proof. It is easy to see that

AetA = e−t(P − I)
∞∑
k=0

1
k!
tkP k = e−tt−1

∞∑
k=0

k − t
k!

tkP k, (2.19)
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and therefore

‖AetA‖ ≤e−tt−1
∞∑
k=0

|k − t|
k!

tk(α− 1)k =

=e(α−2)t α− 1
(α− 1)t

e−(α−1)t
∞∑
k=0

(
t(α− 1)

)k
k!

|k − (α− 1)t+ (α− 2)t| ≤

≤e(α−2)t
(
(α− 1)M1((α− 1)t) + |α− 2|

)
, (2.20)

where Mρ(s) is defined in (1.20). From the first relation in (1.22) we have, for
t ≤ (α− 1)−1,

‖AetA‖ ≤ e(α−2)t
(

2(α− 1)e−(α−1)t + |α− 2|
)
,

and since
‖AketA‖ = ‖

(
AeAt/k

)k‖ ≤ ‖AeAt/k‖k, (2.21)

we have, for 0 < t ≤ k/(α− 1),

‖AketA‖ ≤ e(α−2)t
(

2(α− 1)e−(α−1)t/k + |α− 2|
)k
.

Now the second relation in (1.22) implies the estimate

‖AetA‖ ≤ e(α−2)t

((
2(α− 1)

et

)1/2

+ |α− 2|

)
,

which completes, together with (2.21), the proof of Lemma 2.

3. Proof of theorems

Proof of Theorem 1. To prove (1.15), it suffices, in view of the re–formulation
of our problem in terms of approximation of (2.2) by (2.3), to make use of (2.1),
(2.4), and Lemma 2 (recall that, in this case, α = 2, γ = τ).

To prove (1.17), we should use the following representation based on (2.6) and
(2.12):

∆1 = BA2eλA, B =
n∑
i=1

(i−1∏
j=1

F (pi)
) pi∫

0

u e−uAdu, (3.1)

where
‖B‖ ≤ 1

2
eτλ2 (3.2)

15



(the latter follows from the estimates (2.11) and (2.9)). Now Am∞ = 0 by (1.16),
and hence, putting

ζj(m) = P jm−m(X )m∞, m ∈M,

we have

AkeλAm0 = e−λ
∞∑
j=0

λj

j!
AkP jm0 = e−λ

∞∑
j=0

λj

j!
Akζj(m0), k ≥ 1.

Since ‖ζj(m0)‖ ≤ 2δj by (1.16) and (2.1), we have ‖Akζj‖ ≤ ‖A‖k · 2δj = 2k+1δj ,
and therefore

‖AkeλAm0‖ ≤ 2k+1Eδπ(λ) = 2k+1l(λ), (3.3)

Thus, as soon as (1.16) holds, we derive from (2.1), (2.4), and (3.3) (for k = 2) the
bound (1.17).

Now let (1.16) hold uniformly for all initial distributions m0. We shall show
that, in this case, the norm ‖AkeλA‖ admits another bound, different from those
given in Lemma 2. For any m ∈M, let m+ and m− be positive and negative parts
of the Jordan decomposition m = m+ −m− of the measure m respectively. Since
both m−1

± (X )m± are probability measures, it follows form (1.16) and (2.1) that
the norms

‖P km± −m±(X )m∞‖ ≤ m±(X ) · 2δk,

and hence

‖ζk(m)‖ ≤ ‖P km+ −m+(X )m∞‖+ ‖P km− −m−(X )m∞‖ ≤ 2δk‖m‖,

for ‖m‖ = m+(X ) +m−(X ). On the other hand, since

∞∑
k=0

tk

k!
(k − t) = 0,

we have from (2.19) that

AetAm = e−tt−1
∞∑
k=0

tk

k!
(k − t)ζk(m),

and hence

‖AetAm‖ ≤ 2‖m‖e−t
∞∑
k=0

tk

k!

∣∣∣∣kt − 1
∣∣∣∣ δk = 2L(t)‖m‖.

Thus ‖AetA‖ ≤ 2L(t) and (2.21) implies that

‖AketA‖ ≤ 2kLk(t/k). (3.4)
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To prove (1.18), it remains now to make use of (2.4). Theorem 1 is proved.

Proof of Corollary 1. It suffices to note that, for the function δ· from (1.19),
l(t) = CEρπ(t) = Ce−(1−ρ)t and, similar to (2.20),

L(t) =Ce−tt−1
∞∑
k=0

tk

k!
|k − t|ρk ≤

≤Ce−(1−ρ)t e
−ρt

t

∞∑
k=0

(ρt)k

k!
|k − ρt+ (ρ− 1)t| ≤ (3.5)

≤Ce−(1−ρ)t
(
Mρ(t) + 1− ρ

)
.

Hence in this case

L2(λ/2) = C2e−(1−ρ)λ
(
Mρ(λ/2) + 1− ρ

)2
and (1.23) follows immediately from (1.17) and (1.18).

Proof of Theorem 2. To prove (1.24), we note first that

Qλ+λ2,λ2/2 = exp
(
λA− 1

2
λ2A

2
)
.

Making use of (2.1) and (2.5), we get

d(L(Sn), Qλ+λ2, λ2/2m0) ≤ 1
2

eτ
′
(
‖A3eλA‖λ3

3
+ ‖A4eλA‖λ4

8

)
(3.6)

(recall again that, in this context, α = 2, β = 1, and hence γ+βλ2 = τ +λ2 = τ ′).
Now Lemma 2 gives

‖A3eλA‖ ≤


8e−λ for 0 < λ ≤ 3,(

6
eλ

)3/2

for all λ > 0,
‖A4eλA‖ ≤


16e−λ for 0 < λ ≤ 4,(

8
eλ

)2

for all λ > 0,

which yields, together with (3.6), the estimate (1.24).
As for (1.25) and (1.26), one has, similar to (3.1) and (3.2), that

∆2 = B1A
3eλA +B2A

4eλA, ‖B1‖ ≤
1
3

eτλ3, ‖B2‖ ≤
1
8

eτλ4. (3.7)

To complete the proof of Theorem 2, it remains to use the estimates (3.3) and (3.4)
for k = 3, 4.

Proof of Corollary 2. This follows immediately from Theorem 2 and (3.5).
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4. Reflected random walk.

In this section we give an example illustrating the use of our results in a typical
for queueing situation. It deals in fact with a ‘quantitative justification’ of the use
of continuous–time models when treating discrete–time systems with small ‘time
quanta’.

Let ξ1, ξ2, . . . , ξn be i.i.d. real random variables, independent of S0, and let

Sk = max(0, Sk−1 + ξk), k = 1, 2, . . . , n. (4.1)

Such Markov chains arise in a natural way in queueing theory and, for many models,
the study of the behaviour of a queue reduces just to the study of the solution of
(4.1). Now suppose that the ‘driver’ {ξk} is of low ‘intensity’, that is the probability

P(ξk 6= 0) =: λn−1 (4.2)

is small (thus we are in the ‘triangular array’ setup). The simplest example of this
sort is a Geometric/Geometric/1 queue in discrete time with ‘flabby’ arrivals and
services. In this case, Sk is the length of the queue at time k, and

P(ξk = 1) = p(1− r), P(ξk = −1) = (1− p)r,

P(ξk = 0) = 1− p(1− r)− (1− p)r,

where p and r are the arrival and service rates resp. (see e.g. Section 9.2 in Hunter
(1983)). With respect to the distribution of Sn, it is well known that equation (4.1)
has the solution

Sn = Zn −min (−S0, Z1, Z2, . . . , Zn), Zk = ξ1 + . . . ξk. (4.3)

Thus, if one tries to apply the (compound) Poisson approximation here (what is
quite natural in view of (4.2)), the error will be of the order λ2n−1 (cf. the remark
after (1.10); in fact, this is the best possible estimate in the ‘functional’ setup, when
approximating the whole sequence Z1, . . . , Zn).

Now let η1, η2, . . . be i.i.d. real random variables following the conditional
distribution of ξ1 given ξ1 6= 0. Consider the new Markov chain

Uk = max(0, Uk−1 + ηk), k ≥ 1, U0 = S0,

and denote its transition kernel by P (this is clearly consistent with our notation
in Section 1).

If Eη1 < 0 then {Uk} is ergodic (with the stationary distributionm∞ coinciding
with the law of supk≥0

∑k
i=0 ηi) and, moreover, if Eecη1 <∞ for some c > 0, then
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the chain {Uk} is geometrically ergodic (see e.g. Example 5.5(d) and Theorem
6.14 in Nummelin (1984)), so that there exists a constant ρ < 1 and a measurable
function µ(x), x ∈ [0,∞) (integrable w.r.t. the stationary distributionm∞ of {Uk}),
such that, for any x ∈ [0,∞),

d
(
Pn(x, ·),m∞(·)

)
≤ µ(x)ρn, n ≥ 1

(and due to the monotonicity of the mapping in (4.1) and the role of 0 as a recurrent
state, µ(x) can be chosen to be nondecreasing).

Therefore, for any initial distribution m0 with S0 ≤ x0 a.s., we have (1.16)
with δk = µ(x0)ρk, k ≥ 0, and hence (1.17) implies that in this case

d(L(Sn), Qλm0) ≤ 2µ(x0)eτ−(1−ρ)λλ2n−1, (4.4)

which contains the exponential factor e−(1−ρ)λ (cf. the comment after (4.3) and also
Remark 1). The transition kernelQλ corresponds to the reflected compound Poisson
process (just the simple birth–and–death process with constant birth and death
rates p and r respectively in the case of the Geometric/Geometric/1 queue, which
corresponds to the continuous time M/M/1 queue). Note that, by the presence
of the exponential term e−(1−ρ)λ, the right hand side of (4.4) decreases when λ is
large, hence the estimate in (4.4) is clearly superior to what is known otherwise in
the literature, giving estimates of order λ2n−1 only, which are in general worse.
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