
ON THE SELF-ADJOINTNESS OF TWO-DIMENSIONAL

RELATIVISTIC SHELL INTERACTIONS

BADREDINE BENHELLAL, KONSTANTIN PANKRASHKIN, MAHDI ZREIK

Abstract. We study the self-adjointness of the two-dimensional Dirac

operator coupled with electrostatic and Lorentz scalar shell interactions

of constant strength ε and µ supported on a closed Lipschitz curve.

Namely, we present several new explicit ranges of ε and µ for which

there is a unique self-adjoint realization with domain included into H
1
2 .

A more precise analysis is carried out for curvilinear polygons, which

allows one to take the corner openings into account. Compared to the

preceding works on this topic, two new technical ingredients are em-

ployed: the explicit use of the Cauchy transform on non-smooth curves

and the explicit characterization of the Fredholmness for singular inte-

gral operators.
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1. Introduction

Dirac operators with δ-interactions supported on general hypersurfaces

have been actively studied since the appearance of the paper [1]. Due to the

presence of distributional coefficients, the self-adjointness of such operators

requires special attention, and it was seen by many authors (primarily for the

three-dimensional case) that the self-adjointness domain can be dependent

on the coupling constants and the smoothness properties of the hypersur-

face and that it may lead to unusual spectral properties [2, 3, 6, 7, 8]. The

paper [4] initiated the study of the two-dimensional case, and for the case of

smooth curves a very complete spectral picture could be found, which was

extended in [10] to a more general class of interactions. Much less attention

was given to the case of non-smooth surfaces and curves. In the present
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work, we discuss the self-adjointness of two-dimensional Dirac operators

with δ-interactions supported on closed Lipschitz curves (in particular, on

curvilinear polygons). Our results complement those obtained in the recent

papers [5, 17] and provide precise ranges of coupling constants and corner

openings for which the domain of self-adjointness can be given explicitly.

Compared to the preceding works, we employ two new technical ingredi-

ents: the explicit use of the Cauchy transform on non-smooth curves and a

characterization of the Fredholmness for boundary integral operators using

the approach of [18].

Now let us pass to precise formulations. Through the text, we use the

Pauli matrices

σ1 =

(
0 1

1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0

0 −1

)
and denote by σ0 the 2× 2 identity matrix. The anticommutation relations

{σj , σk} = σjσk + σkσj = 2δjkσ0 for all j, k ∈ {1, 2, 3} (1.1)

are well known. Let m ∈ R. The two-dimensional Dirac operator with mass

m is the formally self-adjoint differential expression

D : C∞
0 (R2,C2) ∋ f 7→ −i(σ1∂1f + σ2∂2f) +mσ3f ∈ C∞

0 (R2,C2),

and it naturally extends to a continuous linear map in the space of dis-

tributions D′(Ω,C2) for any open set Ω ⊂ R2. It is well known that the

operator

Af 7→ Df, domA = H1(R2,C2), (1.2)

(the free two-dimensional Dirac operator), is self-adjoint in L2(R2,C2) and

has the absolutely continuous spectrum

specA =
(
−∞,−|m|

]
∪
[
|m|,+∞

)
,

and it occupies a central place in relativistic quantum mechanics [19]. We

will be interested in the study of some special perturbations of A.

Namely, let Ω+ ⊂ R2 be a non-empty bounded open set with Lipschitz

boundary. Denote

Σ := ∂Ω+, Ω− := R2 \ Ω+.

For (ε, µ) ∈ R2 we would like to discuss self-adjoint realizations in L2(R2,C2)

of operators given formally by

f 7→ Df + (εσ0 + µσ3)δΣf, (1.3)

where δΣ is the Dirac δ-distribution supported on Σ. The last summand can

be considered as an idealized model of a relativistic potential concentrated

on Σ, and the constant ε resp. µ measures the strength of the electrostatic

resp. Lorentz scalar part of the interaction. The formal expression (1.3) can

be given a more rigorous meaning as follows. First, for any non-empty open

set Ω ⊂ R2 consider the space

H(σ,Ω) :=
{
f ∈ L2(Ω,C2) : Df ∈ L2(Ω,C2)

}
,
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which is just the domain of the maximal realization of D in L2(Ω,C2) and

becomes a Hilbert space if equipped with the scalar product

⟨f, g⟩H(σ,Ω) := ⟨f, g⟩L2(Ω,C2) + ⟨Df,Dg⟩L2(Ω,C2).

For s > 0 let Hs(Ω,C2) be the usual fractional Sobolev spaces of order s on

Ω (consisting of C2-valued functions), and we set

Hs(σ,Ω) := H(σ,Ω) ∩Hs(Ω,C2),

which is a Hilbert space with the scalar product

⟨f, g⟩Hs(σ,Ω) := ⟨f, g⟩H(σ,Ω) + ⟨f, g⟩Hs(Ω,C2).

For what follows it will be convenient to use the identification

H(σ,R2 \ Σ) ≃ H(σ,Ω+)⊕H(σ,Ω−), f ≃ (f+, f−),

with f± being the restriction of f on Ω±, as well as the analogous identifica-

tions for Hs(R2 \ Σ,C2) and Hs(σ,R2 \ Σ). We will also use the shorthand

notation

σ · x := x1σ1 + x2σ2, x = (x1, x2) ∈ R2;

from the anticommutation relations (1.1) one easily obtains (σ ·x)2 = |x|2σ0
for all x ∈ R2.

It is known that for any f ∈ H(σ,R2 \Σ) the boundary traces (σ ·ν)f± on

Σ are well-defined as functions in H− 1
2 (Σ); remark that we keep the same

symbols for the boundary traces for better readability. Denote by δΣf the

distribution

⟨δΣf, φ⟩ :=
∫
Σ

f+ + f−
2

φds, φ ∈ C∞
c (R2),

where dsmeans the integration with respect to the arclength. An application

of the jump formula shows the identity

Df = (Df+)⊕ (Df−) + i(σ · ν)(f+ − f−)δΣ, (1.4)

where ν = (ν1, ν2) is the unit normal on Σ pointing to Ω−. Then it follows

that the right-hand side of (1.3) belongs to L2(R2,C2) if and only if f

satisfies the transmission condition

(εσ0 + µσ3)
f+ + f−

2
+ i(σ · ν)(f+ − f−) = 0 on Σ. (1.5)

Therefore, as a first attempt, it is natural to consider the following oper-

ator realizations of the expression (1.3) in L2(R2,C2):

• the maximal realization Bmax with the domain

domBmax :=
{
f ∈ H(σ,R2 \ Σ) : f satisfies (1.5)

}
,

• the minimal realization Bmin with the domain

domBmin := domBmax ∩H1(R2 \ Σ,C2)

≡
{
f ∈ H1(R2 \ Σ,C2) : f satisfies (1.5)

}
.
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It is standard to see that Bmin is symmetric with B∗
min = Bmax, therefore,

Bmin ⊂ B ⊂ Bmax for any self-adjoint realization B of (1.3). Nevertheless,

an explicit description of the self-adjoint realizations turns out to be an

involved problem depending on both (ε, µ) and the regularity of Σ.

The most attention was given to the case of C2-smooth Σ, see [5] and

references therein. Namely, if ε2 − µ2 ̸= 4, then Bmin = Bmax =: B, and the

spectrum of B consists of the spectrum of the free Dirac operator A and at

most finitely many discrete eigenvalues in (−|m|, |m|). For ε2 − µ2 = 4 the

operator Bmin is not closed, but Bmin = Bmax, so Bmin is at least essentially

self-adjoint (so there is a unique self-adjoint realization), but the loss of

regularity leads to peculiar spectral effects (e.g. new pieces of the essential

spectrum), see [4, 5, 8]. Remark that [5, 10] actually consider more general

interactions by admitting so-called anomalous magnetic couplings which are

not covered by the above framework.

If Σ has corners, one has, in general, Bmin ⊊ Bmax, which means that there

are infinitely many self-adjoint realizations [16]. The work [16] suggested

that the H
1
2 regularity should be more natural for the case of non-smooth

Σ. Namely, let

B ≡ Bε,µ

be the restriction of Bmax to domBmax ∩H
1
2 (R2 \ Σ,C2), i.e.

B : f ≃ (f+, f−) 7→ (Df+, Df−),

domB :=
{
f ∈ H

1
2 (σ,R2 \ Σ) : f satisfies (1.5)

}
.

(1.6)

Due to the standard Sobolev traces theorem, the one-sided traces of func-

tions from domB on Σ belong to L2(Σ,C2), so the integration by parts

shows that B is a symmetric operator. The main result of [17] reads as

follows: if Σ is a curvilinear polygon (a piecewise C2-smooth closed curve,

with finitely many corners and without cusps), ε = 0 and |µ| < 2, then B

is self-adjoint. The recent work [5] presents an extensive study of the case

of general compact Lipschitz curves Σ by reducing the self-adjointness to

the Fredholmness of some boundary integral operator (see also [1, 7] for the

three-dimensional case): we summarize the essential components of the con-

structions in Section 2. Nevertheless, the self-adjoint conditions obtained in

[5] for our case are quite implicit as they depend on the (unknown) spectra

of some boundary integral operators.

In the present work we extend the results of both [5] and [17] by providing

new very explicit conditions for the self-adjointness of B in terms of the

parameters (ε, µ) and the geometry of Σ. Namely, we show that B is self-

adjoint in the following cases:

(A) The curve Σ is Lipschitz and |ε| ≤ |µ| (Corollary 4.3),

(B) The curve Σ is C1-smooth and ε2 − µ2 ̸= 4 (Theorem 4.4),
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(C) The curve Σ is a curvilinear polygon (with C1-smooth edges and

without cusps) and

ε2 − µ2 <
1

m(ω)
or ε2 − µ2 > 16m(ω),

where the constant m(ω) only depends on the sharpest corner ω of

Σ (Theorem 5.4).

The value of m(ω) is not known explicitly for all ω, but some

bounds can be obtained, and each of the conditions

(i) ε2 − µ2 < 2 or ε2 − µ2 > 8 (without additional geometric as-

sumptions),

(ii) ε2 − µ2 ̸= 4 if each angle θ of Σ (measured inside Ω+) satisfies

π

2
≤ θ ≤ 3π

2
,

guarantees the self-adjointness of B (Corollary 5.5).

The case (B) is formally contained in (C.ii), but the proofs are very dif-

ferent, so we prefer to consider these two situations separately.

Remark 1.1. If the operator B is self-adjoint, a standard analysis shows

that its essential spectrum coincides with the spectrum of the free Dirac

operator A and that the discrete spectrum is at most finite [4, Proposition

3.8]. While all constructions of [4] are formally for smooth Σ, the proof of

this specific result only uses the compact embedding of Hs(Ω) to L2(Ω) for

s > 0 and bounded open sets Ω ⊂ R2 with Lipschitz boundaries.

Remark 1.2. An additional useful property is that for any (ε, µ) with

|ε| ≠ |µ| the operatorBε,µ is unitarily equivalent toB− 4ε
ε2−µ2

,− 4µ

ε2−µ2
. Namely,

a simple direct computation shows that

Bε,µU = UB− 4ε
ε2−µ2

,− 4µ

ε2−µ2

for the unitary linear map U : L2(R2,C2) → L2(R2,C2) defined by

U : (f+, f−) 7→ (f+,−f−),

see [4, Propositon 4.8]. In particular, the self-adjointness of B− 4ε
ε2−µ2

,− 4µ

ε2−µ2

is equivalent to the self-adjoitness of Bε,µ, which will be used in the last

proof steps.

2. Preparations for the proof

We will need some constructions related to the free Dirac operator A in

(1.2). Most of these required results were already obtained in [4, 5] and we

simply present them in an adapted form.

First of all, we consider the Cauchy transform on Σ, i.e. the linear oper-

ator CΣ : L2(Σ) −→ L2(Σ) defined through the complex line integration

CΣg(x) :=
i

2π
p. v.

∫
Σ

g(y)

x− y
dy, g ∈ L2(Σ), x ∈ Σ,
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and understood in the Cauchy principal value sense. It is a classical result

that CΣ is well-defined and bounded [11]. Moreover, if one considers the

analytic function

Fg : C \ Σ ≃ R2 \ Σ ∋ x 7→ i

2π
p. v.

∫
Σ

g(y)

x− y
dy, g ∈ L2(Σ),

then Plemelj-Sokhotski formulas are valid:

Fg(x) = ±g(x)
2

+ CΣg(x) for a.e. x ∈ Σ,

where the value on the left-hand side is understood as the non-tangential

limit [14, p. 108].

Denote by Kj the modified Bessel functions of order j. For z ∈ C\ specA
consider the function ϕz : R2 →M2×2(C) given by

ϕz(x) :=
1

2π
K0

(√
m2 − z2|x|

)(
mσ3 + zσ0

)
+ i

√
m2 − z2

2π|x|
K1

(√
m2 − z2|x|

)
(σ · x).

It will be convenient to admit the additional value z = m by setting

ϕm(x) :=
i

2π

 0
1

x1 + ix2
1

x1 − ix2
0

 .

Using the asymptotic expansions of Kj one obtains

ϕz(x) = ϕm(x) + h1(x) log |x|+ h2(x). (2.1)

with continuous functions hj , see [4, Lemma 3.3] for details.

For all admissible z the function ϕz is a fundamental solution of D − z,

and it gives rise to several (singular) integral operators.

Namely, consider the layer potentials Φz for D − z (with z ∈ C \ specA)

Φz : L
2(Σ,C2) −→ L2(R2,C2),

Φzg(x) =

∫
Σ
ϕz(x− y)g(y) ds(y), x ∈ R2 \ Σ,

where we recall that ds means the integration with respect to the arclength.

Observe that ϕz(x)
∗ = ϕz̄(−x) for all x. Let γ : H

1
2 (R2,C2) → L2(Σ,C2)

be the Sobolev trace operator (which is a bounded linear operator), then for

any u ∈ L2(R2,C2) and g ∈ L2(Σ,C2) one has, using Fubini’s theorem,

⟨Φz̄g, u⟩L2(R2,C2) =

∫
R2

〈∫
Σ
ϕz̄(x− y)g(y) ds(y), u(x)

〉
C2

dx

=

∫
Σ

〈
g(y),

∫
R2

ϕ∗z̄(x− y)u(x)dx
〉
C2

ds(y),

=
〈
g, γ(A− z)−1u

〉
L2(Σ,C2)

.
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This shows that Φz̄ =
(
γ(A− z)−1

)∗
is bounded, and by replacing z with z̄

one obtains the useful identity

Φ∗
z = γ(A− z̄)−1, z ∈ C \ specA. (2.2)

Now let φ ∈ C∞
0 (R2,C2) and h ∈ L2(Σ,C2), then〈

Φzh, (D − z̄)φ
〉
L2(R2,C2)

=
〈
h,Φ∗

z(D − z̄)φ
〉
L2(Σ,C2)

=
〈
h, γ(D − z̄)−1(D − z̄)φ

〉
L2(Σ,C2)

=
〈
h, γφ

〉
L2(Σ,C2)

,

and it follows that (D − z)Φzh = 0 in D′(R2 \ Σ). In particular,

ranΦz ⊂ ker(Bmax − z) ⊂ domBmax.

In fact, for any z ∈ C\ specA one has the stronger property [5, Lemma 4.2]:

Φz : L
2(Σ,C2) → H

1
2 (σ,R2 \ Σ) is bounded. (2.3)

For all admissible z consider the singular integral operator

Cz : L2(Σ,C2) −→ L2(Σ,C2)

given by

Czg(x) = p. v.

∫
Σ
ϕz(x− y)g(y) ds(y), x ∈ Σ.

To summarize its properties we introduce the tangent vector field

τ = (τ1, τ2) := (−ν2, ν1)

on Σ and denote

t := the operator of multiplication by τ1 + iτ2 in L2(Σ).

Then

CΣt
∗g(x) =

i

2π
p. v.

∫
Σ

g(y)

(x1 − y1)− i(x2 − y2)
ds(y),

tC∗
Σg(x) =

i

2π
p. v.

∫
Σ

g(y)

(x1 − y1) + i(x2 − y2)
ds(y), x ∈ Σ,

(2.4)

and

Cm =

(
0 CΣt

∗

tC∗
Σ 0

)
. (2.5)

Therefore, the boundedness of CΣ implies the boundedness of Cm. In addi-

tion, the expansion (2.1) shows that Cz − Cm is an integral operator with a

Hilbert-Schmidt kernel, in particular,

Cz − Cm : L2(Σ,C2) → L2(Σ,C2) is compact for any z ∈ C \ specA,

which also shows the well-definedness and boundedness of Cz for all admis-

sible z.

Let γ± : H
1
2 (Ω±) → L2(Σ) be the Sobolev trace operators, and for any

f ∈ H
1
2 (R2 \ Σ) we set

γ±f := γ±f±,
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then one has the so-called jump formula

γ±Φzg =

(
∓ i

2
σ · ν + Cz

)
g, g ∈ L2(Σ,C2). (2.6)

In [4, Proposition 3.5] the jump formula was proved under the formal as-

sumption that Σ is C∞ smooth, but the same proof applies to our case as

well, as the Plemelj-Sokhotski formula used in the proof also holds for closed

Lipschitz curves. From the jump formula (2.6) one obtains

g = i(σ · ν)
[
γ+Φzg − γ−Φzg

]
, g ∈ L2(Σ,C2),

which shows the injectivity of Φz. Further direct consequences of the jump

formula are the identities

γ+Φzg − γ−Φzg = −i(σ · ν)g,
γ+Φzg + γ−Φzg

2
= Czg, g ∈ L2(Σ,C2).

(2.7)

For z ∈ (C \ specA) ∪ {m} consider the bounded linear operator

Θz := I + (εσ0 + µσ3)Cz : L2(Σ,C2) → L2(Σ,C2),

which is closely related to the operator B from (1.6) as follows:

Lemma 2.1. For any z ∈ C \ specA there holds ker(B− z) = Φz kerΘz, in

particular, dimker(B − z) = dimkerΘz.

Proof. Remark that the last assertion follows from the injectivity of Φz.

Let z ∈ C\specA and g ∈ kerΘz. Denote f := Φzg, then f ∈ ker(Bmax−
z) due to the above properties of Φz. We need to show f ∈ domB. By (2.3)

we have already f ∈ H
1
2 (σ,R2 \ Σ). By (2.7) we have

(εσ0 + µσ3)
γ+Φzg + γ−Φzg

2
+ i(σ · ν)

(
γ+Φzg − γ−Φzg

)
= (εσ0 + µσ3)Czg + i(σ · ν)

(
− i(σ · ν)

)
g

= (εσ0 + µσ3)Czg + g = Θzg = 0.

Hence, f ∈ ker(B − z). This shows the inclusion Φz kerΘz ⊂ ker(B − z).

Now let z ∈ C \ specA and f ∈ ker(B − z). Due to (1.4) we have

(D − z)f = (B − z)f + i(σ · ν)(f+ − f−)δΣ. (2.8)

Let F : S ′(R2) → S ′(R2) be the Fourier transform. For any ψ ∈ S ′(R2) we

have

F(D − z)ψ = (σ · ξ +mσ3 − zσ0)Fψ.
The matrix σ ·ξ+mσ3−zσ0 is invertible for any ξ ∈ R2 and has polynomial

entries, which shows that D − z : S ′(R2) → S ′(R2) is injective. As the

function ϕz ∈ S ′(R2) is a fundamental solution of D − z, from (2.8) one

obtains

f = ϕz ∗
[
i(σ · ν)(f+ − f−)δΣ

]
.

Due to f ∈ domB we have f± ∈ H
1
2 (Ω±,C2), and, hence
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g := i(σ · ν)(γ+f − γ−f) ∈ L2(Σ,C2).

Then

f = ϕz ∗ g =

∫
Σ
ϕz(· − y)g(y) ds(y) ≡ Φzg.

With the help of (2.7) we obtain

0 = (εσ0 + µσ3)
γ+f + γ−f

2
+ i(σ · ν)(γ+f − γ−f)

= (εσ0 + µσ3)Czg + g = Θzg,

which implies g ∈ kerΘz. Hence, ker(B − z) ⊂ Φz kerΘz. □

For the sake of completeness, we include the proof of the following im-

portant statement (which is based on similar ideas):

Lemma 2.2. The operator C2
Σ − 1

4 is compact in L2(Σ,C2).

Proof. Let h ∈ L2(Σ,C2) and z ∈ C \ specA. Consider f := Φzh, then

(D − z)f = 0 in Ω±. Consider further the function

f̃ : R2 ∋ x 7→

{
f(x), x ∈ Ω+,

0, otherwise.

One has γ+f̃ = γ+f and γ−f̃ = 0, with (D− z)f̃ = 0 in Ω±, and (1.4) gives

(D − z)f̃ = i(σ · ν)(γ+f̃ − γ−f̃)δΣ ≡ i(σ · ν)γ+f δΣ in D′(R2),

which implies f̃ = ϕz ∗
[
i(σ · ν)γ+f δΣ

]
≡ Φzi(σ · ν)γ+f . In particular,

Φzi(σ · ν)γ+f = f = Φzh in Ω+. (2.9)

Remark that by the construction of f we have

γ+f =
(
− i(σ · ν)

2
+ Cz

)
h.

Use this last equality in (2.9) and then apply γ+ on the both parts, then

one arrives at(
− i(σ · ν)

2
+ Cz

)
i(σ · ν)

(
− i(σ · ν)

2
+ Cz

)
h =

(
− i(σ · ν)

2
+ Cz

)
h,

which after a simple algebra takes the form

Czi(σ · ν)Czh = − i(σ · ν)
4

h,

and results in the identity (
Cz(σ · ν)

)2
= −1

4
I. (2.10)

The identities are well-known for the three-dimensional case [1, Lemma 3.3],

but we gave a complete argument to stay self-contained. Further remark that

σ · ν =

(
0 n∗

n 0

)
,
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where n is the operator of multiplication by ν1 + iν2. Using (2.5) we write

Cz =
(

0 CΣt
∗

tC∗
Σ 0

)
+M0

with a compact operator M0. We have t∗n = −iI, so the substitution into

(2.10) gives, with some compact operators Mj ,

−1

4
I =

[(
−iCΣ 0

0 tC∗
Σn

∗

)
+M1

]2
=

(
−C2

Σ 0

0 (tC∗
Σn

∗)2

)
+M2,

and the upper left block gives the sought result. □

3. Case |ε| = |µ|

We first consider the self-adjointness of B for |ε| = |µ|.

Theorem 3.1. The operator B in (1.6) is self-adjoint for |ε| = |µ|.

Proof. In the case ε = µ = 0 we have obviously B = A. From now on let

µ = ±ε with ε ̸= 0.

Consider the following maps

P+ : L2(Σ) ∋ f 7→
(
f

0

)
∈ L2(Σ,C2),

P− : L2(Σ) ∋ f 7→
(
0

f

)
∈ L2(Σ,C2),

and their adjoints

P ∗
+ : L2(Σ,C2) ∋

(
f1
f2

)
7→ f1 ∈ L2(Σ),

P ∗
− : L2(Σ,C2) ∋

(
f1
f2

)
7→ f2 ∈ L2(Σ).

We set

P := P± for ε = ±µ.
As the operator B is symmetric, it is sufficient to show that ran(B− z) =

L2(R2,C2) for any z ∈ C \ R. For that, we will explicitly construct the

inverse (B − z)−1.

Let z ∈ C \ R. As B is symmetric, ker(B − z) = {0}, and Lemma 2.1

implies kerΘz = {0}. Remark that in the present case, we have

Θz = I + 2εPP ∗Cz, ΘzP = P + 2εPP ∗CzP ≡ 2εPλz

for λz :=
1

2ε
I + P ∗CzP : L2(Σ,C2) → L2(Σ,C2) ≡ 1

2ε
I + (z ±m)Sz

with the operator Sz : L
2(Σ) → L2(Σ) given by

(Szg)(x) :=
1

2π

∫
Σ
K0

(√
m2 − z2|x− y|

)
g(y) ds(y), x ∈ Σ, g ∈ L2(Σ).
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The integral kernel of Sz has a logarithmic singularity on the diagonal,

therefore, Sz is Hilbert-Schmidt (in particular, compact). It follows that

λz is a Fredholm operator of index zero. From the injectivity of Θz and P

one obtains the injectivity of λz, and it follows that λz : L2(Σ) → L2(Σ) is

bijective.

Now we are going to show that the operator

R(z) := (A− z)−1 − ΦzPλ
−1
z P ∗Φ∗

z̄,

is the inverse of B − z. Let v ∈ L2(R2,C2). Due to (2.2) one has

f := R(z)v ∈ H
1
2 (R2 \ Σ,C2).

Using the jump formulas (2.7) we obtain

γ+f + γ−f

2
= γ(A− z)−1v − CzPλ−1

z P ∗Φ∗
z̄v ≡ Φ∗

z̄v − CzPλ−1
z P ∗Φ∗

z̄v,

γ+f − γ−f = i(σ · ν)Pλ−1
z P ∗Φ∗

z̄v.

We have then

(εσ0 + µσ3)
γ+f + γ−f

2
+ i(σ · ν)(γ+ − γ−f)

≡ 2εPP ∗γ+f + γ−f

2
+ i(σ · ν)(γ+ − γ−f)

= 2εPP ∗(Φ∗
z̄v − CzPλ−1

z P ∗Φ∗
z̄v
)
+ i(σ · ν)i(σ · ν)Pλ−1

z P ∗Φ∗
z̄v

= 2εPP ∗(Φ∗
z̄v − CzPλ−1

z P ∗Φ∗
z̄v
)
− Pλ−1

z P ∗Φ∗
z̄v

= P
(
2εI − 2εP ∗CzPλ−1

z − λ−1
z

)
P ∗Φ∗

z̄v,

while

2ε− 2εP ∗CzPλ−1
z − λ−1

z = 2εI − 2ε
(
P ∗CzP +

1

2ε
I
)
λ−1
z

= 2εI − 2ελzλ
−1
z = 0.

This shows that f satisfies the transmission condition (1.5) and, therefore,

f ∈ domB.

Further, in D′(R2 \Σ,C2) we have (D − z)ΦzPλ
−1
z P ∗Φ∗

z̄v = 0, therefore,

(B − z)f = (D − z)f = (D − z)(A− z)−1v = (A− z)(A− z)−1v = v,

which shows R(z) = (B − z)−1. □

4. Case |ε| ≠ |µ|

For |ε| ≠ |µ| the matrix εσ0 + µσ3 is invertible, with

(εσ0 + µσ3)
−1 =

1

ε2 − µ2
(εσ0 − µσ3),

and it will be more convenient to consider the auxiliary bounded linear

operators

Λz :=
1

ε2 − µ2
(εσ0 − µσ3) + Cz ≡ (εσ0 + µσ3)

−1Θz
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for z ∈ (C \ specA) ∪ {m}. The symmetry property ϕz(y − x)∗ = ϕz(x− y)

entails that both Cz and Λz are self-adjoint for real admissible z.

The following assertion can be viewed as a simplified version of the results

of [5], and this is the entry point for the subsequent analysis:

Theorem 4.1. Let |ε| ≠ |µ| such that the operator Λa is Fredholm for some

a ∈ (C \ specA) ∪ {m}, then the operator B in (1.6) is self-adjoint.

Proof. As the domain and the self-adjointness of B are independent of

the choice of m (which just adds a bounded symmetric perturbation), it is

convenient to assume m > 0.

Let Λa be Fredholm. As noted above, for any z ∈ C\specA the difference

Λz − Λa ≡ Cz − Ca is a compact operator, and it follows that Λz is also

Fredholm and has the same index as Λa.

Now let z ∈ (−m,m) ⊂ C \ specA, then Λz is self-adjoint. From the

Fredholmness and the self-adjointness, it follows that the index of Λz is

zero. We have just seen above that the index is independent of z, so Λz is

Fredholm of index zero for all z ∈ C \ specA.
As B is symmetric, and in order to show its self-adjointness it is sufficient

to show that ran(B − z) = L2(R2,C2) for all z ∈ C \ R. We will do it by

constructing explicitly the inverse (B − z)−1 defined on L2(R2,C2).

Let z ∈ C \ R. As B is symmetric, there holds ker(B − z) = {0}. By

Lemma 2.1 one obtains kerΛz = {0}. As Λz is Fredholm of index zero, one

has ranΛz = L2(Σ,C2), so Λz : L2(Σ,C2) → L2(Σ,C2) is bijective with a

bounded inverse. Consider the bounded linear operator

R(z) = (A− z)−1 − ΦzΛ
−1
z Φ∗

z : L
2(R2,C2) → L2(R2,C2).

We are going to show that R(z) = (B − z)−1.

Let v ∈ L2(R2,C2). Due to (2.2) one has

f := R(z)v ∈ H
1
2 (R2 \ Σ,C2).

Using (2.7) we obtain

γ+f + γ−f

2
= γ(A− z)−1v − CzΛ−1

z Φ∗
zv = Φ∗

zv − CzΛ−1
z Φ∗

zv,

γ+f − γ−f = i (σ · ν)(Λz)
−1Φ∗

zv.

Then

(εσ0+µσ3)
γ+f + γ−f

2
+ i(σ · ν)(γ+f − γ−f)

=
[
(εσ0 + µσ3)(I − CzΛ−1

z )− Λ−1
z

]
Φ∗
zv,

while

(εσ0 + µσ3)(I − CzΛ−1
z )− Λ−1

z =
[
(εσ0 + µσ3)(Λz − Cz)− I

]
Λ−1
z

=
[
(εσ0 + µσ3)

1

ε2 − µ2
(εσ0 − µσ3)− I

]
Λ−1
z

= (I − I)Λ−1
z = 0.
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This shows that f satisfies the transmission condition (1.5), i.e. f ∈ domB.

In addition, in D′(R2 \ Σ) we have (D − z)ΦzΛ
−1
z Φ∗

z = 0, therefore,

(B − z)f = (D − z)f = (D − z)R(z)v

= (D − z)(A− z)−1 = (A− z)(A− z)−1v = v,

which shows the required identity R(z) = (B − z)−1. □

The following lemma gives a precise range of (ε, µ) for which B is self-

adjoint without additional assumptions on Σ.

Theorem 4.2. Assume that |ε| < |µ|, then B is self-adjoint.

Proof. By Proposition 4.1 it is sufficient to show that (ε2 −µ2)Λm is Fred-

holm. Using (2.5) we represent

(ε2 − µ2)Λm = (εσ0 − µσ3) + (ε2 − µ2)Cm

= (εσ0 − µσ3) + (ε2 − µ2)

(
0 CΣt

∗

tC∗
Σ 0

)
= εσ0 + Γ,

with Γ :=

(
−µ (ε2 − µ2)CΣt

∗

(ε2 − µ2)tC∗
Σ µ

)
.

Remark that Γ is self-adjoint and

Γ2 = µ2 + (ε2 − µ2)2
(
CΣC

∗
Σ 0

0 tC∗
ΣCΣt

∗

)
.

The last term is a non-negative operator, which shows

spec(Γ2) ⊂ [µ2,∞), spec Γ ∩
(
− |µ|, |µ|

)
= ∅.

Therefore, if |ε| < |µ|, then the operator

(ε2 − µ2)Λm ≡ ε+ Γ : L2(Σ,C2) → L2(Σ,C2)

is an isomorphism and, in particular, Fredholm. □

By summarizing Theorems 3.1 and 4.2 we arrive at

Corollary 4.3. The operator B is self-adjoint for any (ε, µ) with |ε| ≤ |µ|.

Remark that the preceding discussion is valid without any additional as-

sumptions on Σ (i.e. only assumes that Σ is Lipschitz). Under stronger

geometric assumptions one can indeed enlarge the range of parameters for

which the self-adjointness is guaranteed. The following result follows implic-

itly from the machinery of [5], but we prefer to give an explicit formulation

with a direct argument.

Theorem 4.4. If Σ is C1-smooth and ε2 − µ2 ̸= 4, then B is self-adjoint.

Proof. The case |ε| = |µ| is already covered by Theorem 3.1, so from now

on assume |ε| ≠ |µ|. By Proposition 4.1 it is sufficient to show that Λm is

Fredholm. Due to the self-adjointness of Λm this is equivalent to

0 /∈ specess(ε
2 − µ2)Λm. (4.1)
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Using (2.5) we represent

(ε2 − µ2)Λm = (εσ0 − µσ3) + (ε2 − µ2)Cm

= (εσ0 − µσ3) + (ε2 − µ2)

(
0 CΣt

∗

tC∗
Σ 0

)
= εσ0 + Γ,

with Γ :=

(
−µI (ε2 − µ2)CΣt

∗

(ε2 − µ2)tC∗
Σ µI

)
.

By [15, Theorem 3.2] the operator CΣ − C∗
Σ is compact, therefore,

Γ =

(
−µ (ε2 − µ2)CΣt

∗

(ε2 − µ2)tCΣ µ

)
+M0

with some compact operator M0. Using Lemma 2.2 we obtain, with some

compact operators M1 and M2,

Γ2 = µ2 + (ε2 − µ2)2
(
C2
Σ 0

0 tC2
Σt

∗

)
+M1

≡ µ2 +
(ε2 − µ2)2

4

(
I 0

0 I

)
+M2.

It follows that

specess(Γ
2) = µ2 +

(ε2 − µ2)2

4
,

and the self-adjointness of Γ implies

specess Γ ∈
{

−
√
µ2 +

(ε2 − µ2)2

4
,

√
µ2 +

(ε2 − µ2)2

4

}
.

Due to the above identity (ε2−µ2)Λm = ε+Γ the condition (4.1) is equivalent

to

|ε| ≠
√
µ2 +

(ε2 − µ2)2

4
, i.e. ε2 − µ2 ̸= (ε2 − µ2)2

4

which reduces to ε2 − µ2 ̸= 4. □

5. Fredholmness for curvilinear polygons

From now assume that Σ is a piecewise C1-smooth Lipschitz curve, with

finitely many corner points a1, . . . , an. For each corner aj , let

θj ∈ (0, 2π) \ {π}

be the non-oriented interior angle of Σ at the point aj measured inside Ω+.

Our main goal is to give a complete characterization of the values of ε and

µ for which the operators Λz are Fredholm in L2(Σ,C2). To do so, we are

going to implement the technique proposed by Shelepov [18]. Remark that

some components of the approach implicitly appear in other works [9, 12].

Actually the work [18] also applies to the so-called Radon curves, which

are more general than curvilinear polygons, but we prefer to restrict our

attention to the case of piecewise C1-smooth curves in order to avoid a
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series of involved definitions. Let us first describe the general scheme of

[18].

Denote

S :=
{
x ∈ R2 : |x| = 1

}
and let Mk be the space of k × k complex matrices. Let

G : R× R× S× S× S →Mk

be a matrix-valued function whose entries Gi,j are Lipschitz (with respect

to all variables) and such that for some C > 0 one has∣∣Gij(x, y, ξ, η, ζ)
∣∣ ≤ C

(∣∣⟨ξ, ζ⟩∣∣+ ∣∣⟨η, ζ⟩∣∣) (5.1)

for all (x, y, ξ, η, ζ).

Consider the bounded integral operator T : L2(Σ,Ck) → L2(Σ,Ck),

Tg(x) =

∫
Σ

1

|x− y|
G
(
x, y, ν(x), ν(y),

x− y

|x− y|

)
g(y) ds(y),

x, y ∈ Σ, g ∈ L2(Σ,Ck).

We assume without loss of generality that each connected component of Σ is

oriented in the anticlockwise sense. Fix a corner point a on Σ with an interior

angle θ. A small arc of Σ around a is separated by a into two nonempty parts

Γ+ and Γ− that project in one-to-one fashion on the one-sided tangents to

Σ at a, and denote the projections by Γ+ and Γ− respectively. Let τ+ and

τ− be the unit vectors along Γ+ and Γ− directed away from the corner a,

and let ν+(a) and ν−(a) be the corresponding one-sided limits of the inner

normal to Σ at a. We then denote by τ = −τ− the unit vector of the left

positive tangent to Σ at a and by ν(a) = ν−(a) the vector obtained from τ

by a counterclockwise rotation through the angle π/2, see Figure 1. Finally,

we will use the parameters

ξ := η +
i

2
, η ∈ R.

τ+

τ−
τ

ν

θ

Ω+

Ω−

Σ

Γ−

Γ+

a

Figure 1. Construction near a corner a.
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Following [18], we define a function ζ : R → R and matrix-valued functions

H(j)
a : R+

i

2
→Mk, j ∈ {1, 2},

by

ζ(t) =

(
e−

t
2 cos θ − e

t
2

)
τ − νe−

t
2 sin θ√

et + e−t − 2 cos θ
,

H(1)
a (ξ) =

∫ ∞

−∞

e(iξ+1/2)t

√
et + e−t − 2 cos θ

G
(
a, a, ν,−τ sin θ − ν cos θ, ζ(−t)

)
dt,

H(2)
a (ξ) =

∫ ∞

−∞

e(iξ+1/2)t√
et + e−t − 2 cos(θ)

G
(
a, a,−τ sin θ − ν cos θ, ν,−ζ(t)

)
dt,

and set

∆a(ξ) = det
(
σ0 −H(1)

a (ξ)H(2)
a (ξ)

)
, ξ ∈ R+

i

2
.

The following result was shown in [18, Theorem 2]:

Proposition 5.1. The operator I − T is Fredholm in L2(Σ,C2) if and only

if

∆aj (ξ) ̸= 0 for all ξ ∈ R+
i

2
and all corners a1, ..., an of Σ.

We are now going to apply this machinery to our particular situation. For

θ ∈ (0, 2π) consider the function

Mθ : R ∋ x 7→
cosh

(
(π − θ)x

)
2
(
1 + cosh(πx)

) ∈ R,

and denote

m(θ) := sup
x∈R

Mθ(x).

We have the obvious symmetry

m(θ) = m(2π − θ) for any θ ∈ (0, 2π). (5.2)

The following elementary properties of m will be needed as well:

Proposition 5.2. For any ω ∈ (0, π) there holds

1

4
≤ m(ω) ≤ 1

2
. (5.3)

Moreover, the function ω 7→ m(ω) is non-increasing, with

lim
ω→0+

m(ω) =
1

2
(5.4)

and

m(ω) =
1

4
for all ω ∈

[π
2
, π
)
. (5.5)
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Proof. For any |a| ≤ |b| we have cosh a ≤ cosh b. It follows that for any

x ∈ R there holds

1

4
=Mω(0) ≤Mω(x) =

cosh
(
(π − ω)x

)
2
(
1 + cosh(πx)

) ≤ cosh(πx)

2
(
1 + cosh(πx)

) ≤ 1

2
,

which gives (5.3). For 0 < ω ≤ ω′ < π and any x ∈ R one has

Mω′(x) =
cosh

(
(π − ω′)x

)
2
(
1 + cosh(πx)

) ≤
cosh

(
(π − ω)x

)
2
(
1 + cosh(πx)

) =Mω(x),

so taking the supremum over all x one shows m(ω′) ≤ m(ω), i.e. m is

non-increasing. In addition, for any fixed x the function θ 7→ Mθ(x) is

non-increasing too. It follows

lim
ω→0+

m(ω) = sup
ω∈(0,π)

m(ω) = sup
ω∈(0,π)

sup
x∈R

Mω(x)

= sup
x∈R

sup
ω∈(0,π)

Mω(x) = sup
x∈R

lim
ω→0+

Mω(x)

= sup
x∈R

lim
ω→0+

cosh
(
(π − ω)x

)
2
(
1 + cosh(πx)

) = sup
x∈R

cosh(πx)

2
(
1 + cosh(πx)

) =
1

2
.

We further remark that for any ω ∈ (0, π) the function Mθ is even, and

for any x ≥ 0 one has

M ′
ω(x) =

1

2
(
1 + cosh(πx)

)2 [(π − ω) sinh
(
(π − ω)x

)(
1 + cosh(πx)

)
− π cosh

(
(π − ω)x

)
sinh(πx)

]
≡
π
(
1 + cosh(πx)

)
cosh

(
(π − ω)x

)
2
(
1 + cosh(πx)

)2 Nω(x)

with

Nω(x) :=
π − ω

π

sinh
(
(π − ω)x

)
cosh

(
(π − ω)x

) − sinh(πx)

1 + cosh(πx)

≡ π − ω

π

sinh
(
(π − ω)x

)
cosh

(
(π − ω)x

) − sinh
πx

2

cosh
πx

2

≡ π − ω

π
tanh

(
(π − ω)x

)
− tanh

πx

2
.

The function [0,∞) ∋ a 7→ tanh a in increasing, therefore, Nω(x) < 0 for all

x > 0 and ω ∈
[
π
2 , π

)
, and then M ′

ω(x) < 0 for the same x and ω. Then for

each ω ∈
[
π
2 , π

)
the function Mω is decreasing on (0,+∞), and by parity its

maximum is located at the origin, i.e.

m(ω) = sup
x∈R

Mω(x) =Mω(0) =
1

4
for all ω ∈

[π
2
, π
)
. □
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Remark 5.3. The condition for ω in (5.5) is not expected to be optimal.

A rough numerical simulation indicates that

min
{
ω ∈ (0, π) : m(ω) =

1

4

}
≃ 0.3π.

Using the above preparations we arrive at the main result:

Theorem 5.4. Denote by ω the smallest angle of Σ, defined by

ω := min
j∈{1,...,n}

min{θj , 2π − θj} ∈ (0, π).

If

ε2 − µ2 <
1

m(ω)
or ε2 − µ2 > 16m(ω), (5.6)

then the operator B is self-adjoint.

Proof. As the case |ε| ≤ |µ| is already covered by Corollary 4.3, for the rest

of the proof we assume

|ε| > |µ|.
By Theorem 4.1 it is sufficient to show that Λm is Fredholm, which is in

turn equivalent to the Fredholmness of the operator

Θm ≡ (εσ0 + µσ3)Λm ≡ I + (εσ0 + µσ3)Cm : L2(Σ,C2) → L2(Σ,C2).

Eq. (2.5) for Cm gives the representation

Θmg(x) = g −
∫
Σ

1

|x− y|
G
(
x, y, ν(x), ν(y),

x− y

|x− y|

)
g(y)ds(y)

with g ∈ L2(Σ,C2) and the 2× 2 matrix function G defined by

G
(
x, y, ν(x), ν(y),

x− y

|x− y|

)
= − i

2π


0 (ε+ µ)

x− y

|x− y|

(ε− µ)
x− y

|x− y|
0


for x, y ∈ Σ, where the integral representations in (2.4) were used. The

entries of G are obviously Lipschitz and satisfy (5.1), so the above machinery

is applicable to the analysis of Θm.

Let a be a corner point of Σ with an interior angle θ, then

G
(
a, a, ν,−τ sin θ − ν cos θ, ζ(−t)

)
= − i

2π

 0 (ε+ µ)ζ(−t)

(ε− µ)ζ(−t) 0

 ,

G(a, a,−τ sin θ − ν cos θ, ν,−ζ(t)) = i

2π

 0 (ε+ µ)ζ(t)

(ε− µ)ζ(t) 0


where one uses the usual identification R2 ∋ (x1, x2) = x ≃ x = x1+ix2 ∈ C.
We have

iξ + 1 = iξ̄ for all ξ ∈ R+
i

2
,
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and one easily see that the matrices H
(1)
a and H

(2)
a for this specific case have

the form

H(1)
a (ξ) =

 0 (ε+ µ)Aτ̄ ,ν̄

(ε− µ)Aτ,ν 0

 ,

H(2)
a (ξ) =

 0 (ε+ µ)Bτ̄ ,ν

(ε− µ)Bτ,ν 0

 ,

where Aτ,ν and Bτ,ν are given by

Aτ,ν =

∫ +∞

−∞

(
eiξ̄t cos(θ)− eiξt

)
τ − eiξ̄t sin(θ) ν

et + e−t − 2cos(θ)
dt,

Bτ,ν =

∫ +∞

−∞

(
eiξt cos(θ)− eiξ̄t

)
τ − eiξt sin(θ) ν

et + e−t − 2 cos(θ)
dt.

Hence, applying the change of variable x = et, we can rewrite Aτ,ν and Bτ,ν

as follows

Aτ,ν =

∫ +∞

0

(xiξ̄cos(θ)− xiξ)τ − xiξ̄sin(θ) ν

x2 + 2xcos(π − θ) + 1
dx,

Bτ,ν =

∫ +∞

0

(xiξcos(θ)− xiξ̄)τ − xiξsin(θ) ν

x2 + 2xcos(π − θ) + 1
dx.

Now recall that for all b > 0, 0 < |ω| < π and 0 < Re(α) < 2 one has∫ +∞

0

xα−1

x2 + 2bx cos(ω) + b2
dx = −πbα−2 1

sin(ω)

1

sin(απ)
sin
(
(α− 1)ω

)
,

see the formula (12) in [13, p. 327]. Applying this formula with b = 1 and

ω = π − θ, one obtains that

Aτ,ν =
i

2 sin(θ)

[(
cos(θ)

sinh
(
ξ(π − θ)

)
sinh(ξπ)

−
sinh

(
ξ(π − θ)

)
sinh(ξπ)

)
τ

− sin(θ)
sinh

(
ξ(π − θ)

)
sinh(ξπ)

ν

]
,

Bτ,ν =
−i

2 sin(θ)

[(
cos(θ)

sinh
(
ξ(π − θ)

)
sinh(ξπ)

−
sinh

(
ξ(π − θ)

)
sinh(ξπ)

)
τ

− sin(θ)
sinh(ξ(π − θ))

sinh(ξπ)
ν

]
.

Consequently, the product H
(1)
a (ξ)H

(2)
a (ξ) yields

H(1)
a (ξ)H(2)

a (ξ) =
ε2 − µ2

4sin2(θ)
× S(ξ)σ0,
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where S(ξ) is given by

S(ξ) = 2
sinh

(
ξ̄(π − θ)

)
sinh(ξπ)

sinh
(
ξ(π − θ)

)
sinh(ξ̄π)

− cos(θ)

(
sinh2

(
ξ(π − θ)

)
sinh2(ξ̄π)

+
sinh2

(
ξ̄(π − θ)

)
sinh2(ξπ)

)
.

Using the trigonometric identity

cosh(x± iy) = cosh(x) cos(y)± i sinh(x) sin(y), for all x, y ∈ R,

and a straightforward computation we transform the above expression for

S(ξ) to

S(ξ) =
2 sin2(θ) cosh

(
2η(π − θ)

)(
1 + cosh(2πη)

) with ξ = η +
i

2
.

Thus,

∆a(ξ) =

(
1− (ε2 − µ2)

cosh
(
2η(π − θ)

)
2
(
1 + cosh(2πη)

))2

=
(
1− (ε2 − µ2)Mθ(2η)

)2
,

and the condition ∆a(ξ) ̸= 0 for all ξ is equivalent to

Mθ(x) ̸=
1

ε2 − µ2
for all x ∈ R. (5.7)

Remark that for any θ ∈ (0, 2π) one has

Mθ(x) ≥ 0 for all x ∈ R, lim
x→±∞

Mθ(x) = 0,

then the condition (5.7) is satisfied if any only if (recall that |ε| > |µ| by
assumption)

1

ε2 − µ2
> m(θ) := sup

x∈R
Mθ(x), i.e. ε2 − µ2 <

1

m(θ)
.

Thus, for each corner point aj we have shown the equivalence

∆aj (ξ) ̸= 0 for all ξ ∈ R+
i

2
if and only if ε2 − µ2 <

1

m(θj)
. (5.8)

Using the symmetry and monotonicity properties of m, see (5.2) and

Proposition 5.2, we conclude that that Θm is Fredholm if and only if

ε2 − µ2 < min
j∈{1,...,n}

1

m(θj)
=

1

maxj∈{1,...,n}m(θj)
=

1

m(ω)
,

which is a sufficient condition for the self-adjointness of B ≡ Bε,µ and gives

the first half of (5.6).

By applying the above result to B̃ := B− 4ε
ε2−µ2 ,−

4µ

ε2−µ2
we see that B̃ is

self-adjoint for (
− 4ε

ε2 − µ2

)2
−
(
− 4µ

ε2 − µ2

)2
≤ 1

m(ω)
,
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which holds for ε2−µ2 > 16m(ω). As the self-adjointness of B̃ is equivalent

to the self-adjointness of B (see Remark 1.2), we obtain the second half of

(5.6). □

By combining Theorem 5.4 with Proposition 5.2 we obtain:

Corollary 5.5. Let Σ be a curvilinear polygon (with C1-smooth edges and

without cusps). Assume that one of the following three conditions holds:

(a) ε2 − µ2 < 2,

(b) ε2 − µ2 > 8,

(c) ε2 − µ2 ̸= 4 and the interior angles θj of Σ satisfy

π

2
≤ θj ≤

3π

2
for all j ∈ {1, . . . , n},

then B is self-adjoint.

We finish this paper by pointing out the following remark.

Remark 5.6. In the proof of Theorem 5.4 one sees that for ε2−µ2 > 16m(ω)

the operator B is self-adjoint but the operators Λz are not Fredholm. This

shows that the converse of Theorem 4.1 does not hold.
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for the two-dimensional Dirac operator: self-adjointness and approximation.

Rev. Mat. Iberoam. 39:4 (2023) 1443–1492.

[11] R. R. Coifman, A. McIntosh, Y. Meyer, L’intégrale de Cauchy définit un
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