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Abstract

In the paper we employ a simple stochastic model for the ‘Syracuse
problem’ (aka ‘3x + 1 problem’) to get estimates for the ‘average behaviour’
of the trajectories of the original deterministic dynamical system. The use
of the model is supported not only by certain similarities between the gov-
erning rules in the systems, but also by a qualitative estimate of the rate of
approximation (Theorem 2). From the model, we derive explicit formulae for
the asymptotic densities of some sets of interest for the original sequence. We
also approximate the asymptotic distributions for the ‘stopping times’ (times
till absorption in the only known cycle {1, 2}) of the original system and give
numerical illustrations to our results.
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1 Introduction

The Syracuse problem, also known as 3x + 1 problem, Collatz’ problem, Kakutani’s
problem, Ulam’s problem, and Hasse’s algorithm, has been drawing attention of
many mathematicians for more than 40 years. The problem belongs to the class of
questions which can be explained to anybody, but which are very difficult to answer.
For its history, details, references and prizes for its solution see Lagarias (1985) and
Lagarias and Weiss (1992).

The Syracuse problem is concerned with the behaviour of a simply defined dis-
crete time dynamical system. In general, such a system is given by the relation

xn+1 = f(xn), n ≥ 0, f : X 7→ X ,(1)

which defines the sequence {xn}n≥0 in the phase space X of the system, starting with
some initial point x0 ∈ X . Such systems arise in a very natural way in many fields
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of mathematics and its applications. Unfortunately, even for the simplest spaces X
and simple functions f , the description of the behaviour of {xn}n≥0 often turns out
to be a difficult problem.

Our problem is on the sequence {xn}n≥0 in X = N, which is the trajectory of
the system (1) with

f(x) =

{

(3x + 1)/2 if x is odd,
x/2 if x is even.

(2)

It is easy to see that this system has a simple cycle {1, 2}. Call the least positive k
(if it exists) for which xk = 1 the total stopping time t(x0) of x0:

t(x0) = inf{k ≥ 1 : xk = 1}.(3)

The Syracuse problem consists in verifying the following

Conjecture. Each x0 ∈ N has a finite total stopping time.

In other words,
T ≡ {x0 ∈ N : t(x0) < ∞} = N.

So far this problem has not been solved. However, the conjecture has been
numerically checked for a large range of values of n; it turned out to be true for all
x0 < 240 (N.Yoneda’s result cited in Lagarias (1985)). There are also some results
on the asymptotic density of the sets of x0 having certain properties concerned with
the conjecture.

For a set D ⊂ N, denote its asymptotic density by

ρ(D) = lim
n→∞

1

n
|{x ∈ D : x ≤ n}|,

where |A| is the cardinality of A. Crandall (1978) showed that

|{x ∈ T : x ≤ n}| > nc

for some c ≥ 0.05. More is known about the so–called stopping times

t0(x0) = inf{k ≥ 1 : xk < x0}.

Clearly, the conjecture above can also be restated as

T0 ≡ {x0 : t0(x0) < ∞} = N

(note also that T ⊆ T0). It was shown by Terras (1976, 1979) and Everett (1977)
that ρ(T0) = 1. Moreover, it was also proved there that, for any k > 0, there exists
the density

F (k) = ρ(T0(k)),(4)

where T0(k) = {x0 ∈ N : t0(x0) ≤ k}.
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In the present note, we give further results on the asymptotic densities of sets
related to the behaviour of {xn}, using a simple probabilistic model for the system
(1)–(2), and give an estimate for the rate of approximation of this system by the
model. We also derive an explicit formula for the density (4). The results will
be illustrated by experimental data for the system. Our interest will be concerned
mainly with the behaviour of the total stopping time t(x0).

In conclusion of this section, we would like to compare the behaviour of the
Syracuse system (1)–(2) with that of an arbitrary ‘continuous extension’ of the
system to the phase state X = R. While for the former, the existence of non-trivial
periodic points is a hard open problem, for the latter, one has the following result.

Proposition. For any continuous extension f̃ of the function f given by (2)
to R+, the dynamical system

xn+1 = f̃(xn)(5)

has periodic points of all periods.

Proof. To prove the proposition, it suffices, by Lemma 2.3 from Block and Coppel
(1992) to show that the system (5) is turbulent, i.e. there exist disjoint compact
intervals A1 and A2 such that A1∪A2 ⊆ f(A1)∩f(A2). Taking A1 = [2k+ε, 2k+1−ε]
and A2 = [2k+1+ε, 2k+2−ε] for a k ∈ N, it is easy to verify that, due to continuity
of f̃ , the intervals Aj will have the desired property for all small enough ε > 0.

2 A probabilistic model and estimates

Note that (2) can be re-written in the form

f(x) =
[

1

2
+ J(x)

(

1 +
1

2x

)]

x,(6)

where J(x) = 1 if x is odd and 0 if x is even. This suggests that, if we consider
the ‘transition rule’ on a sufficiently large ‘regular’ set A ⊂ N, it should look like
x → (1/2+I)x, where I is a Bernoulli random variable taking the values 1 and 0 with
probabilities 1/2 each. Moreover, heuristic considerations make it likely that these
I ’s could be (almost) independent for consequent steps. The following observation
made in Terras (1976) and Everett (1977) shows that, to some extent, this is true.
For the brevity’s sake put Jk(x0) = (J(x0), J(x1), . . . , J(xk−1)) ∈ {0, 1}k.

Theorem 1 If A = [a0, a1) ⊂ N, |A| = a1 − a0 = 2k, k ∈ N, then the mapping
Jk : A 7→ {0, 1}k is one-to-one. The function Jk(x0), x0 ∈ N, is 2k-periodic.

For completeness of the exposition, we give a simple short proof by induction of
this assertion.

Proof. 1. k = 1. Obvious from the definition.
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2. k − 1 7→ k. Clearly, for any A of the type specified, one has A = A0 + A1,
where A0 = [a0, a0 +2k−1), A1 = A0 +2k−1 ≡ {x′

0 = x0 +2k−1 : x0 ∈ A1}. Now note
that

x′
1 = f(x′

0) = f(x0 + 2k−1) =

{

(3x′
0 + 1)/2 = x1 + 3 · 2k−2, if x0 is odd,

x′
0/2 = x1 + 2k−2, if x0 is even.

Continuing this chain, we see that

x′
j = f(x′

j−1) = xj + 3αj · 2k−1−j, j = 1, . . . , k − 1,

where αj = J(x0) + · · · + J(xj−1). From this we infer that

Jk−1(x0) = Jk−1(x
′
0), J(xk−1) + J(x′

k−1) = 1.(7)

Since by the induction hypothesis, Jk−1 provides a one-to-one mapping of A0 onto
{0, 1}k−1, (7) completes the proof of the theorem.

Recall that the uniform distribution on {0, 1}k is just the product of k Bernoulli
distributions with success probabilities 1/2. Hence Theorem 1 implies the following

Corollary 1 If x0 is uniformly distributed over the set A = [a, a + 2k), k ≥ 1,
then J(x0), J(x1), . . . , J(xk−1) are i.i.d. Bernoulli random variables with success
probabilities 1/2.

This suggests the use of the following stochastic sequence (which resembles the
first stochastic model in Lagarias and Weiss (1992); about the difference between
them see Remark 3 below):

Xn+1 =
(

1

2
+ In

)

Xn = X0

n
∏

m=0

(

1

2
+ Im

)

, X0 ∈ N,(8)

where In are i.i.d. Bernoulli r.v.’s, P (Im = 1) = 1/2. The appropriateness of this
model follows not only from the similarity of the relations (6) and (8) above but
also from the following quantitative result.

Theorem 2 For any k ≥ 1, if x0 is uniformly distributed over the set A = [a, a +
2k) ⊂ N, X0 = a, and Im = J(xm), m = 0, 1, . . . , k − 1, then always

Xm ≤ xm ≤ XmeRm , m = 1, 2, . . . , k,

where Rm ≥ Rm−1 ≥ 0 and ERm ≤ 2k−1(1 + 22m−k+13−m)/a, m = 0, 1, . . . , k.

Thus, this approximation “on the average” of {xn}n≤k by {Xn}n≤k is good when-
ever k ≪ log a. However, as it often happens with various approximations, it seems
to work in a larger range of k (e.g. for k ∼ log a, as we shall see below when
considering the behaviour of t(x0)).
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Proof. Clearly, for m = 0, 1, . . . , k,

ym ≡ ln xm = ln x0 −
m−1
∑

j=0

(− ln(1/2 + Ij + Ij/2xj)) ,

Ym ≡ ln Xm = ln X0 −
m−1
∑

j=0

ξj,

(9)

where ξj = ln 2 − Ij ln 3 are i.i.d.r.v.’s with

E ξj =
1

2
ln

4

3
= µ > 0, Var (ξj) = (ln 3)2Var (Ij) =

(

1

2
ln 3

)2

= σ2,(10)

ϕ = E eξj = E [(1/2 + Ij)
−1] = 4/3.

Since x0 ≥ X0 = a, we have ym ≥ Ym, m = 0, 1, . . . , k. Clearly, this implies that

ln

(

1

2
+ Ij +

Ij

2xj

)

≤ ln
(

1

2
+ Ij

)

+
Ij

3xj

≤ −− ξj +
1

3Xj

, j = 0, 1, . . . , k − 1.

Hence

ym ≤ Ym +
1

3

m−1
∑

j=0

1

Xj

+ ln
(

1 +
x0 − a

a

)

, j = 0, 1, . . . , k,

so that

ym − Ym ≤
x0 − a

a
+

1

3

m−1
∑

j=0

1

Xj

= Rm.

But E (x0−a) = 2k−1 and E (1/Xj) = a−1E exp
(

∑j−1
i=0 ξi

)

= a−1ϕj−1. Therefore

ERm ≤
2k−1

a
+

1

3a

m−1
∑

j=0

ϕj−1 = (2k−1 + ϕm − 1)a−1 ≤ 2k−1(1 + 22m−k+13−m)a−1,

which completes the proof.

Now turn back to the conjecture above: does the sequence {xn} fall eventually
in the absorbing set {1, 2} for any initial value x0? Relations (9) and (10) show
that our stochastic sequence {Xn} tends to 0 a.s., so in view of Theorem 2 we could
expect that, at least for “almost all x0”, the answer is positive. However, so far we
can only prove the following results concerning the “rate of decrease” of {xn}, which
is an improvement of the results on the asymptotic density of T0 mentioned in the
Introduction.

Theorem 3 For any k ≥ 1 and Cm ≥ 0, m = 1, . . . , k, the set

Dk(C1, . . . , Ck) =
{

x0 ∈ N :
x1

x0

≥ C1, . . . ,
xk

x0

≥ Ck

}
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has the density

ρ(Dk(C1, . . . , Ck)) = P

(

k
⋂

m=1

{

Um ≥
m + log2 Cm

log2 3

})

,

where Um = I1 + · · ·+ Im are cumulative sums of i.i.d. Bernoulli r.v.’s with success
probabilities 1/2.

Putting C1 = · · · = Ck−1 = 0, we immediately get the following

Corollary 2 For any k ≥ 1 and C > 0, the set Dk(C) = {x0 ∈ N : xk/x0 < C}
has the density

ρ(Dk(C)) = Bk,1/2((k + log2 C)/ log2 3),(11)

where Bk,p is the binomial distribution function with parameters k and p.

This means, for example, that, for a fixed k, xk/x0 < 2−k3k/2 for “half” of the
x0’s.

Remark 1 For large k, the right hand side of (11) is close to

Φ(((2 − log2 3)k + log2 C)/log2 3),

where Φ is the standard normal distribution function.

It is easy to see that

Dk(1, . . . , 1) = {x0 ∈ N : t0(x0) > k} = N\T0(k).

We thus have the following explicit form for the density (4) of T0(k).

Corollary 3

ρ(T0(k)) = 1 − P

(

k
⋂

m=1

{Um ≥ m/log2 3}

)

.

The standard estimates for large deviations probabilities for random walks imply
now estimates for this density (which is a function of k) like those from Theorem D
in Lagarias (1985).

Proof of Theorem 3. For the sake of simplicity we shall only prove here Corol-
lary 2, for the proof of Theorem 3 goes essentially along the same lines.

For any given δ > 0, only for finitely many x0 (and definitely not for x0 ≥ 2k/δ)
can one get xj < δ−1 for some j = 0, 1, . . . , k − 1. Hence

(

3

2

)αk
(

1

2

)k−αk

≤
xk

x0

≤

(

3 + δ

2

)αk (1

2

)k−αk

, x0 ≥ 2k/δ(12)
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(the left inequality is true for all x0 ≥ 1), where αk = J(x0) + · · · + J(xk−1). Now
let m = m(n) = ⌊n2−k⌋ (⌊z⌋ denoting the integer part of z); clearly, for any set D,

0 ≤ |{x ∈ D : x ≤ n}| − −|{x ∈ D : x ≤ m2k}| ≤ 2k.

To complete the proof it remains to note that, if x0 is uniformly distributed over
{x : x ≤ m2k}, it follows from Corollary C1 that in that case αk has the distribution
Bk,1/2. Therefore

1

n
|{x ∈ Dk(C) : x ≤ n}| ∼

1

m2k
|{x ∈ Dk(C) : x ≤ m2k}| = P (xk/x0 < C),

and since we have from (12) that

P (Uk < (k + log2 C)/ log2 3) ≥ P (xk/x0 < C) ≥

≥ P (Uk < (k + log2 C)/ log2(3 + δ)) −−1/mδ,

it remains to let n → ∞; our assertion follows since δ > 0 is arbitrary small.

The next result gives a somewhat more precise characterization of the “average
rate” of decrease of xj.

Theorem 4 For any sequence

r(m) =
1

2
(1 + βmm−1/2) log2 3

with βm → ∞ as m → ∞, one has ρ(D) = 1 for the set

D = {x0 : xm ≤ x
r(m)
0 , m = ⌊log2 x0⌋}.

Remark 2 Note that this result is exact in the following sense. If

r(m) =
1

2
(1 + O(m−1/2)) log2 3,

then the corresponding set D cannot have the unit density.

Proof. Set Ak = [2k, 2k+1) ⊂ N, and let x0(k) be a random variable uniformly
distributed over Ak, k ≥ 1. It is easy to see that it suffices to prove that

P (xk(k) > x0(k)r(k)) → 0 as k → ∞,(13)

for ⌊log2 x0(k)⌋ = k a.s.
This probability does not exceed

P
(

min
j≤k

xj(k) < N
)

+ P (xk(k) > x0(k)r(k); min
j≤k

xj(k) ≥ N).(14)
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Put N = 3k/4. Since xj(k) ≥ 3αj 2−jx0(k) ≥ 3αj2k−j by (12), the first probability in
(14) is estimated by

P

(

min
j≤k

3αj 2−j < 3k/42−k
)

≤ P

(

min
j≤k

(αj − j/log2 3) < −k/log2 3 + k/4
)

≤ P

(

min
j≤k

(αj − j/2) < −− k/4
)

→ 0

as k → ∞ by the Donsker–Prokhorov invariance principle (recall that αj, j =
1, . . . , k, are sequential sums of the i.i.d.r.v.’s J(xj(k)), j = 0, . . . , k − 1, and hence
the distribution of 2k−1/2 minj≤k(αj−j/2) converges weakly to that of min0≤t≤1 w(t),
where w is the standard Wiener process).

Now let us turn to the second term in (14). It does not exceed

P ((3 + 3−k/4)αk2−k > (2k)r(k)−1) ≤ P

(

αk >
kr(k)

log2 3(1 + 3−k/4−1)

)

= P (αk > k/2 + β′
kk

1/2) → 0 as k → ∞

by the central limit theorem, for β′
k → ∞ as βk does (cf. (12); we again make use

of the fact that x0(k) ≥ 2k). Therefore, (13) is proved, and hence the proof of
Theorem 4 is complete.

3 Absorption times

In the previous section, we estimated how the sequence {xn} decreases “on the
average”. Now we turn to the absorption times themselves. We shall consider the
total stopping time t(x0) for original sequence (see (3; in fact, {xn} hits the absorbing
set {1, 2} at time t(x0)−1), and its analogue for the stochastic sequence, the hitting
time

T (a) = min{n > 0 : Xn ≤ 1}, X0 = a.

From Corollary 1 and Theorem 2 one could expect that

|A|−1|{x0 ∈ A : t(x0) < u}| ∼ P (T (a) < u),(15)

say, for A = [a, a + 2k) ⊂ N. Below we shall see what the numerical experiments
say about (15), but first we shall estimate the right-hand side of that relation.

Remark 3 Some results on the almost sure behaviour of T (a) as a → ∞ are given in
Lagarias and Weiss (1992), but for their own stochastic model which looks like ours
with the essential difference that they consider, roughly speaking, a new random
walk for each level; the total stopping time is defined there as

σ∞(ωn) = min{k : Z(n, k) ≥ lnn},
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where Z(n, k) =
∑k

i=1 X(n, i), and {X(n, i)} is a set of independent random variables
with common distribution coinciding with that of our ξ1. For this modified total
stopping time they establish the almost sure behaviour, obtaining the following
result: with probability 1,

lim sup
n→∞

σ∞(ωn)

ln n
= γRW ≈ 41.678,(16)

while in our model, by the law of large numbers in extended renewal theory (see e.g.
Gut (1988)), we have just that almost surely

lim
n→∞

T (n)

ln n
=

1

µ
=
(

1

2
ln

4

3

)−1

≈ 6.952.

(Further comments on this subject see below). After that, results for the stochas-
tic model are compared in the cited paper with the real behaviour of the original
sequence, when the initial value is taken from a sequence of sets like our Ak from
Theorem 4 with a resulting relative error of about 25%.

We should note here the following two aspects of such modelling. Firstly, the
assumption about independence of all X(n, k) might have been inspired by a repre-
sentation of the form xk = 2−k3J(x0)+···+J(xk−1)x0 +δk(x0) established in Theorem 1.1
in Terras (1976). Nevertheless, it looks a bit strange (since, say, at time one, the
jumps in the original system have the same sign for all initial values of the same
parity etc.), whereas our choice is justified at least by Theorems 1 and 2. Moreover,
the large value obtained for the upper limit is apparently due to the fact that there
are “too many” different X(n, k)’s. By the way, using the model from Lagarias and
Weiss (1992), one could establish also the central limit theorem and even the law of
the iterated logarithm for the quantity

|{x0 : x1/x0 ≥ 3/2}|,

which reflects no real property of the original sequence whatsoever. Secondly, the
extreme values for the original sequence given in the tables in Lagarias and Weiss
(1992) could (quite surely) correspond, in a sense, to a set of probability null in
the stochastic model, of which the a.s. behaviour has been described possibly just
on the complement of that set. For a more accurate use of the model, one should
also calculate the number of these “extreme” points giving large total stopping time
values, and compare it with n.

In other words, the use of the a.s. behaviour of such stochastic models to make
predictions for the original sequence looks quite unreliable and unjustified. On the
other hand, as we have seen above, the distributional properties of the probabilistic
model could help in describing the “average” properties of the original one (including
its behaviour on the set of initial points having asymptotic density 1).

Return now to the problem of estimating the terms in (15). Clearly,

ln Xn = b − Sn, b = ln a, Sn =
n
∑

k=1

ξk,



10 K. A. BOROVKOV AND D. PFEIFER

where ξk = ln 2 − Ik ln 3 are i.i.d. r.v.’s with the positive mean µ and variance σ2

given in (10), and

T (a) = min{n > 0 : Sn ≥ b}.

Hence, by the central limit theorem in the extended renewal theory (see e.g. Theo-
rem III.5.1 in Gut (1988)), we see that T (a) is, under proper normalization, asymp-
totically normal. We shall give now yet another argument proving that fact, because
it provides some motivation for our next step.

If we put ηk = 1 − 2Ik and Vn =
∑

k≤n ηk, then E η1 = 0, Var(η1) = 1, and

T (a) = min{n ≥ 1 : Vn ≥ f(n)}, f(t) = σ−1(b − µt).

Now define the normalized process sh(t) = h−1/2Vht, t ≥ 0, and put h = h(a) =
b/µ = (2 ln a)/ ln(4/3). Then we have

T (a) = h min{t > 0 : sh(t) ≥ (1 − t)g}, g = (bµ)1/2σ−1.(17)

Put
τ(g) = inf{t : w(t) ≥ (1 − t)g}(18)

for the standard Wiener process w(t), t ≥ 0. Since w is continuous, and τ(g) → 1
a.s. as g → ∞,

w(τ(g)) → w(1) a.s. as g → ∞.(19)

Now by the Donsker–Prokhorov invariance principle the process sh converges
in distribution to w in the Skorokhod space D[0,∞) as h → ∞. By Skorokhod’s
theorem, we may assume without loss of generality that sh → w a.s. uniformly on
any finite interval [0, C], h → ∞. But then it follows from (17) to (19) that

sh(h
−1T (a)) → w(1) a.s. as a → ∞.(20)

Further, since the jumps in the random walk Vn are bounded, it is not difficult
to see from (17) that

gh−1(T (a) − h) = −sh(h
−1T (a)) + O(h−1/2),(21)

and hence it follows from (20) that the distribution of µσ−1h−1/2(T (a)−h) converges
to that of −w(1). We shall state this result as a theorem.

Theorem 5 For any real x,

P

(

T (a) − µ−1 ln a

µ−3/2σ(ln a)1/2
< x

)

→ Φ(x) as a → ∞.

Moreover, relation (21) suggests that

gh−1(T (a) − h)
d
≈ −− w(τ(g)) = g(τ(g) − 1)(22)
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(the last equality holds due to the continuity of w), and therefore makes the following
“second order approximation” plausible:

T (a)/ ln a
d
≈ µ−1τ(g),(23)

which would be of great value since the rate of convergence in Theorem 5 is very
slow: it is only O((ln a)−1/2). Unfortunately, we could not prove so far such a
relation in the general case (a direct proof of a similar result, that is, the proof of
the closeness of the distributions of the first hitting times for random walks and for
Wiener processes, is possible for integer-valued ξi ≤ 1; it is based on an analogue
of the formula (24) below for skip-free random walks). However, simulations show
that in fact we have here such an approximation.

How is that τ(g) distributed? Clearly, it is the crossing time of the level g by
the continuous process v(t) = w(t) + gt. Since v(t) has the density

pv(t)(x) =
1

(2πt)1/2
exp

(

−
(x − gt)2

2t

)

,

we have by a well-known formula for such processes (see e.g. Borovkov (1976)), that
τ(g) has a density pτ (g)(t) and

g−1pτ (g)(t) = t−1pv(t)(g), g, t > 0,(24)

so that

pτ (g)(t) =
g

(2π)1/2t3/2
exp

(

−
g2(1 − t)2

2t

)

, t > 0

(the standard approach to deriving this formula for τ(g) is to combine the reflection
principle with a change of measure, cf. Siegmund (1985); the above derivation is
much shorter). Therefore, the density of the right-hand side of (23) is

(ln a)1/2

(2πx3)1/2σ
exp

{

−
(µx − 1)2 ln a

2σ2x

}

, x > 0.(25)

The above argument makes it plausible that this density provides a refinement
of the normal approximation for the distribution of T (a) from Theorem 5. The
numerical data from the next section show that this is really the case, and moreover,
that expression (25) can serve as a reasonable approximation to the distribution of
the stopping times in the original system (1)–(2) as well.

4 Numerical results

The first four figures below show the histograms of the normalized total stopping
times t(x0)/ lnx0 of the original model for all 105 initial values x0 in the sets [0.95×
106, 1.05 × 106) and [1.95 × 106, 2.05 × 106), resp., and the histograms for samples
of 105 simulated values of T (a)/ ln a each with a = 106 and a = 2 × 106, resp.
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We also plot the densities (25) on the same graphs. The histograms for simulated
samples are given in order to compare the error of approximation to the original
model with what one gets for truly stochastic systems. The empirical averages for
t(x0) are 6.86 and 6.88, resp., which is very close to the renewal theoretic value 6.95
above. Also, the histograms for T (a) follow quite precisely the density (25). The
fifth figure shows the histogram of the normalized stopping time t(x0)/ ln x0 in the
range x0 ∈ [3.5×106, 4.5×106). Due to the larger interval, this histogram is closer in
shape to the histograms of the simulated values of T (a), giving an empirical average
of 6.86.

x0 ∈ [0.95 × 106, 1.05 × 106) a = 106

Histograms for t(x0)/ ln x0 and T (a)/ ln a with fitted density

x0 ∈ [1.95 × 106, 2.05 × 106) a = 2 × 106

Histograms for t(x0)/ ln x0 and T (a)/ ln a with fitted density

x0 ∈ [3.5 × 106, 4.5 × 106) a = 4 × 106

Histograms for t(x0)/ ln x0 and T (a)/ ln a with fitted density
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