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Abstract

Robust Statistics considers the quality of statistical decisions in the presence
of deviations from the ideal model. Usually these deviations are neighbor-
hoods of a certain size about the ideal model. We introduce a new concept
of optimality if this size or radius is not (precisely) known:

We determine the increase of the maximum risk over the minimax risk
in the case that the optimally robust estimator for the false neighborhood
radius is used. The maximum increase of the relative risk is minimized in the
case that the radius is known only to belong to some interval [rl, ru] . We
pursue this minmax approach for a number of ideal models and a variety of
neighborhoods. Also, the effect of increasing parameter dimension is studied
for these models.

The minimax increase of relative risk in case the radius is completely un-
known, compared with that of the most robust procedure, is 18.1% vs. 57.1%
and 50.5% vs. 172.1% for one-dimensional location and scale, respectively,
and less than 1/3 in other typical contamination models. In most of our
models, the radius needs to be specified only up to a factor ρ ≤ 1

3
, in order

to keep the increase of relative risk below 12.5% , provided that the radius–
minimax robust estimator is employed. The least favorable radii leading to
the radius–minimax estimators turn out small: 5%–6% contamination, at
sample size 100 .

Key Words and Phrases: Symmetric location and contamination; infinitesimal
asymmetric neighborhoods; Hellinger, total variation, contamination; asymp-
totically linear estimators; influence curves; maximum asymptotic variance
and mean square error; relative risk; inefficiency; subefficiency; least favorable
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1 Introduction and Summary

1.1 Statistical Folklore

has it that robust procedures depend but little on the tuning constants regulating
the degree of robustness. However, the good-natured dependence has hardly ever
been documented nor has it been investigated theoretically.

In robustness theory, the tuning constants are determined by the neighborhood
radius via certain implicit equations, and the radius appears as a one-dimensional
nuisance parameter of robust neighborhood models. More abstractly, the model
deviations may be treated as values of an infinite dimensional nuisance parameter;
confer Rieder1(2000). But the more elementary case of just the radius has not been
considered by mathematical and semiparametric statistics.

Some textbooks create an impression contrary to data-analytic experience.
Witting and Müller–Funk (1995; Anmerkung 6.44) declare the choice of the ‘clipping
constant c ’ to be of ‘decisive importance’ and continue: ‘If c is large, the efficiency
at the ideal model is large but robustness is bad, and the other way round for
small c .’ In Beispiel 7.4.5, they declare the radius to be unknown in practice, and
hence a dubious light of arbitrariness is shed on robust procedures.

As for a theoretical indication of the weak dependence, the adaptive clipping by
Beran (1981) and HR(1994; Remarks 6.4.6 and 6.4.9) may be recalled. The adaptive
modification of clipping constants by means of a goodness-of-fit statistic would not
show up in the asymptotic results. On closer inspection, this is caused by these
clipping constants tending to infinity. Thus, the construction is essentially bound to
infinitesimal Hellinger balls, which are no gross-error neighborhoods; confer Bickel
(1981; Théorème 8) and HR (1994; Example 6.1.1).

1.2 In Our Approach

the maximum risk of the estimator which is optimally robust for a neighborhood
of radius r0 will be evaluated over a neighborhood of radius r , and related to the
minimax risk for that radius r . On division, the inefficiency is obtained—the limit
of the ratio of sample sizes such as to achieve the same accuracy asymptotically.
The inefficiency as a function of r is called the inefficiency curve of the estimator
(1 at r = r0 ). Inefficiency minus 1 is termed subefficiency (0 at r = r0 ).

It can be proven (compare Theorem 2.1), that the inefficiency curves are bowl-
shaped, smoothly increasing from the value 1 at r = r0 towards both sides to
two relative maxima at the interval boundaries. Determination of r0 so as to
equate both boundary values will minimize the maximal subefficiency over r in the
respective estimator class (M -estimates, asymptotically linear estimators).

The radius r0 may be termed least favorable in the sense that the corresponding
optimally robust estimator—besides being minimax for the particular neighborhood
of radius r0 —is radius–minimax, minimizing the maximal subefficiency over the
radius range. It is the recommended robust estimator in case that the true radius r
is unknown except to belong to the radius interval.

1HR, henceforth
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Remark 1.1 There is no saddle point though. The subefficiency of the radius–
minimax estimator is elsewhere worse (i.e., larger) than at r0 , where it is 0 , and
equally worst (i.e., maximum) at the boundaries of the radius interval. ////

Remark 1.2 Our approach is not restricted to the infinitesimal setup, as intro-
duced in Subsection 2.1.2(b). The concept in principle applies to arbitrary models,
risks, and neighborhood types. Only the numerical evaluations may be easier in
some specifications than in others. ////

To appreciate these new notions, we take up the evaluations of Subsection 3.2.1 and
consider the simplest possible example, one-dimensional location in the setup of infi-
nitesimal neighborhoods: we obtain a least favorable (starting) radius of r0 = .62 ,
which is just 6.2% contamination at sample size n = 100 . The minimax sub-
efficiency is 18.1% and leads to an M -estimate as corresponding radius-minimax
procedure with clipping height .719 , which is very close to the H07-estimate of
Andrews et al. (1972).

1.3 Three Conclusions

may be drawn from our results:
(i) The minimax subefficiency is small. Small in comparison with the most
robust estimators, and small for practical purposes. Consistent estimation of the
radius from the data hence seems neither necessary nor worthwhile—however under
the provision that the radius–minimax robust estimator is employed.
(ii) The least favorable radii are small. This surprising fact seems to confirm
Huber (1996; Sec. 28, p 61), who distinguishes robustness from diagnostics by its
purpose to safeguard against—as opposed to find and identify—deviations from the
assumptions; in particular, to safeguard against deviations below or near the limits
of detectability. Like Huber (loc.cit.), the small least favorable radii we obtain
might question the breakdown literature, which is concerned only with (stability
under) large contamination and, at most, (efficiency under) zero contamination.
(iii) The radius-minimax procedure does not depend on the risk. With re-
spect to contamination or total variation neighborhood systems about a given para-
metric model, in a reasonably large class of convex risks which are homogeneous in
bias and (square root of) variance, compare the assumptions to Theorem 2.1 below,
the radius-minimax procedure for completely unknown radius does not depend on
the risk (Thm. 2.1(b)). Thus, in these cases, a universal optimally robust procedure
is obtained that neither depends on a radius nor on a loss function.

1.4 Comparison With Semiparametrics

Although the radius is a one-dimensional quantity, in connection with the robust
neighborhoods it has infinite dimensional features. Therefore, a comparison with a
basic semiparametric case suggests itself.

We assume the classical univariate location model with unknown symmetric
error distribution F and density f of finite Fisher information I loc

F =
∫

(Λloc
F )2 dF ,
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where Λloc
F = −f ′/f , and consider the location M -estimate defined by some odd

function ψ0: R → R ; for example, ψ0 = Λloc
F0

for some other such law F0 .
Then, provided certain weak regularity conditions are satisfied by ψ0 and F ,

the M -estimate under observations i.i.d. ∼ F will be asymptotically normal with
asymptotic variance

Varloc(ψ0, F ) =
∫
ψ2

0 dF(∫
ψ0Λloc

F dF
)2 ∈ (0,∞) (1.1)

However, if ψ0 , on some nondegenerate interval, is absolutely continuous with a
bounded derivative, we can show that

sup
F∈Us,i

c (F0,ε)

Varloc(ψ0, F ) · I loc
F = ∞ ∀ ε ∈ (0, 1) (1.2)

where U s,i
c (F0, ε) =

{
(1− ε)F0 + εH

∣∣ H symmetric, I loc
H <∞

}
.

Thus, if only the nuisance parameter F changes arbitrarily little (in L1 ), the
inefficiency of the location M -estimate defined by ψ0 may become infinite. For
the proof, and the similar result for scale, confer HR (2001b)

In comparison with the radius as a nuisance parameter in robust statistics—the
results of this study—the highly unstable situation is just the opposite. Further
relations with semiparametrics are derived in HR (2000)

1.5 Uniform Convergence To The Normal Limit

is an issue, in particular in connection with the large families of probabilities which
make the models in semiparametrics and robustness, respectively.

But the desirable uniformity cannot be achieved by adaptive and fully efficient
estimation. Using equivariance, Klaassen (1980) derives such a finite-sample result
for the one-dimensional location model. Consequences are noted by Bickel (1982;
Remark 5.5) and Huber (1996; 1996; Sec. 28). Bickel (1981; Note, p 51) asks for
extensions. Pfanzagel and Wefelmeyer (1982; Sec. 9.4) derive an asymptotic version
for real-valued smooth functionals. The following extension to k -dimensional linear
regression provides the asymptotic lower bound 1− 2−k in Kolmogorov distance.

Consider the regression model Pθ(dx, dy) = f(y− x′θ) dyK(dx) with unknown
parameter θ ∈ Rk , univariate error law F (du) = f(u) du of finite Fisher informa-
tion of location, and regressor law K such that the k× k matrix K =

∫
xx′K(dx)

is regular. Then, for fixed F , the model is L2 -differentiable at each θ with scores
function Λθ(x, y) = Λloc

F (y − x′θ)x and Fisher information Iθ = I loc
F K .

By definition, the standardized laws of an adaptive estimator (Sn) are asymp-
totically standard normal such that, for each main/nuisance parameter pair (θ, F ) ,

Vn
θ,F := Lθ,F

{√
n I1/2

θ,F (Sn − θ)
}
−−→w N (0, Ik) (1.3)

weakly, as n→∞ , where Ik = k × k identity matrix.
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Fix θ and F0 . Then, if (Sn) is an adaptive estimator, andεn ∈ (0, 1) any
sequence tending to 0 , we can show that, in Kolmogorov distance dκ ,

lim inf
n→∞

sup
F∈Us,i

c (F0,εn)

dκ

(
Vn

θ,F ,N (0, Ik)
)
≥ 1− 1

2k
(1.4)

where U s,i
c (F0, εn) =

{
(1− εn)F0 + εnH

∣∣ H symmetric, I loc
H <∞

}
.

Remark 1.3 The result is contained in HR (2001b), where it is proved for more
general i.i.d. models of location or scale structure. It is shown to hold also for
MA(q) -models with innovation distribution F . An extension to AR(p) - and
ARMA(p, q) -models with innovation distribution F is proved there with the bound
≥ 1 − 2−k weakened to > 0 , and in addition assuming continuity of each Sn .
The weaker result suffices to render the convergence of the adaptive estimators of
Beran (1976) and Kreiss (1987) nonuniform as above. ////

On second look not so much the estimators are to be blamed for (1.2) and (1.4).
Actually, the law of any estimator Sn is uniformly continuous in total variation
since the distance decreases under a transformation of the measures. Rather the
standardization by Fisher information in (1.3) should be questioned because of
discontinuity in this strong metric: Fisher information of location/scale is vaguely
lower semicontinuous, hence lower semicontinuous in total variation dv , but not
dv -upper semicontinuous.

In robust statistics on the contrary, risk is evaluated uniformly, replacing asymp-
totic variance by its maximum, and Fisher information by its minimum, over sym-
metric contamination neighborhoods; likewise, asymptotic mean square error is
maximized over shrinking neighborhoods. But, by simple set inclusions, the pas-
sage to the supremum g(x, r) = sup

{
f(y)

∣∣ y ∈ B(x, r)
}

of any function f over
balls B(x, r) already implies continuity (relative to these balls) of g(. , r) at x for
almost all radii; namely, for those r such that g(x, r − 0) = g(x, r + 0) .

Uniform weak convergence of optimally robust estimators over neighborhoods
with bounded radius has been established by Beran (1981), Millar (1981),
Bickel (1981; Théorème 5), Huber (1981), and HR (1994; Chap. 6). This unifor-
mity also underlies the present investigation of asymptotic risk.

Both uniform convergence and the availability of a low-cost minimax strategy
against misspecification of the radius, in the last analysis, seem to be consequences
of the uniform risk evaluation over total variation type neighborhoods in robustness
theory—and theoretically founded advantages of robust statistics in practice.

The paper now proceeds as follows. In Section 2, the theoretical setup is formulated
and the concepts are formally defined, and some general results are gathered from
other references in Theorem 2.1.

In Section 3, for a comprehensive list of ideal models (see Subsection 3.1) and
the neighborhood systems from Subsection 2.1.2, the optimally robust estimators
and their risk functions are determined by specialization of the general results
in HR (1994; Chaps. 5 and 7) and by suitable complements. The results of this
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section are summarized in an introductory Subsection 3.2. Section 4 contains the
mathematical proofs. The numerical algorithms are described in Section 5. The
computed numbers are tabulated in Section 6. A selection of plots is attached.

2 General concept

We now introduce the notions of inefficiency , subefficiency , least favorable radius,
and radius–minimax procedure/IC more formally.

2.1 Setup

2.1.1 Ideal model

For a measurable space (Ω,A) and M1 , the set of probability measures on A , let
P = {Pθ, θ ∈ Θ} ⊂ M1 be a parametric model with open parameter set Θ ⊂ Rk .
We assume P to be L2 -differentiable with derivative Λθ and Fisher information Iθ

at every θ ∈ Θ. In the ideal model, the observations Xi are i.i.d. according to Pθ

for some (unknown) θ ∈ Θ. We want to estimate t(θ) , the value of a differentiable
transformation t: Θ → Rp with dt(θ) = Dθ for some matrix Dθ ∈ Rp×k with
rkDθ = p ≤ k .
For estimators, we assume asymptotically linear estimators (ALE’s); that is, se-
quences S = (Sn) of estimators

(
Sn(X1, . . . , Xn)

)
such that, as n→∞

Sn − t(θ) =
1
n

n∑
i=1

ηθ(Xi) + oP n
θ
(

1√
n

) (2.5)

for some (partial) influence curve (pIC) ηθ ∈ ΨDθ

θ , where the set ΨDθ

θ is defined
as

ηθ ∈ Lp
2(Pθ), Eθ ηθ = 0, Eθ ηθΛ′θ = Dθ (2.6)

As for this setup and definition, confer HR (1994; section 4.2).
In the somewhat more restricted one-dimensional location setup of Huber (1964);
i.e., symmetric Pθ and monotone Λθ , the procedures are further specialized to
location M-estimators.
The i.i.d. setup suitably extends to linear time series models, compare HR (2001a).

In the sequel, expectation will always be taken under the fixed ideal model distri-
bution P = Pθ ; similarly, we put Λ = Λθ (scores), I = Iθ (Fisher information)
and we omit θ whenever it is possible.

2.1.2 Neighborhoods

As general in Robust Statistics, these ideal models are enlarged to neighborhoods;
more specifically, we consider
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(a) symmetric contamination neighborhoods V of fixed size s ∈ [0, 1) about
the ideal P , assumed symmetric about zero, which consist of the convex combina-
tions

Q = (1− s)P + sH (2.7)

with arbitrary unknown probability H , symmetric about 0 .
These fixed neighborhoods, whose size does not depend on the sample size,

are bound to one-dimensional location and Huber’s (1964) minimax asymptotic
variance approach.

(b) infinitesimal neighborhoods Un = U∗(θ, r/
√

n ) of starting radius
r ∈ [0,∞) are given as the sequence of shrinking contamination (∗ = c ) neigh-
borhoods about P at sample size n , consisting of all

Qn = (1− rn)P + rnHn (2.8)

where Hn may be arbitrary unknown probabilities, and rn = r/
√
n .

Likewise, infinitesimal total variation (∗ = v ) and Hellinger (∗ = h ) neighbor-
hoods are the sequences of shrinking balls about P , of radius rn = r/

√
n at sample

size n , defined by

d∗(Qn, P ) ≤ rn (2.9)

where
dv(Q,P ) =

1
2

∫
|dQ− dP | = sup

A

∣∣Q(A)− P (A)
∣∣ (2.10)

d2
h(Q,P ) =

1
2

∫ ∣∣√dQ−
√
dP

∣∣2 (2.11)

Infinitesimal neighborhoods are employed in the location, scale, and regression mod-
els (a), (b), and (d). In the scale model (b), they may as well be restricted by
symmetry (that is, P , Hn , and Qn all symmetric). In regression, these neighbor-
hoods about P (dx, du) = Φ(σ−1

u du)K(dx) are termed unconditional, or errors-in-
variables, neighborhoods, since also the regressor marginal is subject to distortion.

(c) conditional regression neighborhoods U∗,α on the contrary, keep the ideal
regressor distribution K , and only the conditional error law given x may change;
to any Markov kernel Qn(du|x) which, for each x , is in the neighborhood about
the ideal Φ(σ−1

u du) of radius rε(x)/
√
n . The function ε: Rk → [0,∞) , which

weights the radius depending on the regressor, is called radius curve.
We employ conditional, or error-free-variables, neighborhoods with varying ra-

dius curves ε subject to Lα(K) -norm ‖ε‖α ≤ 1 for α = 1, 2,∞ , respectively.
The cases α = 1, 2 are named average, respectively average square, conditional
neighborhoods. The case α = ∞ reduces to the fixed radius curve ε1 ≡ 1 .

Special treatments of error-free-variables regression neighborhoods go back to
Huber (1983) and Bickel (1984). In general, confer HR (1994; Chap 7), where
also the required MSE-optimality is obtained. HR (1987) derives a finite-sample
minimax estimator for this type of regression neighborhoods.
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With the past of the observations process serving as regressor, the conditional
neighborhoods extend from regression to neighborhoods of transition probabilities
in time series models; confer HR (2001a).

2.1.3 Risk and Inefficiency

The asymptotic maximum MSE of the ALE with pIC ηr0 that is optimal for
an infinitesimal neighborhood of (starting) radius r0 ∈ [0,∞) , evaluated over an
infinitesimal neighborhood of another (starting) radius r ∈ [0,∞) is

maxMSE (ηr0 , r) = E |ηr0 |2 + r2ω2
∗,α(ηr0) (2.12)

where ∗ = c, v, h and α = 1, 2,∞ . The bias terms ω∗,α(ηr0) for the different
models are defined and evaluated in HR (1994; Subsections 5.3.1 and 7.3.2).
The MSE-Inefficiency is then obtained by division through the minimax asymp-
totic MSE for radius r ,

relMSE (ηr0 , r) =
maxMSE (ηr0 , r)
maxMSE (ηr, r)

(2.13)

G -risk generalizes MSE as in Ruckdeschel and Rieder (2004): we in principle
consider asymptotic maximal risk R on shrinking neighborhoods Un with respect
to certain loss function `: Rp → [0,∞] ; that is,

R(S) = lim
M→∞

lim
n

sup
Qn∈Un

∫
M ∧ `

(√
n (Sn − θ)

)
dQn

n (2.14)

With the usual identification of S and η , let σ2(η) = E |η|2 denote the trace of
the asymptotic covariance; then we generalize the MSE case, where `(z) = |z|2 and
R(η) = σ2(η) + r2ω(η)2 , to losses ` leading to

RG(η) = G(rω(η), σ(η)) (2.15)

where we assume G: (0,∞] × (0,∞) → (0,∞] to be isotone in both arguments,
totally differentiable, convex and

inf
{
RG(η)

∣∣ η ∈ ΨD
}
< lim

w→∞
G(w, s), for s2 ≥ trDI−1D′

Theorem 3.1 in Ruckdeschel and Rieder (2004) determines the pIC minimizing this
G -risk; it is of the same form as the MSE solution but with a different equation
(loc.cit.; (3.4)) determining the clipping height.

2.1.4 G -inefficiency

Corresponding to relMSE, we define the G -inefficiency ρG as

ρG(r′, r) :=
G(rωr′ , σr′)
G(rωr, σr)

(2.16)

where ωr , σ2
r denote bias and variance of the G -optimal pIC for radius r . This

inefficiency reflects the loss in efficiency w.r.t. G -risk when using the r′ -optimal
procedure instead of the r -optimal one in a situation with “true” radius r .
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2.2 Unknown radius

The introduced inefficiencies serve to get rid of the dependence on r : For r varying
in [rl, ru] , we define the minimax G -inefficiency as

ρ̄G := inf
r′∈(rl,ru)

sup
r∈(rl,ru)

ρG(r′, r) (2.17)

where if nothing else is stated, G defaults to MSE, and ρG is simply relMSE. A
radius r0 = rG,0 which attains

sup
r∈(rl,ru)

ρG(r0, r) = ρ̄G (2.18)

is called least favorable radius, and the G -optimal pIC for the least favorable radius
is called radius-minimax .

In addition to the true radius r being completely unknown (unrestricted radius
interval, rl = 0, ru = ∞ ), we consider the cases that the user can specify the
radius up to a factor of 1/3 or 1/2 , that is any r3 or r2 such that the true
radius r certainly would stay within [ 1

3r3, 3r3 ] or [ 1
2r2, 2r2 ] , respectively. For any

such interval, the least favorable r0 (and thus, the corresponding radius-minimax
estimator) may be found as in the unrestricted case2. In a further step, least
favorable values of r3 and r2 are determined; these are those radii that maximize
the minimax subefficiencies over [ 1

3r3, 3r3 ] and [ 1
2r2, 2r2 ] , respectively.

2.3 Theoretical results

The fact, that in our algorithms, we generally may obtain the least favorable radius
r0 ∈ [rl, ru] as zero of the mapping r 7→ ρG(r, rl) − ρG(r, ru) is based upon the
following properties of the mapping (r, s) 7→ ρG(r, s) , ensuring the bowl-shape of
the ρG curves as plotted in figures attached to this paper:

• for s < r , s 7→ ρG(r, s) is decreasing in s , and for s > r , s 7→ ρG(r, s) is
increasing in s

• for each r ∈ (0,∞) , s 7→ ρG(r, s) is continuous

• for s < r , r 7→ ρG(r, s) is increasing in r , and for s > r , r 7→ ρG(r, s) is
decreasing in r

The following theorem guarantees these properties, as well as the risk-independence
alluded to in Subsection 1.3. In particular, it covers the case of the MSE in all its
assertions.

Theorem 2.1 (a) Assume a risk of form (2.15) wtih G isotone in both argu-
ments and totally differentiable, and that in addition G be homogeneous in the

2Using access name radius, password unknown, the interested reader may try out our computer
program under http://www.uni-bayreuth.de/departments/math/org/mathe7/radius.
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sense that there is some function µG: R+ → R+ such that for all ν > 0 , s > 0 ,
w > 0

G(νw, νs) = µG(ν)G(w, s) (2.19)

Then for each r′ > 0 ,

sup
r∈(rl,ru)

ρG(r′, r) ≤ µG

( ωr′

ωru

)
∨ µG

(σr′

σrl

)
(2.20)

There is an r1 ∈ (rl, ru) depending on rl, ru , and G , such that

µG

(ωr1

ωru

)
= µG

(σr1

σrl

)
(2.21)

(b) For rl = 0 ru = ∞ , and the corresponding least favorable radius r0 = rG,0 ,
the following identity holds,

sup
r>0

ρG(r0, r) = µG

( ωr0

ωmin

)
= µG

( σr0

σmin

)
= ρ̄G (2.22)

where ωmin denotes the bias of the most robust pIC and σ2
min = trDI−1D′ .

The radius-minimax pIC ηb does not depend on G and, for cases ∗ = c respectively
∗ = v and k = 1 attains form

ηb = (AΛ− a) min{1, b

|AΛ− a|
} (2.23(c))

ηb = c ∨ AΛ ∧ (c+ b) (2.23(v))

for Lagrange multipliers A ∈ Rp×k , a ∈ Rp , c ∈ (−b; 0) ensuring that ηb is a pIC,
and with clipping height b = bG(rG,0) determined by

ωb

ωmin

=
σb

σmin

(2.24)

Here ωb = ω(ηb) , σb = σ(ηb) .
(c) Assume in addition, that G be twice continuously differentiable. Then for

any 0 < rl < ru <∞

sup
r∈(rl,ru)

G(rωr′ , σr′)
G(rωr, σr)

=
G(rlωr′ , σr′)
G(rlωrl

, σrl
)
∨ G(ruωr′ , σr′)
G(ruωru

, σru
)

(2.25)

and there is an r0 ∈ (rl, ru) such that

G(rlωr0 , σr0)
G(rlωrl

, σrl
)

=
G(ruωr0 , σr0)
G(ruωru

, σru
)

(2.26)

If in addition

g̃(r; r′) = G(r′ωr, σr) is increasing in r for r > r′

is decreasing in r for r < r′
(2.27)

then

sup
r∈(rl,ru)

ρG(r0, r) =
G(rlωr0 , σr0)
G(rlωrl

, σrl
)

=
G(ruωr0 , σr0)
G(ruωru

, σru
)

= inf
r∈(rl,ru)

sup
r∈(rl,ru)

ρG(r′, r)

(2.28)
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Assertions (a) and (b) are Ruckdeschel and Rieder (2004; Theorem 6.1); (c) is Kohl
(2005; Lemma 2.2.3(b)) for MSE risk and D = Ip , and, in the general case, is
contained in Ruckdeschel (2005); the proof to this theorem uses the following

Proposition 2.2 Let ηr be the pIC minimizing G -risk on some neighborhood of
radius r . Then

(a) The Lagrange multipliers Ar , ar , br , and cr contained in ηr are uniformly
bounded on bounded radius intervals r ∈ (rl, ru) , 0 < rl < ru <∞ .

(b) For rn ∈ (0,∞) such that rn → r as n→∞ ,

trArn
→ trAr, brn

→ br, crn
→ cr (2.29)

If Ar and ar are unique, also

Arn
→ Ar, arn

→ ar (2.30)

(c) Let ωr , σ2
r denote bias and variance of ηr . Then σr is increasing and ωr

decreasing in r .

For D = Ik , this is Kohl (2005; Propositions 2.1.7, 2.1.9, Lemma 2.2.1). For general
D , this proposition is proven in Ruckdeschel (2005).

3 Optimally Robust Estimates and Their Ineffi-
ciency Curves

3.1 List of 11 Ideal Models Considered

In this paper, we consider the following list of ideal models, which is neither too
small, nor of course exhaustive, but somehow representative for our results:

3.1.1 k -dimensional normal location:

yi = θ + ui (3.1)

with parameter θ ∈ Rk , errors ui i.i.d. ∼ N (0, σ2
u Ik) , scale σu ∈ (0,∞) known.

The scores are Λθ(y) = σ−2
u (y − θ) and Iθ = σ−2

u Ik the Fisher information.

3.1.2 One-dimensional normal scale:

yi = θui (3.2)

with parameter θ ∈ (0,∞) , the errors ui i.i.d. ∼ N (0, 1) . The scores and Fisher
information are given by θΛθ(y) = θ−2y2 − 1 and Iθ = 2 θ−2 .

3.1.3 One-dimensional exponential scale:

yi = θui (3.3)

with parameter θ ∈ (0,∞) , the errors ui i.i.d. ∼ Exp(1) . The scores and Fisher
information are given by θΛθ(y) = θ−1y − 1 and Iθ = θ−2 .
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3.1.4 One-dimensional normal location and scale:

yi = µ+ σui (3.4)

with parameter θ′ = (µ, σ) ∈ R× (0,∞) , the errors ui i.i.d. ∼ N (0, 1) . The scores
and Fisher information are given by

Λθ(y) = σ−1

(
σ−1(y − µ)
σ−2(y − µ)2 − 1

)
Iθ = σ−2

(
1 0
0 2

)

3.1.5 Binomial model:

yi i.i.d. ∼ Binomial(n, θ) (3.5)

with parameter θ ∈ (0, 1) . The scores and Fisher information are given by Λθ(y) =
(y − nθ)/(θ(1− θ)) and Iθ = n/(θ(1− θ)) .

3.1.6 Poisson model:

yi i.i.d. ∼ Poisson(θ) (3.6)

with parameter θ ∈ (0,∞) . The scores and Fisher information are given by
Λθ(y) = θ−1y − 1 and Iθ = θ−1 .

3.1.7 Gamma model:

yi i.i.d. ∼ Gamma(σ, α) (3.7)

with density
fσ,α(y) = (σΓ(α))−1(σ−1y)α−1 exp(−σ−1y) I(y ≥ 0) (3.8)

and parameter (σ, α)′ ∈ (0,∞) × (0,∞) . We prefer to work with θ′ = (τ, α) ∈
R × (0,∞) , where τ = log(σ) , as in this parametrization the scores depend on τ
respectively, σ only via z := σ−1y . Moreover the Fisher information is independent
of τ . The scores and Fisher information are

Λθ(y) =
(

z − α
log(z)− diΓ(α)

)
Iθ =

(
α 1
1 Kα − diΓ(α)2

)
where diΓ(· ) denotes the Digamma function, diΓ(α) = d

dα log Γ(α) , and Kα :=
E log(z)2 .
The scores and the Fisher information for the parametrization (σ, α)′ then read
Λσ,α(y) = D′−1Λθ(y) and Iσ,α = D′−1IθD

−1 , where D = ∂g/∂(τ, α)′ and g: R×
(0,∞) → (0,∞)× (0,∞), (τ, α) 7→ (eτ , α) .
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3.1.8 k -dimensional normal linear regression:

yi = x′iθ + ui (3.9)

with parameter θ ∈ Rk , the random regressors xi i.i.d. ∼ K(dx) and errors ui

i.i.d. ∼ N (0, σ2
u) stochastically independent; scale σu ∈ (0,∞) known. Scores and

Fisher information are Λθ(x, y) = σ−2
u (y − x′θ)x and Iθ = σ−2

u EK xx′ .
For K we employ K = N (0, σ2

xIk) and K = Ufok(0,mx) , the uniform on a
centered ball of radius mx ; σx, mx ∈ (0,∞) .

3.1.9 Order one autoregression and moving average:

yi = θyi−1 + ui (3.10)

respectively
yi = ui − θui−1 (3.11)

with parameter |θ| < 1 , innovations ui i.i.d. ∼ N (0, σ2
u) , scale σu ∈ (0,∞) known.

The scores are Λθ,i = (±)σ−2
u ui

∑
j≥0 θ

jui−1−j and Iθ = (1 − θ2)−1 the Fisher
information, in the two models.

3.1.10 Order (1,1) autoregressive-moving average:

yi + φyi−1 = ui + ξui−1 (3.12)

with parameter θ = (φ, ξ)′ and |φ|, |ξ| < 1 , innovations ui i.i.d. ∼ N (0, 1) . The
scores and Fisher information are Λθ,i = uiHθ,i with

Hθ,i :=
∑∞

j=1(−1)j−1(−φj−1, ξj−1)′Vi−j (3.13)

and

Iθ = Kθ = Covθ Hθ,1 =
(

(1− φ2)−1 −(1− φξ)−1

−(1− φξ)−1 (1− ξ2)−1

)
(3.14)

where Hθ,1 ∼ N2(0,Kθ) ; i.e., Hθ,1 is elliptical symmetric.

3.1.11 Order one auto-regressive conditional heteroscedastic:

yi = (1 + θy2
i−1)

1/2ui (3.15)

with parameter θ ∈ [0, 3.562) , innovations ui i.i.d. ∼ N (0, 1) . The scores and
Fisher information are Λθ,i = (u2

i − 1)Hθ,i with

Hθ,i :=
y2

i−1

2(1 + θy2
i−1)

∈
[
0,

1
2θ

)
(3.16)

and Iθ = 2Kθ = 2Covθ Hθ,1 .
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Remark 3.1 (Simplifications as to the choice of the parameter) In models
3.1.1–3.1.8, the observations are i.i.d.. The inefficiencies turn out invariant under
rescaling of the ui and xi , respectively. So we may fix

σu = 1 , σx = 1 , mx = 1 (3.17)

Moreover, θ = 0 may be fixed in models (a) and (h), θ = 1 in models 3.1.2
and 3.1.3, θ = (0, 1)′ in model 3.1.4 and θ = (0, α)′ in model 3.1.6, due to equiv-
ariance of these models.

In models 3.1.8, the normal N (0, σ2
x) with σ2

x = σ2
u

/
(1 − θ2) plays the role of

the regressor distribution. Therefore, by the invariance stated for model 3.1.7, the
inefficiencies turn out the same for all values |θ| < 1 and σu ∈ (0,∞) . ////

For all considered models, we also spell out the minimax robust estimators and the
minimum bias explicitly, which are given in general form by HR (1994; Chap. 5
and 7).

3.2 Evaluation in particular models — a summary

3.2.1 One-Dimensional Robust Location

Neighborhoods of fixed size: In Huber’s (1964, 1981) approach, the ideal
standard normal location model is enlarged to symmetric contamination neighbor-
hoods V of fixed size s ∈ [0, 1) ; in his model, we speak of ‘size’ instead of ‘radius’.
As estimators, location M -estimates are employed and judged by their maximum
asymptotic variance.

In this setup, it is the optimally robust M -estimate for s0 = 27.8% (least
favorable) that minimizes the maximum subefficiency over [0, 1) . The minimax
subefficiency of 18.1% improves on the 57.1% of the median (approximately opti-
mal as s → 100%), and it even more improves on the 90.8% subefficiency (at-
tained for s→ 1 , vs. only 3.7% at s = 0) that goes with Huber’s (1964) preferred
clipping height ms1 = 1.5 (belonging to the optimally robust M -estimate for sym-
metric contamination size s1 only 3.76%). Rather, the H07-estimate with clipping
height .70 , which has survived in Sections 7.B.8 and 7.C.4 of the Princeton robust-
ness study by Andrews et al. (1972), comes (in fact, very) close to the size–minimax
M -estimate (ms0 = .719) achieving maximum subefficiency 18.7% ≈ 18.1%.

The subefficiency of the size–minimax M -estimate is the maximal 18.1% only
at the unrealistic size boundaries 0 and 1 . On more realistic size intervals (about
s0 = .278), it stays well below 18.1%: below 2.5% for .12 ≤ s ≤ .50 , below 5%
for .074 ≤ s ≤ .62 , and still below 10% for .028 ≤ s ≤ .78 .

Thus, using the optimally robust M -estimate for s0 = 27.8%, as opposed to
the mean, median, or Huber’s proposal, one will not only stay within 18.1% of
the minimax asymptotic variance over a symmetric contamination neighborhood of
whatever size s ∈ [0, 1) but, at the same time, within 2.5% of the minimax risk
for any size 12% ≤ s ≤ 50%, within 5% for any size 7.4% ≤ s ≤ 62%, and still
within 10% of the minimax risk for arbitrary size 2.8% ≤ s ≤ 78%.
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Remark 3.2 Via relation (3.18) below, s0 = .278 corresponds to r0 = .62 , and
the corresponding radius intervals about r0 read:

.37 ≤ r ≤ 1.01 (2.5%), .29 ≤ r ≤ 1.27 (5%), .17 ≤ r ≤ 1.92 (10%). ////

Shrinking Neighborhoods: In the infinitesimal setup, despite of the conceptual
differences to Huber’s approach, the same well-known kind of optimally robust
estimators are obtained. Not so well-known however is that also the maximum
risks in both models agree (up to a factor 1− s ), and hence the inefficiency curves
coincide, via the following size/radius–relation:

s =
r2

1 + r2
(3.18)

Thus, the least favorable (starting) radius means r0 = .62 , which is just 6.2% conta-
mination at sample size n = 100 . The minimax subefficiency again is 18.1%. The
subefficiency of the radius-minimax estimator stays below 2.5%, 5%, and 10%,
in the contamination intervals: 3.7%–10.1%, 2.9%–12.7%, and 1.7%–19.2%, re-
spectively, at sample size n = 100 (Remark 3.2). The 18.1% minimax subefficiency
may be cut down to less than 8.9% and 4.5%, if the user can specify any r3 , r2
such that the true radius r stays within [ 1

3r3, 3r3 ] and [ 1
2r2, 2r2 ] , respectively.

The least favorable radii are r3 = .55 and r2 = .57 , defining the least favorable
contamination ranges 1.8%–16.5% and 2.9%–11.4%, at n = 100 , respectively.

3.2.2 One-Dimensional Robust Scale

centered at the standard normal already demonstrates the limitations of the mini-
max asymptotic variance approach; confer Huber (1981; Sec. 5.7, p 124).

From now on, therefore, including scale, the infinitesimal robust setup is used,
employing neighborhoods of radius r/

√
n at size n of the i.i.d. laws, asymptoti-

cally linear estimators, and asymptotic mean square error. In the scale model, the
neighborhoods may further be restricted by symmetry.

If r is totally unknown, the minimax subefficiency is 50.5%, to be compared
with the 172.1% of the median absolute deviation, and r0 = .50 is the least
favorable radius (5% contamination at n = 100). If the radius is known up to a
factor of 1

3 or 1
2 , the value 50.5% may be lowered to less than 20.8% and 9.9%,

respectively. The corresponding least favorable radii r3 = .49 and r2 = .56 define
the least favorable contamination ranges 1.6%–14.7% and 2.8%–11.2%, at sample
size n = 100 , respectively.

Remark 3.3 Our numbers obtained in the asymptotic minimax MSE approach
refer to contamination neighborhoods. For univariate location with shrinking total
variation balls instead, the same estimators are optimally robust for radii one-half
those for contamination and with the same minimax risk. The inefficiency curves
at r (∗ = c ) and r/2 (∗ = v ) thus agree and the radius–minimax procedure stays
the same while the least favorable radius is halved. The coincidence extends to the
k -dimensional location and regression models of our study. ////
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Due to symmetry of the scale scores, the relation between the infinitesimal conta-
mination and total variation systems does not extend to the scale model. Also the
optimally robust influence curve for total variation (spelled out here seemingly for
the first time) differs from that for contamination of twice the radius; in particular,
the new solution always involves clipping from below; confer Subsection 3.4.

Nevertheless, the 1 : 2 relation seems to hold at least approximately for the least
favorable radii; by numerical evaluation, they are r0 = .27 , r3 = .24 , and r2 = .25 .
But the subefficiency numbers, too, are only about one half those for contamination:
The minimax subefficiency 25.4% in case ρ = 0 compares with 85% maximum
subefficiency of the most robust estimate, and drops to 11.5% and 5.6%, respec-
tively, if ρ = 1

3 ,
1
2 ; confer Subsection 6.2.

Thus, robust scale estimation becomes even more stable under radius misspeci-
fication if it is based on, and employs the optimally robust procedures devised for,
the larger total variation balls.

A summary of the results in the selected k -dimensional location and regression
models follows.

3.2.3 k -Dimensional Robust Location

about the k -variate standard normal enlarged by r/
√
n -contamination neighbor-

hoods has the minimax subefficiency of r ∈ [0,∞) unknown decrease from 18.1%
for k = 1 to 12.1% for k = 2, and to 9.1% for k = 3. As k increases, the rela-
tive MSE-risks are squeezed towards 1 near the origin but, due to arbitrarily large
supnorms of the optimally robust influence curves, spread out to the right. The
minimal standardized bias of asymptotically linear estimators under contamination
(the minimal supnorm of their influence curves) is

ωmin
c =

kΓ(k
2 )

√
2 Γ(k+1

2 )
≈
√
k as k →∞ (3.19)

and is achieved by the minimum L1 -estimate. Also the trace of the covariance
of this estimate equals approximately trace k of the inverse Fisher information;
intuitively speaking, by its influence curve only one out of k spherical coordinates,
the length, is sacrificed. Consequently, the minimum L1 -estimate becomes the
nearly optimal choice for larger dimension. For k ≥ 5 , its maximum subefficiency
over the full radius range is less than 10.4%, for k ≥ 10 less than 5.1%, and it
stays within a factor of 2 of the minimax value, both subefficiencies decreasing to 0
as k →∞ ; confer Subsections 4.6 and 6.1.

3.2.4 Infinitesimal Neighborhood Regression

will be about the classical k -dimensional linear regression model, in which the
normally distributed errors and the regressors are stochastically independent. The
regressor distribution K is assumed spherically symmetric; especially we choose
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the uniform Ufok(0,m) on a centered ball of radius m in Rk , and N (0, σ2Ik) , a
scalar multiple of the k -dimensional standard normal.

Unconditional, or errors-in-variables, neighborhoods are about the joint law of
regressor and error; in particular, the regressor distribution may be distorted, too.
Conditional, or error-free-variables, regression neighborhoods, which go back to
Huber (1983) and Bickel (1984), on the contrary keep the ideal K to have only
the conditional error distribution given x distorted—by an amount rε(x)/

√
n .

As for more details on infinitesimal regression neighborhoods, unconditional and
conditional, radius curves, confer Subsubsection 2.1.2 and HR(1994; Chap. 7), who
also provides the required MSE-optimality.

We employ conditional, or error-free-variables, neighborhoods with any radius
curves ε subject to Lα(K) -norm ‖ε‖α ≤ 1 for α = 1, 2,∞ . These cases obtain
the attributes average, average square, and constant conditional, respectively.

Average (Square) Conditional Contamination: For square average condi-
tional contamination, Huber M -estimates are optimally robust. Independently of
the regressor distribution, their relative risks turn out identical to those in the one-
dimensional location model with infinitesimal contamination neighborhoods; confer
Subsubsection 3.11.2. Minimax inefficiencies and least favorable radii, therefore, are
the same as for one-dimensional location.

The Hampel–Krasker estimates are optimally robust in the case of average con-
ditional, as well as unconditional, contamination. The minimax subefficiency over
the full radius range descends from the values 27.1% (K uniform) and 34.7%
(K normal) for k = 1 to the value 18.1% (one-dimensional location) as k → ∞ .
Related numbers, e.g. the minimax subefficiency in case the radius can be specified
up to factor 1

3 or 1
2 , converge likewise. The least favorable radii r0 approach the

value .62 (one-dimensional location) from below. For all dimensions, the minimax
subefficiency cuts down the maximum subefficiency of the most robust estimate to
less than 1/3 its value; confer the tables in Subsubsection 6.8.1. The convergence
of the inefficiency curves to those of the one-dimensional location model (limit in
case α = 2 attained for each k ) seems to hold also in the case α = ∞ , and is
visible at least in the case K uniform (first table of Subsection 6.10.1).

Constant Conditional Neighborhoods: The regression neighborhood mod-
els with α = ∞ of either contamination or Hellinger type may be reduced to the
constant radius curve ε1 ≡ 1 . They appear atypical in several respects: (i) nonat-
tainability of the infimum bias, (ii) infimum bias zero in the case of normal regressor
distribution, (iii) unbounded L2 -norm of order o(r2) as r → ∞ of the influence
curve which is optimally robust for radius r , (iv) slow convergence of the inef-
ficiency curves as k → ∞ , and (v) relatively large least favorable radii; confer
Subsections 3.13 and 6.10.

Average (Square) Conditional Hellinger Neighborhoods: as already men-
tioned, are essentially smaller than gross-errors neighborhoods of the same radius.
They lead to a different type of robust influence curves and estimators (regressor
clipped, residual unchanged). Contrary to the scale model (with total variation vs.
contamination balls), estimation in the smaller Hellinger neighborhood system is
more stable under radius misspecification in comparison with contamination neigh-
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borhoods, as the inefficiency numbers and least favorable radii we compute are
smaller. For increasing dimension, the limit (with respect to inefficiency) is that of
k -dimensional location with contamination neighborhoods.

For robust regression based on average conditional infinitesimal Hellinger balls,
the inefficiencies are identical (K normal), respectively (K uniform) tend, to those
for k -dimensional location and infinitesimal contamination neighborhoods (rescaled
by

√
8 ), as k → ∞ . The convergence also holds true with conditional Hellinger

neighborhoods of type α = ∞ , though at a slower rate. For average square con-
ditional Hellinger balls, the minimax subefficiency is zero, which, as in the case
of average square conditional contamination neighborhoods and one-dimensional
location as the corresponding limit, already is the limiting case of k -dimensional
location with contamination neighborhoods for k →∞ .

Remark 3.4 The two limits for increasing dimension (different for the Hellinger
and contamination systems) depend on our choice of regressor distributions, and
may explained by the fact that |x| ≈ 1 in the case K(dx) = Ufok(0,m) , and
that |x| ≈

√
k in the case K(dx) = N (0, σ2Ik) , if k is large.

If the spherically symmetric regressor distribution K(dx) were chosen such that
the distribution of |x| for general dimension k is the same as for dimension k = 1,
then the inefficiency numbers and least favorable radii would stay the same as for
one dimension; that is, in the tables of Subsections 6.8–6.10, the first lines would
be valid for all other dimensions as well. ////

3.3 One-Dimensional Location

3.3.1 Minimax Asymptotic Variance

We consider the k = 1 dimensional standard normal location model 3.1.1 first with
symmetric contamination neighborhoods 2.1.2 (a).

The minimax M-estimate for size s ∈ [0, 1) given by Huber (1964) is defined by

ψs(u) = (−ms) ∨ u ∧ms ,
s

1−s ms = E
(
|u| −ms

)
+

(3.20)

For size s = 1, we take ψ1 from the median,

ψ1(u) = sign (u) (3.21)

The maximal asymptotic variance of ψs0 (that is, of the M-estimate based
on ψs0 ) for fixed size s0 ∈ [0, 1) evaluated over a symmetric contamination neigh-
borhood of fixed size s ∈ [0, 1) is

maxVar (ψs0 , s) =
(1− s) Eψ2

s0
+ sm2

s0

[(1− s) Eψ′s0
]2

(3.22)

respectively, in the case of the median,

maxVar (ψ1, s) =
π

2(1− s)2
(3.23)
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The Var-inefficiency, for s0 ∈ [0, 1] and s ∈ [0, 1) , is

relVar (ψs0 , s) =
maxVar (ψs0 , s)
maxVar (ψs, s)

(3.24)

Although maxVar (ψ1, 1) = ∞ , the median is approximately optimal for neighbor-
hood size s → 1 , as not only ψs/ms → ψ1 pointwise but, more conclusively, we
show that

lim
s→1

relVar (ψ1, s) = 1 (3.25)

3.3.2 Minimax Asymptotic MSE for r/
√

n -Contamination Balls

We consider the k = 1 dimensional standard normal location model 3.1.1 secondly
with infinitesimal contamination neighborhoods 2.1.2 (b).

The minimax IC ηr for radius r ∈ [0,∞) is

ηr(u) = Arumin
{
1, cr|u|−1

}
(3.26)

where
1 = Ar E |u|min

{
|u|, cr

}
, r2 cr = E

(
|u| − cr

)
+

(3.27)

as given by HR (1994; Theorem 5.5.7). For r = ∞ , HR (1994; Theorem 5.5.1.b)
supplies

η∞ (u) = ωmin
c sign (u) (3.28)

which is the IC of the median and achieves minimum bias

ωmin
c =

(
E |Λ|

)−1 =
√

π
2 (3.29)

In Subsection 4.2 we prove the following relation between the maximum risks
of the optimal estimates in the two models 3.3.1 and 3.3.2,

(1− s) maxMSE (ηr0 , r) = maxVar (ψs0 , s) (3.30)

where the radii r0, r ∈ [0,∞) and sizes s0, s ∈ [0, 1) are connected by

s = r2
/
(1 + r2) , s0 = r20

/
(1 + r20) (3.31)

Consequentially, by (3.30) and (3.31), the inefficiency curves coincide in the two
models,

relMSE (ηr0 , r) = relVar (ψs0 , s) (3.32)

3.4 One-Dimensional Normal Scale

3.4.1 r/
√

n -Contamination Balls

We consider the one-dimensional standard normal scale model 3.1.2 first with infi-
nitesimal contamination neighborhoods 2.1.2 (b).
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The minimax IC ηr of HR (1994; Theorem 5.5.7) for radius r ∈ [0,∞) is

ηr(u) = Ar(u2 − α2
r) min

{
1,

cr
|u2 − α2

r|

}
(3.33)

where

0 = E(u2 − α2
r) min

{
1,

cr
|u2 − α2

r|

}
(3.34)

1 = Ar E |u2 − α2
r|min

{
|u2 − α2

r|, cr
}

(3.35)
and

r2 cr = E
(
|u2 − α2

r| − cr
)
+

(3.36)

The parabola u2 − α2
r in (3.33) is clipped only from above for radius r ≤ 0.920 ,

and for r ≥ 0.920 from above as well as from below. The centering constant αr

decreases from α0 = 1 to α∞ = Φ−1(3/4) ≈ 0.674 .
For r = ∞ , from HR (1994; Theorem 5.5.1.b) we take

η∞ (u) = ωmin
c sign (|u| − α∞) (3.37)

which is the IC of the median absolute deviation med (|ui|)/α∞ , attaining minimum
bias

ωmin
c =

(
E |u2 − α2

∞|
)−1 =

(
4α∞ϕ(α∞)

)−1 ≈ 1.166 (3.38)

3.4.2 r/
√

n -Total Variation Balls

We consider the one-dimensional standard normal scale model 3.1.2 secondly with
infinitesimal total variation neighborhoods 2.1.2 (b).

As minimax IC for radius r ∈ [0,∞) , HR (1994; Theorem 5.5.7) supplies

ηr(u) = Ar{[gr ∨ u2 ∧ (gr + cr)]− 1} (3.39)
where

0 = E(gr − u2)+ − E(u2 − gr − cr)+ (3.40)
1 = Ar Eu2

{
[gr ∨ u2 ∧ (gr + cr)]− 1

}
(3.41)

and
r2 cr = E(gr − u2)+ (3.42)

For r = ∞ , HR (1994; Theorem 5.5.5.b) provides

η∞ (u) = ωmin
v

{
P (|u| < 1) I(|u| > 1)− P (|u| > 1) I(|u| < 1)

}
(3.43)

with minimum bias
ωmin

v = (EΛ+)−1 =
√

π
2 e ≈ 2.066 (3.44)

3.5 One-Dimensional Exponential Scale

3.5.1 r/
√

n -Contamination Balls

We consider the one-dimensional exponential scale model 3.1.3 first with infinitesi-
mal contamination neighborhoods 2.1.2 (b).
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The minimax IC ηr of HR (1994; Theorem 5.5.7) for radius r ∈ [0,∞) is

ηr(u) = Ar(u− αr) min
{

1,
cr

|u− αr|

}
I(u ≥ 0) (3.45)

where

0 = E(u− αr) min
{

1,
cr

|u− αr|

}
(3.46)

1 = Ar E |u− αr|min {|u− αr|, cr} (3.47)
and

r2 cr = E
(
|u− αr| − cr

)
+

(3.48)

The centering constant αr decreases from α0 = 1 to α∞ = log(2) ≈ 0.693 .
For r = ∞ , from HR (1994; Theorem 5.5.5.1.b) we take

η∞ (u) = ωmin
c sign (u− α∞) I(u ≥ 0) (3.49)

attaining minimum bias

ωmin
c =

(
E |u− α∞|

)−1 = log(2)−1 ≈ 1.443 (3.50)

3.5.2 r/
√

n -Total Variation Balls

We consider the one-dimensional exponential scale model 3.1.3 secondly with infi-
nitesimal total variation neighborhoods 2.1.2 (b).

As minimax IC for radius r ∈ [0,∞) , HR (1994; Theorem 5.5.7) supplies

ηr(u) = Ar{[gr ∨ u ∧ (gr + cr)]− 1} I(u ≥ 0) (3.51)
where

0 = E(gr − u)+ − E(u− gr − cr)+ (3.52)
1 = Ar Eu

{
[gr ∨ u ∧ (gr + cr)]− 1

}
(3.53)

and
r2 cr = E(gr − u)+ (3.54)

For r = ∞ , HR (1994; Theorem 5.5.5.b) provides

η∞ (u) = ωmin
v

{
P (u < 1) I(u > 1)− P (u > 1) I(u < 1)

}
(3.55)

with minimum bias
ωmin

v = (EΛ+)−1 = e−1 ≈ 2.718 (3.56)

3.6 One-Dimensional Location and Scale, Contamination

We consider the one-dimensional standard normal location and scale model 3.1.4
with infinitesimal contamination neighborhoods 2.1.2 (b).

The minimax IC ηr of HR (1994; Theorem 5.5.7) for radius r ∈ [0,∞) is

ηr(u) =
(
ηloc

r (u)
ηsc

r (u)

)
=

(
Aloc

r u
Asc

r (u2 − α2
r)

)
w(u) (3.57)

with
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w(u) = min
{

1,
b[

(Aloc
r )2u2 + (Asc

r )2(u2 − α2
r)2

]1/2

}
(3.58)

where
0 = E(u2 − α2

r)w(u) (3.59)
1 = Aloc

r Eu2 w(u) (3.60)
1 = Asc

r E(u2 − α2
r)

2 w(u) (3.61)

and
r2b = E

([
(Aloc

r )2u2 + (Asc
r )2(u2 − αr)2

]1/2 − b
)

+
(3.62)

The location part ηloc
r of the minimax IC ηr is a redescending function in u . The

centering constant αr of the scale part decreases from α0 = 1 to α∞ ≈ 0.610 .
For r = ∞ , from HR (1994; Theorem 5.5.1.b) we get

η∞(u) = ωmin
c

(
u

A∞(u2 − α∞)

)
|T |−1 (3.63)

with
|T | :=

[
u2 +A2

∞(u2 − α∞)2
]1/2 (3.64)

attaining minimum bias

ωmin
c = max

{1 +A∞
E |T |

∣∣∣α∞, A∞ ∈ R
}
≈ 1.618 (3.65)

where A∞ ≈ 0.792 .

3.7 k -Dimensional Location, Contamination

We consider the k -dimensional normal location model 3.1.1 and infinitesimal conta-
mination neighborhoods 2.1.2 (b).

The minimax IC ηr for radius r ∈ [0,∞) given by HR (1994; Theorem 5.5.7),
due to spherical symmetry (Lemma 4.3 below), is

ηr(u) = αrumin
{
1, cr|u|−1

}
(3.66)

where
k = αr E |u|min

{
|u|, cr

}
, r2 cr = E

(
|u| − cr

)
+

(3.67)

For r = ∞ , we put

η∞ = ωmin
c

u

|u|
(3.68)

which is the IC of the minimum L1–estimate, and attains minimum bias ωmin
c ;

confer HR (1994; Theorem 5.5.1.b). In Subsection 4.4 we show that

ωmin
c =

k

E |Λ|
=

kΓ(k
2 )

√
2 Γ(k+1

2 )
(3.69)
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For increasing dimension, we prove in Subsection 4.6 that

lim
k→∞

ωmin
c√
k

= lim
k→∞

E |η∞|2

k
= 1 (3.70)

Thus, the squared minimum bias is about the same as the MSE in the ideal model, in
which the minimum L1–estimate becomes approximately efficient. Since, moreover,

lim
k→∞

maxMSE (ηr0 , r)
maxMSE (η∞, r)

= 1 (3.71)

where the convergence is uniform on bounded r0 -, r -intervals, this most robust
estimate also becomes approximately radius–minimax.

3.8 Binomial model

3.8.1 r/
√

n -Contamination Balls

We consider the Binomial model 3.1.5 first with infinitesimal contamination neigh-
borhoods 2.1.2 (b).

The minimax IC ηr of HR (1994; Theorem 5.5.7) for radius r ∈ [0,∞) is

ηr(y) = Ar(y − ar) min
{

1,
cr

|y − ar|

}
(3.72)

where

0 = E(y − ar) min
{

1,
cr

|y − ar|

}
(3.73)

1 = Ar E |x− ar|min {|y − ar|, cr} (3.74)
and

r2 cr = E
(
|y − ar| − cr

)
+

(3.75)

For r = ∞ , from HR (1994; Theorem 5.5.1.b) we take

η∞ (u) = ωmin
c

[
I(x > m)− I(x < m)

]
+ b I(x = m) (3.76)

where m = med(x) and

b P (x = m) = ωmin
c

[
P (x < m)− P (x > m)

]
(3.77)

attaining minimum bias

ωmin
c = θ(1− θ)

(
E |x−m|

)−1 (3.78)

For n = 1 the minimax IC ηr is

ηr(y) = I−1Λ(y) (3.79)

for all r ∈ [0,∞] . Consequentially, relMSE (ηr0 , r) ≡ 1 for all r0, r ∈ [0,∞] .
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For n→∞ we have

lim
n→∞

relMSE (ηr0 , r) = relMSE (η1.loc
r0

, r) (3.80)

where η1.loc
r0

is given by (3.26) and (3.27). Moreover, if we consider nθn → ϑ , we
obtain

lim
n→∞

relMSE (ηr0 , r) = relMSE (ηPois(ϑ)
r0

, r) (3.81)

with η
Pois(ϑ)
r0 given by (3.91)-(3.94).

3.8.2 r/
√

n -Total Variation Balls

We consider the Binomial model 3.1.5 secondly with infinitesimal total variation
neighborhoods 2.1.2 (b).

As minimax IC for radius r ∈ [0,∞) , HR (1994; Theorem 5.5.7) supplies

ηr(y) = Ar{[gr ∨ y ∧ (gr + cr)]− nθ} (3.82)
where

0 = E(gr − y)+ − E(y − gr − cr)+ (3.83)
1 = Ar E y

{
[gr ∨ y ∧ (gr + cr)]− nθ

}
(3.84)

and
r2 cr = E(gr − y)+ (3.85)

For n = 1 we get ηr(y) ≡ I−1
θ Λθ(y) = y − θ .

For r = ∞ , HR (1994; Theorem 5.5.5.b) provides

η∞ (y) =
ωmin

v

P (y 6= θ)
{
P (y < θ) I(y > θ)− P (y > θ) I(y < θ)

}
(3.86)

with minimum bias
ωmin

v = θ(1− θ) (E(y − nθ)+)−1 (3.87)

For n = 1 the minimax IC ηr is

ηr(y) = I−1Λ(y) (3.88)

for all r ∈ [0,∞] . Consequentially, relMSE (ηr0 , r) ≡ 1 for all r0, r ∈ [0,∞] .
For n→∞ we have

lim
n→∞

relMSE (ηr0 , r) = relMSE (η1.loc
r0

, r) (3.89)

where η1.loc
r0

is given by (3.26) and (3.27). Moreover, if we consider nθn → ϑ , we
obtain

lim
n→∞

relMSE (ηr0 , r) = relMSE (ηPois(ϑ)
r0

, r) (3.90)

with η
Pois(ϑ)
r0 given by (3.99)-(3.102).
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3.9 Poisson model

3.9.1 r/
√

n -Contamination Balls

We consider the Poisson model 3.1.6 first with infinitesimal contamination neigh-
borhoods 2.1.2 (b).

The minimax IC ηr of HR (1994; Theorem 5.5.7) for radius r ∈ [0,∞) is

ηr(y) = Ar(y − ar) min
{

1,
cr

|y − ar|

}
(3.91)

where

0 = E(y − ar) min
{

1,
cr

|y − ar|

}
(3.92)

1 = Ar E |x− ar|min {|y − ar|, cr} (3.93)

and
r2 cr = E

(
|y − ar| − cr

)
+

(3.94)

For r = ∞ , from HR (1994; Theorem 5.5.1.b) we take

η∞ (u) = ωmin
c

[
I(x > m)− I(x < m)

]
+ b I(x = m) (3.95)

where m = med(x) and

b P (x = m) = ωmin
c

[
P (x < m)− P (x > m)

]
(3.96)

attaining minimum bias
ωmin

c = θ
(
E |x−m|

)−1 (3.97)

For n→∞ we have

lim
n→∞

relMSE (ηr0 , r) = relMSE (η1.loc
r0

, r) (3.98)

where η1.loc
r0

is given by (3.26) and (3.27).

3.9.2 r/
√

n -Total Variation Balls

We consider the Poisson model 3.1.6 secondly with infinitesimal total variation
neighborhoods 2.1.2 (b).

As minimax IC for radius r ∈ [0,∞) , HR (1994; Theorem 5.5.7) supplies

ηr(y) = Ar{[gr ∨ y ∧ (gr + cr)]− θ} (3.99)

where
0 = E(gr − y)+ − E(y − gr − cr)+ (3.100)
1 = Ar E y

{
[gr ∨ y ∧ (gr + cr)]− θ

}
(3.101)

and
r2 cr = E(gr − y)+ (3.102)
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For r = ∞ , HR (1994; Theorem 5.5.7) provides

η∞ (y) =
ωmin

v

P (y 6= θ)
{
P (y < θ) I(y > θ)− P (y > θ) I(y < θ)

}
(3.103)

with minimum bias
ωmin

v = θ (E(y − θ)+)−1 (3.104)

For n→∞ we have

lim
n→∞

relMSE (ηr0 , r) = relMSE (η1.loc
r0

, r) (3.105)

where η1.loc
r0

is given by (3.26) and (3.27).

3.10 Gamma model, Contamination

We consider the Gamma model 3.1.7 with infinitesimal contamination neighbor-
hoods 2.1.2 (b).

The minimax IC ηr of HR (1994; Theorem 5.5.7) for (σ, α)′ = g((τ, α)′) and
radius r ∈ [0,∞) is

ηr(y) = Ar(s(y)− ar)w(y) s(y) = (y, log(y))′ (3.106)
with

w(y) = min{1, b |Ar(s(y)− ar)|−1} (3.107)
where

0 = E(s(y)− ar)w(y) (3.108)
D = Ar E(s(y)− ar)s(y)′w(y) (3.109)

and
r2b = E

(
|Ar(s(y)− ar)| − b

)
+

(3.110)

Here expectation may be taken under Gamma(1, α) . Thus the optimal robust IC
ηr depends on σ respectively, τ only via D = ∂g/∂(τ, α)′ .

For r = ∞ , from HR (1994; Theorem 5.5.1.b) we get

η∞(y) = ωmin
c

A∞(s(y)− a∞)
|A∞(s(y)− a∞)|

(3.111)

attaining minimum bias

ωmin
c = max

{ trAD′

E
∣∣A∞(s(y)− a∞)

∣∣ ∣∣∣ a∞ ∈ R2, A∞ ∈ R2×2
}

(3.112)

3.11 Regression, Average (Square) Contamination

3.11.1 Average Contamination Neighborhoods (∗ = c, α = 1)

We consider the k -dimensional normal regression model 3.1.8 and average condi-
tional regression neighborhoods 2.1.2 (c) of type contamination.
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The minimax IC ηr for radius r ∈ [0,∞) given by HR (1994; Theorem 7.4.13
and 7.5.15), and using spherical symmetry (Lemma 4.3), is

ηr(x, u) = αrxumin
{
1, cr|xu|−1

}
(3.113)

where
k = αr E |xu|min

{
|xu|, cr

}
, r2 cr = E

(
|xu| − cr

)
+

(3.114)

For r = ∞ , HR (1994; Theorem 7.4.13.c) supplies

η∞ (x, u) = ωmin
c,1

x

|x|
sign (u) (3.115)

which achieves minimum bias ωmin
c,1 . Analogously to (3.69) we show that

ωmin
c,1 =

k

E |Λ|
=

√
π

2
k

E |x|
(3.116)

In Subsection 4.6, for increasing dimension k → ∞ we prove that the MSE-
inefficiency tends uniformly on bounded r0 -, r -intervals to the MSE-inefficiency in
the one-dimensional location model 3.3.2,

lim
k→∞

relMSE (ηr0 , r) = relMSE (η1.loc
r0

, r) (3.117)

where η1.loc
r0

is given by (3.26) and (3.27).

3.11.2 Average Square Contamination Neighborhoods (∗ = c, α = 2)

We consider the k -dimensional normal regression model 3.1.8 and average square
conditional regression neighborhoods 2.1.2 (c) of type contamination.

The minimax IC ηr for radius r ∈ [0,∞) given by HR (1994; Theorem 7.4.15,
Corollary 7.5.14) and Lemma 4.3 below is

ηr(x, u) = αrxumin
{
1, cr|u|−1

}
(3.118)

where
k = αr E |x|2 ·E |u|min

{
|u|, cr

}
, r2 cr = E

(
|u| − cr

)
+

(3.119)

For r = ∞ , HR (1994; Theorem 7.4.15.c) provides the IC of minimum bias,

η∞ (x, u) = K−1 x

E |u|
sign (u) (3.120)

with K = Exx′ = γ Ik for some γ ∈ (0,∞) , confer Lemma 4.2, where

ωmin
c,2 =

√
trK−1

E |u|
=

√
πk

2γ
(3.121)

Comparing (3.26), (3.27) and (3.118), (3.119), we obtain the following relation to
maxMSE in the one-dimensional location model 3.3.2,

maxMSE (ηr0 , r) =
k2

E |x|2
maxMSE(η1.loc

r0
, r) (3.122)
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where η1.loc
r0

denotes the corresponding minimax IC for radius r0 ; in fact, the
constants in (3.26), (3.27) and (3.118), (3.119) are connected via

cr0 = c1.loc
r0

, αr0 =
k

E |x|2
A1.loc

r0
(3.123)

Consequentially, by relation (3.122), the MSE-inefficiencies coincide with those in
one-dimensional location, independently of the regressor distribution K(dx) .

3.12 Regression, Average (Square) Hellinger Balls

3.12.1 Average Hellinger Neighborhoods (∗ = h, α = 1)

We consider the k -dimensional normal regression model 3.1.8 and average condi-
tional regression neighborhoods 2.1.2 (c) of type Hellinger.

The minimax IC ηr for radius r ∈ [0,∞) given by HR (1994; Theorem 7.4.19
and 7.5.7), using spherical symmetry (Lemma 4.3) and Eu2 = 1, is

ηr(x, u) = αrxumin
{
1, cr|x|−1

}
(3.124)

where
k = αr E |x|min

{
|x|, cr

}
, 8 r2 cr = E

(
|x| − cr

)
+

(3.125)

For r = ∞ , HR (1994; Theorem 7.4.19.c) provides the minimum bias IC

η∞ (x, u) =
1√
8
ωmin

h,1

x

|x|
u (3.126)

where
ωmin

h,1 =
√

8
k

E |x|
(3.127)

On rescaling r0 , r by 1/
√

8 , in the case K = N (0, σ2Ik) , a look on k -dimensional
location 3.7 reveals that (3.125) agrees with (3.67) if x and u are exchanged.
Consequentially, the maxMSE (ηr0 , r) and the relMSE (ηr0 , r) are the same in both
models. In particular, the convergence result (3.71) is available for the present
model (∗ = h, α = 1) if K = N (0, σ2Ik) ; but we prove (3.71) for model (∗ =
h, α = 1) also in case K = Ufok(0,m) .

3.12.2 Average Square Hellinger Neighborhoods (∗ = h, α = 2)

We consider the k -dimensional normal regression model 3.1.8 and average square
conditional regression neighborhoods 2.1.2 (c) of type Hellinger.

According to HR (1994; p 277), the minimax IC ηr for radius r ∈ [0,∞)
invariably is

ηr(x, u) = I−1Λ (3.128)

Consequentially, relMSE (ηr0 , r) ≡ 1 for all r0, r ∈ [0,∞) .
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3.13 Constant Conditional Neighborhoods (α = ∞)

3.13.1 Contamination Neighborhoods (∗ = c, α = ∞)

We consider the k -dimensional normal regression model 3.1.8 and conditional re-
gression neighborhoods 2.1.2 (c) of type contamination with α = ∞ .

The minimax IC ηr for radius r ∈ [0,∞) given by HR (1994; Theorems 7.4.11
and 7.5.10), and using spherical symmetry (Lemma 4.3), is

ηr(x, u) = αrxumin
{
1, cr(x)|u|−1

}
(3.129)

where
k = αr E |x|2 E. |u|min {|u|, cr(x)} (3.130)

and

E.
(
|u| − cr(x)

)
+

=
r2

|x|
E |x|cr(x) (3.131)

with cr(x) = 0 , if the RHS in (3.131) is larger than E. |u| =
√

2/π . As for (3.131)
confer Lemma 4.1. By E. we denote integration over u ∼ N (0, 1) , with x fixed.

Concerning r = ∞ , we show that the infimum bias is

ωmin
c,∞ = 0 if K = N (0, σ2Ik) (3.132)

respectively
ωmin

c,∞ =
√

π
2 k if K = Ufok(0,m) (3.133)

and, in both cases, cannot be attained.
In Subsection 4.6, for k → ∞ , we sketch an (incomplete) argument for the

convergence (3.117) of the MSE-inefficiencies in the present model (∗ = c, α = ∞ )
to the corresponding ones in the one-dimensional location model 3.3.2.

3.13.2 Hellinger Neighborhoods (∗ = h, α = ∞)

We consider the k -dimensional normal regression model 3.1.8 and conditional re-
gression neighborhoods 2.1.2 (c) of type Hellinger with α = ∞ .

The minimax IC for radius r ∈ [0,∞) given by HR (1994; Theorems 7.4.18
and 7.5.3), using Lemma 4.3 and Eu2 = 1, is

ηr(x, u) = αrxu
(
1− cr|x|−1

)
+

(3.134)
where

k = αr E |x|
(
|x| − cr

)
+

(3.135)
and

cr = 8 r2 E
(
|x| − cr

)
+

(3.136)

As for (3.136), confer Lemma 4.1.
Concerning r = ∞ , we show that the infimum bias is

ωmin
h,∞ = 0 if K = N (0, σ2Ik) (3.137)

respectively
ωmin

h,∞ =
√

8 k if K = Ufok(0,m) (3.138)
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and, in both cases, cannot be attained.
In Subsection 4.6, the convergence (3.71) of the MSE-inefficiencies to one, as

the dimension increases, is proved also for this model (∗ = h, α = ∞ ).

Remark 3.5 In our models—except scale—the results for r/
√
n -total variation

neighborhoods (∗ = v ) agree with the results for 2r/
√
n -contamination neighbor-

hoods (∗ = c ); confer also Remark 3.3. ////

3.14 ARMA(1,1), Average (Square) Contamination

3.14.1 Average Contamination Neighborhoods (∗ = c, α = 1)

We consider the order (1,1) autoregressive-moving average model 3.1.10 with stan-
dard normal innovations and average conditional regression neighborhoods 2.1.2 (c)
of type contamination.

The minimax IC ηr for radius r ∈ [0,∞) given by HR (1994; Theorems 7.4.13
and 7.5.15), and using the elliptical symmetry of H is

ηr(H,u) = V ′ψr(Z, u) (3.139)

with
ψr(Z, u) = ArZ umin

{
1, br|ArZ u|−1

}
Ar = diag(ar,1, ar,2) (3.140)

where
1 = ar,j EZ2

j E• u2 min
{
1, br|ArZ u|−1

}
j = 1, 2 (3.141)

and
r2 br = E

(
[a2

r,1Z
2
1 + a2

r,2Z
2
2 ]1/2 |u| − br

)
+

(3.142)

For r = ∞ , HR (1994; Theorems 7.4.13.c), and elliptical symmetry of H supply

η∞ (H,u) = V ′ψ∞ (Z, u) (3.143)

with

ψ∞ (Z, u) = ωmin
c,1

(
Z1 0
0 a∞Z2

)
[Z2

1 + a2
∞Z

2
2 ]−1/2 (3.144)

which achieves minimum bias

ωmin
c,1 =

√
π
2 max

{ 1 + a∞
E[Z2

1 + a2
∞Z

2
2 ]1/2

}
(3.145)

For φ = −0.7, ξ = 0.35 we get ωmin
c,1 ≈ 2.054 , where a∞ ≈ 3.569 .

3.14.2 Average Square Contamination Neighborhoods (∗ = c, α = 2)

We consider the order (1,1) autoregressive-moving average model 3.1.10 with stan-
dard normal innovations and average square conditional regression neighborhoods
2.1.2 (c) of type contamination.
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The minimax IC ηr for radius r ∈ [0,∞) given by HR (1994; Theorem 7.4.15,
Corollary 7.5.14), is

ηr(H,u) = ArH umin
{
1, cr|u|−1

}
(3.146)

where
1 = ρr E |u|min

{
|u|, cr

}
Ar = ρrK−1

θ (3.147)
and

r2 cr = E
(
|u| − cr

)
+

(3.148)

For r = ∞ , HR (1994; Theorem 7.4.15.c) provides

η∞ (H,u) =
√

π
2 K

−1
θ H sign (u) (3.149)

which attains minimum bias

ωmin
c,2 =

√
π
2 trK−1

θ =
√

π
2

1− φξ

|φ− ξ|
√

2− φ2 − ξ2 (3.150)

For φ = −0.7, ξ = 0.35 we get ωmin
c,2 ≈ 1.750 .

Comparing (3.26), (3.27) and (3.146)-(3.148), we obtain the following relation
to maxMSE in the one-dimensional location model 3.3.2,

maxMSE (ηr0 , r) = trK−1
θ maxMSE(η1.loc

r0
, r) (3.151)

where η1.loc
r0

denotes the corresponding minimax IC for radius r0 ; in fact, the
constants in (3.26), (3.27) and (3.146), (3.147) are connected via

cr0 = c1.loc
r0

, ρr0 = A1.loc
r0

(3.152)

Consequentially, by relation (3.151), the MSE-inefficiencies coincide with those in
one-dimensional location, independently of φ and ξ .

3.15 ARCH(1), Average (Square) Contamination

3.15.1 Average Contamination Neighborhoods (∗ = c, α = 1)

We consider the order one autoregressive conditional heteroscedastic model 3.1.11
with standard normal innovations and average conditional regression neighborhoods
2.1.2 (c) of type contamination.

The minimax IC ηr for radius r ∈ [0,∞) given by HR (1994; Theorems 7.4.13
and 7.5.15) is

ηr(H,u) = ArH
(
u2 − α(H)2

)
min

{
1,

cr
H |u2 − α(H)2|

}
(3.153)

where
0 = E•(u2 − α(H)2) min

{
1,

cr
H |u2 − α(H)2|

}
(3.154)

1 = Ar EH2 E•(u2 − α(H)2)2 min
{

1,
cr

H |u2 − α(H)2|

}
(3.155)

and
r2 cr = E

(
H |u2 − α(H)2| − cr

)
+

(3.156)
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For r = ∞ , HR (1994; Theorems 7.4.13.c) supplies

η∞ (H,u) = ωmin
c,1 sign (|u| − α∞) (3.157)

with centering constant α∞ = Φ−1(3/4) ≈ 0.674 , which achieves minimum bias

ωmin
c,1 =

(
E |u2 − α2

∞|EH
)−1 =

(
4α∞ϕ(α∞) EH

)−1 ≈ 1.166/EH (3.158)

For θ = 1 we get ωmin
c,1 ≈ 4.637 .

3.15.2 Average Square Contamination Neighborhoods (∗ = c, α = 2)

We consider the order one autoregressive conditional heteroscedastic model 3.1.11
with standard normal innovations and average square conditional regression neigh-
borhoods 2.1.2 (c) of type contamination.

The minimax IC ηr for radius r ∈ [0,∞) given by HR (1994; Theorem 7.4.15,
Corollary 7.5.14) is

ηr(H,u) = ArH(u2 − α2
r) min

{
1, cr|u2 − α2

r|−1
}

(3.159)
where

0 = E(u2 − α2
r) min

{
1, cr|u2 − α2

r|−1
}

(3.160)

1 = ρr E(u2 − αr)2 min
{
1, cr|u2 − α2

r|−1
}

Ar = ρrK−1
θ (3.161)

and
r2 cr = E

(
|u2 − α2

r| − cr
)
+

(3.162)

For r = ∞ , HR (1994; Theorem 7.4.15.c) provides the IC of minimum bias,

η∞ (H,u) =
K−1

θ H

E |u2 − α∞|
sign (|u| − α∞) (3.163)

with centering constant α∞ = Φ−1(3/4) ≈ 0.674 , which achieves minimum bias

ωmin
c,2 = K−1/2

θ

(
E |u2 − α2

∞|
)−1 ≈ 1.166K−1/2

θ (3.164)

For θ = 1 we get ωmin
c,2 ≈ 3.898 .

Comparing (3.33)-(3.36) and (3.159)-(3.162), we obtain the following relation
to maxMSE in the one-dimensional scale model 3.4.1,

maxMSE (ηr0 , r) = K−1
θ maxMSE(ηsc

r0
, r) (3.165)

where ηsc
r0

denotes the corresponding minimax IC for radius r0 ; in fact, the con-
stants in (3.33)-(3.36) and (3.159)-(3.162) are connected via

cr0 = cscr0
, αr0 = αsc

r0
, ρr0 = Asc

r0
(3.166)

Consequentially, by relation (3.165), the MSE-inefficiencies coincide with those in
one-dimensional scale, independently of θ .
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3.15.3 Average Total Variation Neighborhoods (∗ = v, α = 1)

We consider the order one autoregressive conditional heteroscedastic model 3.1.11
with standard normal innovations and average conditional regression neighborhoods
2.1.2 (c) of type total variation.

As minimax IC for radius r ∈ [0,∞) , HR (1994; Theorem 7.4.17) supplies

ηr(H,u) = gr(H) ∨ArH(u2 − 1) ∧ (gr(H) + cr) (3.167)
where

E•(gr(H)−ArH(u2 − 1))+ = E•(ArH(u2 − 1)− gr(H)− cr)+ (3.168)
1 = EH E• u2[gr(H) ∨ArH(u2 − 1) ∧ (gr(H) + cr)] (3.169)

and
r2 cr = E•(gr(H)−ArH(u2 − 1))+ (3.170)

For r = ∞ , HR (1994; Theorem 5.5.5.b) provides

η∞ (u) = ωmin
v,1

{
P (|u| < 1) I(|u| > 1)− P (|u| > 1) I(|u| < 1)

}
(3.171)

with minimum bias

ωmin
v,1 = (EH E(u2 − 1)+)−1 =

√
π
2 e

/
EH (3.172)

For θ = 1 we get ωmin
v,1 ≈ 8.220 .

3.15.4 Average Square Total Variation Neighborhoods (∗ = v, α = 2)

We consider the order one autoregressive conditional heteroscedastic model 3.1.11
with standard normal innovations and average square conditional regression neigh-
borhoods 2.1.2 (c) of type total variation.

As minimax IC for radius r ∈ [0,∞) , Kohl (2005; Section 9.3.2.3) supplies

ηr(u) = ArH{[gr ∨ u2 ∧ (gr + cr)]− 1} (3.173)
where

0 = E(gr − u2)+ − E(u2 − gr − cr)+ (3.174)
1 = ρr Eu2

{
[gr ∨ u2 ∧ (gr + cr)]− 1

}
Ar = ρrK−1

θ (3.175)
and

r2 cr = E(gr − u2)+ (3.176)

For r = ∞ , one can show

η∞ (u) =
K−1

θ H

E(u2 − 1)+

{
P (|u| < 1) I(|u| > 1)− P (|u| > 1) I(|u| < 1)

}
(3.177)

which achieves minimum bias

ωmin
v,2 = K−1/2

θ (E(u2 − 1)+)−1 =
√

π
2 eK

−1
θ (3.178)
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For θ = 1 we get ωmin
v,2 ≈ 6.907 .

Comparing (3.39)-(3.42) and (3.173)-(3.176), we obtain the following relation
to maxMSE in the one-dimensional scale model 3.4.2,

maxMSE (ηr0 , r) = K−1
θ maxMSE(ηsc

r0
, r) (3.179)

where ηsc
r0

denotes the corresponding minimax IC for radius r0 ; in fact, the con-
stants in (3.39)-(3.42) and (3.173)-(3.176) are connected via

cr0 = cscr0
, αr0 = αsc

r0
, ρr0 = Asc

r0
(3.180)

Consequentially, by relation (3.179), the MSE-inefficiencies coincide with those in
one-dimensional scale, independently of θ .

4 Lemmas and Proofs

4.1 Optimization

With the help of the following lemma, we can derive the solutions to the original
MSE problems (with bias squared) from the solutions given (for linear bias) in
HR(1994; Theorems 7.4.11.b, 7.4.12.b, 7.4.16.b, and 7.4.18.b), if we set γ(v) := v2 .

Lemma 4.1 Given a real vector space X , a convex subset A of X , consider three
convex functions f :A→ R , g:A→ [ 0,∞) , and γ: [ 0,∞) → [ 0,∞) ; γ increasing.
Let β0 ∈ [ 0,∞) . Suppose z0 ∈ A minimizes the Lagrangian L0 = f + β0 γ ◦ g
over A . Assume that γ is differentiable at g0 = g(z0) , and put

β1 = β0 γ
′(g0) (4.1)

Then z0 also minimizes the Lagrangian L1 = f + β1 g over A .

Proof Employ the convex combinations zs = (1 − s)z0 + sz1 , 0 ≤ s ≤ 1 , for
any z1 ∈ A . Then z0 minimizes a convex function ` over A iff the right-hand
derivatives ∂` = d

ds

∣∣
s=0

`(zs) at zero are all nonnegative. But

∂L0 = ∂f + β0 γ
′(g0) ∂g = ∂L1 (4.2)

because ∂(γ ◦ g) = γ′(g0) ∂g [ chain rule ]. ////

4.2 One-Dimensional Location

Proof of (3.25) To ψs for s ∈ [0, 1) , integration by parts applies so that∫
ψ′s(u) Φ(du) =

∫
uψs(u) Φ(du) (4.3)

Therefore we can rewrite (3.22) as

maxVar (ψs, s) =
(1− s)

∫
m−2

s ψ2
s(u) Φ(du) + s

(1− s)2
[∫

um−1
s ψs(u)Φ(du)

]2 (4.4)
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Consequentially, the Var-inefficiency of the median is

relVar (ψ1, s) =
π

[∫
um−1

s ψs(u) Φ(du)
]2

2
[
(1− s)

∫
m−2

s ψ2
s(u) Φ(du) + s

] (4.5)

As ψs/ms → ψ1 = sign pointwise for s→ 1 and |ψs/ms| ≤ 1 , it follows that

lim
s→1

relVar (ψ1, s) =
π

2
(
E |u|

)2 = 1 (4.6)

by the dominated convergence theorem. ////

Proof of (3.30)–(3.32) By (3.21) and (3.27), cr = ms , if r and s are related by
(3.31): r2 = s/(1− s) . Using (3.27) we can rewrite (2.12) as

maxMSE (ηr0 , r) =
Emin {u2, c2r0

}+ r2c2r0

[E |u|min {|u|, cr}]2

=
Emin {u2, m2

s0
}+ sm2

s0
/(1− s)

[E |u|min {|u|, ms}]2

=
(1− s) Eψ2

s0
+ sm2

s0

(1− s)[Eψ′s0
]2

by (4.3)

= (1− s)maxVar (ψs0 , s)

which proves (3.30) implying (3.32). ////

4.3 Invariance Under Rescaling

As mentioned in Subsubsection 3.1, the inefficiency in models 3.1 (a)–(d) is in-
variant under rescaling of the errors ui and the regressors xi , respectively. We
prove this invariance for k -dimensional regression and average conditional conta-
mination neighborhoods 2.1.2 (c) (∗ = c, α = 1), even allowing general error distri-
bution F (du) and regressor distribution K(dx) as in HR (1994; Theorem 7.4.13).
The proofs for the other models considered here are similar.

Proof of invariance under rescaling (∗ = c, α = 1) According to HR (1994;
Theorem 7.4.13.b and Remark 7.4.9), the minimax MSE solution is of form

ηr(x, u) = Arx [Λf (u)− ϑr(x)]min
{

1,
br∣∣Arx[Λf (u)− ϑr(x)]

∣∣} (4.7)

0 = E.[Λf (u)− ϑr(x)]min
{

1,
br∣∣Arx[Λf (u)− ϑr(x)]

∣∣} (4.8)

Ik = Ar Exx′Λ2
f (u) min

{
1,

br∣∣Arx[Λf (u)− ϑr(x)]
∣∣} (4.9)

r2 br = E
(
|Arx[Λf (u)− ϑr(x)]− b|

)
+

(4.10)
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For regressor z = τ x and error v = σu , rescaled by any τ, σ ∈ (0,∞) , we put

η̃r(z, v) = Ãrz [Λf̃ (v)− ϑ̃r(z)]min
{

1,
b̃r∣∣Ãrz[Λf̃ (v)− ϑ̃r(z)]

∣∣} (4.11)

with
Ãr = σ2

τ2Ar , b̃r = σ
τ br , ϑ̃r(z) = 1

σϑr

(
z
τ

)
(4.12)

where Λf̃ (v) = σ−1Λf (v/σ) and Λf = −f ′/f .
Then it is easy to verify conditions (4.8)–(4.10) for η̃r in the rescaled model,

so η̃r is indeed the optimum IC there. Using the relations (4.12) we obtain

maxMSE (η̃r0 , r) =
σ2

τ2
maxMSE (ηr0 , r) (4.13)

for any r0, r ∈ [0,∞) . The factor σ2/τ2 cancels in relMSE. ////

4.4 Spherical Symmetry

We consider models whose scores function Λ at Pθ is spherically symmetric; that
is,

L(GΛ) = L(Λ) (4.14)

for all orthogonal matrices G ∈ Rk×k . Fisher information of such models satisfies

G I G′ = E(GΛ)(GΛ)′ = EΛΛ′ = I (4.15)

for all orthogonal G ∈ Rk×k , hence, by the following lemma, is a multiple of the
identity: I = γ Ik ; γ ∈ [0,∞) since I is positive semidefinite, and γ > 0 if I has
full rank (which is the case in our models).

Lemma 4.2 Let A ∈ Rk×k be symmetric and GAG′ = A for all orthogonal
matrices G ∈ Rk×k . Then A = α Ik for some α ∈ R .

Proof Since A is symmetric, there is an orthogonal Matrix G ∈ Rk×k such that
A = GAG′ = diag (α1, . . . , αk) ; so A is diagonal. Now consider a permutation
matrix G ∈ Rk×k (any matrix with a single one and otherwise zero entries). Such
G being orthogonal, again A = GAG′ ; so necessarily α1 = . . . = αk . ////

The second application of Lemma 4.2 is to

Optimally robust influence curves as given by HR (1994; Theorems 5.5.7,
7.4.11, 7.4.13, 7.4.15, 7.4.18, 7.4.19).

Lemma 4.3 Under assumption (4.14) the standardizing matrix A (to achieve
Fisher consistency) satisfies A = α Ik for some α ∈ (0,∞) .

Proof We will prove this for k -dimensional regression and conditional conta-
mination neighborhoods 2.1.2 (c); that is, for the cases ∗ = c and α = 1, 2,∞ .
The proofs in the other cases are similar.
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(∗ = c, α = 1) For r ∈ [0,∞) define cr ∈ (0,∞] and then αr ∈ (0,∞) by

r2 cr = E
(
|xu| − cr

)
(4.16)

k = αr E |xu|min {|xu|, cr} (4.17)
and put

ηr(x, u) = αrxumin {1, cr|xu|−1} (4.18)

As for all orthogonal G ∈ Rk×k : GE ηrΛ′G′ = E ηrΛ′ by spherical symmetry
of K , Lemma 4.2 tells us that E ηrΛ′ = β Ik . Passing to the trace, (4.17) yields
that β = 1. Because of symmetry of the error distribution, E. ηr = 0 a.e. K(dx) .
Thus, with br := αr cr , ηr in fact is an IC as in HR (1994; Theorem 7.4.13.b),
which form is sufficient to minimax asymptotic MSE.
(∗ = c, α = 2) Since the median of Λf is unique, the minimax IC is given
by HR (1994; equation (134) in Theorem 7.4.15.b), with D = Ik , where ϑ = 0,
by symmetry of the error distribution, and K = I = γ Ik for some γ ∈ (0,∞)
(Lemma 4.2 and I loc

f = 1). This gives (4.16)–(4.18).
(∗ = c, α = ∞) An argument as in the case (∗ = c, α = 1) and in addition
using Lemma 4.1 shows that ηr of form (3.129)–(3.131) is an IC of the form of
HR (1994; Theorem 7.4.11.b) and satisfies condition (4.1) of Lemma 4.1 above.
Thus, ηr is the (unique) minimax IC. ////

Minimum Bias
Proof of (3.69) and (3.116) According to HR (1994; Theorems 5.5.1.b and
7.4.13.c), minimum bias ωmin

c in model 3.7 (k -dimensional location) and ωmin
c,1 in

model 3.11.1 (k -dimensional normal regression) are, with D = Ik , given by

ωmin
c = max

{ trA
E |AΛ− a|

∣∣∣ a ∈ Rk, A ∈ Rk×k \ {0}
}

(4.19)

respectively

ωmin
c,1 = max

{ trA
E |Ax|E |Λf −m|

∣∣∣ A ∈ Rk×k \ {0}
}

(4.20)

In our case, the median m of Λf (u) = u under F = N (0, 1) is zero. Also in
(4.19), we may put a = 0. Indeed, by triangle inequality and (spherical) symmetry
of L (Λ) , the zero centering vector 0 = 1

2a+ 1
2 (−a) would decrease the denominator

E |AΛ− a| = E |AΛ + a| .
Despite of different scores functions, we can now handle both models in one

proof, only drawing on the spherical symmetry of L (Λ) .
By the singular value decomposition, U ′AV = diag (α1, . . . , αk) = V ′A′U for

some orthogonal matrices U, V ∈ Rk×k . Then

E |AΛ| = E |U ′AV Λ| = E |V ′A′UΛ| = E |A′Λ| (4.21)

Putting As := 1
2 (A + A′) , the trace stays fixed, while E |AΛ| decreases (triangle

inequality). So we may limit attention to symmetric matrices A . Since

trGAG′ = trA, E |GAG′Λ| = E |AΛ| (4.22)
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for any orthogonal matrix G , and especially for G obtained from the spectral
decomposition of A , we may further suppose A diagonal, and then with all diagonal
elements nonnegative.

To complete the proof, we show that 1
k Ik minimizes E |AΛ| among all such

diagonal matrices of trace 1 . Consider the Lagrangian L: [0,∞)k → R ,

L(a) = E |AΛ| − λ trA (4.23)

where a = (α1, . . . , αk)′ and A = diag (a′) . The multiplier λ is chosen as

λ = E
{
|Λ|−1Λ2

i

}
(4.24)

which, by spherical symmetry, is the same for all coordinates i = 1, . . . , k .
The function L is convex on [0,∞)k . Applying the mean value theorem and

the bound
(αi + τh)Λ2

i

|AτΛ|
≤ 2αiΛ2

i
1
2 |αiΛi|

= 4 |Λi| ∈ L1(P ) (4.25)

with some τ ∈ (0, 1) , some intermediate Aτ , and sufficiently small increment h ,
the dominated convergence theorem applies. Thus we obtain the partials

∂L

∂αi
= E

{αiΛ2
i

|AΛ|

}
− λ (4.26)

which vanish at α1 = . . . = αk = 1
k . ////

4.5 Constant Conditional Neighborhoods (α = ∞)

Proof of (3.132), (3.133) and (3.137), (3.138) The solutions are given in
HR (1994; Theorems 7.4.11.c and 7.4.18.c), we only have to determine

σA = infK(dx) |Ax|−1 =
1

supK(dx) |Ax|
(4.27)

for K = N (0, Ik) , respectively K = Ufok(0, 1) .
In the normal case, we have sup K(dx)|Ax| = ∞ , thus σA = 0 and consequen-

tially both ωmin
c,∞ and ωmin

h,∞ are zero. Then, since

ωc,∞(η) = E sup .|η| , ωh,∞(η) =
√

8E
(
E. |η|2

)1/2 (4.28)

an IC η achieving zero bias would have to vanish a.e.; thus, the infimum bias cannot
be attained.

In the uniform case, we obtain that

supK(dx) |Ax|2 = sup
|x|≤1

|Ax|2 = ‖A‖op (4.29)

Hence we have to find the minimum of ‖A‖op under the side condition trA = 1.
Applying the triangle inequality to 1

2 (A + A′) , A may be assumed symmetric.
Then, since

‖A‖2op = sup
|x|≤1

|Ax| = sup
|x|≤1

|G′AGx| (4.30)



H. Rieder, M. Kohl, P. Ruckdeschel 39

for any orthogonal matrix G , it suffices to consider A diagonal (spectral decom-
position). Thus, ‖A‖2op = maxi=1,...,k α

2
i , and consequentially Amin = 1

k Ik and
‖Amin‖op = 1

k , which yields σA = k . According to HR (1994; Theorems 7.4.11.c
and 7.4.18.c), an IC η̄ achieving the minimum bias would necessarily have to be
of form (75), respectively (220), there; in particular, η̄ could be nonzero only for
1 = σA|Ax| = |x| . This however, is a set of measure zero in the present cases.
Therefore, the infimum bias cannot be attained. ////

4.6 Increasing Dimension k → ∞
Proof of (3.70) We have Λ ∼ N (0, Ik) , so 1

k |Λ|
2 = 1

k

∑k
i=1 Λ2

i → EΛ2
1 = 1 a.e.,

hence also |Λ|
/√
k → 1 a.e., as k → ∞ (SLLN).

(
1
k |Λ|

2
)

is uniformly integrable
(Vitali, E |Λ|2 = k ). Because |Λ|

/√
k ≤ 1 + 1

k |Λ|
2 , also

(
|Λ|

/√
k

)
is uniformly

integrable. Consequentially, E |Λ| ∼
√
k and E |η∞|2 =

(
k
/

E |Λ|
)2 ≈ k . ////

Proof of (3.71) We first give the proof for the k -dimensional location model 3.7.
For Λ(u) = u ∼ N (0, Ik) , both 1

k |u|
2 and |u|

/√
k tend to 1 in L1 , as shown.

Putting c̃k,r = ck,r

/√
k , the second equation of (3.67) reads

r2 c̃k,r = E
(
|u|

/√
k − c̃k,r

)
+

(4.31)

In the case r = 0, we have ck,0 = ∞ . Assume that r > 0 , and suppose that
c̃k,r → γ ∈ [0,∞] along some subsequence. Since the RHS in (4.31) is bounded,
necessarily γ <∞ . Then the noted L1 -convergence implies that

r2 γ = E(1− γ)+ = (1− γ)+ (4.32)

from which it follows that r2γ = 1−γ . Hence (1+r2)−1 is the unique accumulation
point of the sequence (c̃k,r) , which therefore converges,

lim
k→∞

c̃k,r =
1

1 + r2
(4.33)

The first equation of (3.67) reads

α−1
k,r = E k−1|u|2 min

{
1,

c̃k,r

|u|
/√
k

}
(4.34)

In the case r = 0 we have αk,0 = 1. Now let r > 0 . Obviously, the integrands
in (4.34) converge to (1+r2)−1 a.e. and are uniformly integrable (being dominated
by 1

k |u|
2 ). Thus, and consistently with αk,0 = 1 in case r = 0,

lim
k→∞

αk,r = 1 + r2 (4.35)

The arguments leading to (4.33) and (4.35) obtain if the fixed r ∈ (0,∞) is replaced
by any sequence rk with limit r ∈ (0,∞) . In addition, we can argue in a similar
way in case rk ↓ r = 0 to obtain that

lim inf
k→∞

c̃k,rk
≥ 1 = lim

k→∞
αk,rk

(4.36)
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Therefore, (4.33) and (4.35) hold uniformly on bounded r -intervals. Now (4.33)
and (4.35) entail convergence of the risk (with the previous r replaced by r0 ),

k−1 maxMSE (ηr0 , r) = α2
k,r0

Emin
{
k−1|u|2, c̃2k,r0

}
+ r2α2

k,r0
c̃2k,r0

−→ 1 + r2 (4.37)

Consequentially, and in addition using (3.70), we get

maxMSE (ηr0 , r)
maxMSE (η∞, r)

=
E |Λ|2

k

maxMSE (ηr0 , r)
k(1 + r2)

−→ 1 (4.38)

And this convergence is uniform on bounded r0 - and r -intervals.
By the coincidence mentioned in the k -dimensional regression model 3.12.1 for

∗ = h and α = 1, the convergence (3.71) automatically holds for this model, too,
with r0 and r multiplied by

√
8 , if the regressor distribution is K = N (0, Ik) .

In the second part of the proof we shall show (3.71) for the k -dimensional
regression model 3.12.1 (∗ = h, α = 1) with K = Ufok(0, 1) .

In this case, we have E |x| = k(k+ 1)−1 and E |x|2 = k(k+ 2)−1 which implies
that Var (x) → 0 as k →∞ ; consequentially, |x| → 1 in L2 and L1 . The second
part of (3.125) reads

8r2 ck,r = E
(
|x| − ck,r

)
+

(4.39)

Suppose that ck,r → γ ∈ [0,∞] along some subsequence; since |x| ≤ 1 a.e.,
necessarily γ ≤ 1 . Then the noted L1 -convergence implies that

8r2 γ = E(1− γ)+ = 1− γ (4.40)

Hence (1 + 8r2)−1 is the unique accumulation point, therefore,

lim
k→∞

ck,r =
1

1 + 8r2
(4.41)

Plugged into the first equation of (3.125), this yields

k

αk,r
= E |x|min {|x|, ck,r} −→

1
1 + 8r2

(4.42)

The arguments leading to (4.41) and (4.42) obtain if we replace r by a bounded
sequence rk . Thus (4.41) and (4.42) hold true uniformly on bounded r -intervals.
The convergences (4.41) and (4.42) now entail convergence of the risk (with the
previous r replaced by r0 ),

k−2 maxMSE (ηr0 , r) = k−2α2
k,r0

Emin {|x|2, c2k,r0
}+ 8r2k−2α2

k,r0
c2k,r0

−→ 1 + 8r2 (4.43)

Consequentially,

maxMSE (ηr0 , r)
maxMSE (η∞, r)

= E |x|2 maxMSE (ηr0 , r)
k2(1 + 8r2)

−→ 1 (4.44)

And this convergence is uniform on bounded r0 -, r -intervals.
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In the third part of the proof, we shall show (3.71) for the k -dimensional re-
gression model 3.13.2 (∗ = h, α = ∞ ).

In case K = N (0, Ik) , the L1 -convergence |x|/
√
k → 1 inserted in equations

(3.136) and (3.135) by previous arguments imply that

lim
k→∞

ck,r√
k

=
8r2

1 + 8r2
, lim

k→∞
αk,r = 1 + 8r2 (4.45)

Consequentially,

lim
k→∞

1
k

maxMSE (ηr0 , r) = 1 + 8r2 (4.46)

In case K = Ufok(0, 1) , the L1 -convergence of |x| → 1 inserted in equations
(3.136) and (3.135) similarly imply that

lim
k→∞

ck,r =
8r2

1 + 8r2
, lim

k→∞

αk,r

k
= 1 + 8r2 (4.47)

Consequentially,
lim

k→∞
k−2 maxMSE (ηr0 , r) = 1 + 8r2 (4.48)

Both convergences (4.46) and (4.48) hold uniformly on bounded r0 -, r -intervals
(though convergence in the K normal case seems slow; Subsubsection 6.10.2). ////

Proof of (3.117) The second equation of (3.67), in case K = N (0, Ik) , reads

r2 c̃k,r = E
(
|u||x|/

√
k − c̃k,r

)
+

(4.49)

where c̃k,r = cr,k/
√
k , and in case K = Ufok(0, 1) ,

r2 ck,r = E
(
|x| |u| − ck,r

)
+

(4.50)

If r = 0, we have ck,0 = ∞ . Now let r > 0 , and suppose that, along some subse-
quence, c̃k,r , respectively cr,k , tend to some γ ∈ [0,∞] . Since the RHS in (4.49)
and (4.50) is bounded, necessarily γ <∞ . Then the noted L1 -convergence in the
proof of (3.71) implies that (in both cases)

r2 γ = E
(
|u| − γ

)
+

(4.51)

from which it follows that γ = c1.loc
r from (3.27). Therefore, respectively,

lim
k→∞

c̃k,r = c1.loc
k = lim

k→∞
ck,r (4.52)

The first equation of (3.67) for K = N (0, Ik) reads

α−1
k,r = E k−1|x|2u2 min

{
1,

c̃k,r

|u||x|
/√
k

}
(4.53)

and for K = Ufok(0, 1)

k

αk,r
= E |x|2u2 min

{
1,

ck,r

|u||x|

}
(4.54)
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For r = 0, we have αk,0 = 1 (K normal) and αk,0 = k+2 (K uniform). Suppose
that r > 0 . Obviously, the integrands in (4.53) and (4.54) are uniformly integrable
(being dominated by 1

k |x|
2u2 , respectively by |x|2u2 ). In the normal case, we get

lim
k→∞

α−1
k,r = Eu2 min

{
1,
c1.loc
r

|u|

}
=

(
A1.loc

r

)−1 (4.55)

with A1.loc
r = Ar from (3.67), which is consistent with αk,0 = 1 = A1.loc

0 in case
r = 0. In the uniform regressor case, again consistently with r = 0,

lim
k→∞

k

αk,r
= Eu2 min

{
1,
c1.loc
r

|u|

}
=

(
A1.loc

r

)−1 (4.56)

The arguments leading to (4.52) and (4.55), (4.56) obtain if we replace the fixed
r ∈ (0,∞) by any sequence rk with limit r ∈ (0,∞) . If rk ↓ r = 0, a similar
argument yields c̃k,r, ck,r → c1.loc

0 , respectively. Thus (4.52) and (4.55), (4.56)
hold true uniformly on bounded r -intervals. (4.52) and (4.55), (4.56) now entail
convergence of the risk (with the previous r replaced by r0 ),

k−1 maxMSE (ηr0 , r) = α2
k,r0

Emin
{
k−1|x|2u2, c̃2k,r0

}
+ r2α2

k,r0
c̃2k,r0

−→ maxMSE (η1.loc
r0

, r) (4.57)

k−2 maxMSE (ηr0 , r) = k−2α2
k,r0

Emin
{
|x|2u2, c2k,r0

}
+ r2k−2α2

k,r0
c2k,r0

−→ maxMSE (η1.loc
r0

, r) (4.58)

in the normal and uniform case, respectively. Hence, the inefficiencies converge
accordingly,

lim
k→∞

relMSE (ηr0 , r) = relMSE (η1.loc
r0

, r) (4.59)

uniformly on bounded r0 -, r -intervals, in both cases.
We shall sketch an argument for (4.57) and (4.58), hence (4.59), to hold also in

model 3.13.1 (∗ = c, α = ∞ ).
Employing the L1 -convergence |x|

/√
k → 1 and |x| → 1 for K = N (0, Ik)

and K = Ufok(0, 1) , respectively, equation (3.131) determing ck,r(x) uniquely
may be solved by ck,r(x) → c1.loc

r in probability, where c1.loc
r is taken from (3.27).

At this instance, we assume but do not prove that the integrals E |x|ck,r(x)
/√

k
and E |x|ck,r(x) converge correspondingly; that is, to E 1·c1.loc

r = c1.loc
r . Under this

asumption, however, equation (3.130) now entails (4.55) and (4.56), respectively.
Then (4.57) and (4.58) follow as before.

Due to variable ck,r(x) (and matching the gap in the proof), the tables in
Subsubsection 6.10.1 indicate only slow convergence in (4.57)–(4.59), but in the
K uniform case, convergence is confirmed. ////

5 Numerical Algorithms

We use R (R Development Core Team 2005) to implement the algorithms and to
generate the graphical output. In detail we use the following numerical procedures:
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5.1 One-Dimensional Location

The results for the models 3.3.1 and 3.3.2 are obtained by the routines for the
k -dimensional location model 3.7 with k = 1. Note the coincidence (3.32) via the
relation (3.31).

5.2 One-Dimensional Scale

5.2.1 r/
√

n -Contamination Balls (Model 3.4.1)

The clipping bound cr and the centering constant αr in (3.33)–(3.36) are calculated
by the R-function uniroot().

5.2.2 r/
√

n -Total Variation Balls (Model 3.4.2)

We evaluate the clipping constants gr and cr in (3.39)–(3.42) by the R-function
uniroot().

5.3 k -Dimensional Location (Model 3.7)

We compute the constants cr and αr in (3.66), (3.67) by using clipped absolute
moments of N (0, Ik) . Because of the boundedness and the arbitrary smoothness
of these moments, we can apply a two dimensional Newton method to calculate cr
and αr simultaneously (cf. Ruckdeschel (2001; Definition D.2.4, Lemma D.2.5, and
Korollar D.2.9).

5.4 Regression, Average (Square) Contamination

5.4.1 Average Contamination Neighborhoods (Model 3.11.1)

The determination of clipping bound cr in (3.113), (3.114) is performed by by the R-
function uniroot(), where the integration of the outer integral is done numerically
using the R-function integrate().

5.4.2 Average Square Contamination Neighborhoods (Model 3.11.2)

The procedures may be obtained from the one-dimensional location case.

5.5 Regression, Average (Square) Hellinger

5.5.1 Average Hellinger Neighborhoods (Model 3.12.1)

For K = Ufok(0,m) , in view of (3.124), (3.125), we have to find the zero of

ck+1
r − (1 + 8r2)(k + 1)cr + k (5.1)

to determine cr in the interval [0, 1] . Because of the boundedness of the above
expression (with r fixed in (0,∞) ) and differentiability in cr , we can do this
by a Newton method. In the normal case we can apply the routines from the
k -dimensional location model 3.7 by substituting r0 by r0/

√
8 and r by r/

√
8 .



44 H. Rieder, M. Kohl, P. Ruckdeschel

5.5.2 Average Square Hellinger Neighborhoods (Model 3.12.2)

Nothing to calculate.

5.6 Constant Conditional Neighborhoods (α = ∞)

5.6.1 Contamination Neighborhoods (Model 3.13.1)

We introduce the further parameter

τ :=
r2

2
E |x|cr(x) (5.2)

and determine cr(x) for fixed τ ∈
(
0, 1/

√
2π ) in case K = Ufok(0, 1) , respectively,

for fixed τ ∈
(
0,∞) in case K = N (0, Ik) , from the equation

2
τ

|x|
= E.(|u| − cr(x)) (5.3)

Then r may be easily calculated back from (5.2).
We use the R-function integrate(), which also performs the evaluation of cr(x) ,

where the computation of cr(x) is implemented as a vector valued function using
the R-function splinefun().

5.6.2 Hellinger Neighborhoods (Model 3.13.2)

Similar to the average Hellinger case we have to find the zero of

ck+1
r − (1 + 1

8r
2)(k + 1)cr + k (5.4)

on the interval [0, 1] , where r is fixed in (0,∞) . So this computation can again
be done by a Newton method.

Remark 5.1 In the case α = ∞ (model 3.13), for both contamination and Hellinger
neighborhoods, the MSE of ηr0 at r = 0 (ideal model) is unbounded as r0 →∞ .

In case K = N (0, σ2Ik) , the least favorable radius r0 cannot be determined
over the unrestricted interval [0,∞) , because relMSE (ηr0 , r) → ∞ as r → ∞ ,
for each r0 ∈ [0,∞) . This effect is connected with infimum bias 0 . Therefore,
we instead compute the least favorable radius r0 for the bounded interval [0, 2

√
k ]

(increasing with the dimension k ). ////

5.7 General Procedures

In all these models, we do the following three calculations:

(a) Given 1 < δ < Var(η∞) , we determine r ∈ (0,∞) such that Var(ηr) = δ .
(b) Given any ρ ∈ [0, 1) and r ∈ (0,∞) , we determine r0 ∈ [ ρr, r/ρ ] such as to
achieve relMSE(ηr0 , ρr) = relMSE(ηr0 , r/ρ) .

The algorithms in (a) and (b) use the R-function uniroot().
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(c) Then, given ρ ∈ [0, 1) , the minimax subefficiency over [ ρr, r/ρ ] is maximized
with respect to r ∈ (0,∞) . For reasons of monotonicity we may use the R-function
optimize(). For ρ = 0, 1

3 ,
1
2 , thus the least favorable radii r0 , r2 , and r3 are

obtained.

5.8 Plots

The complete collection of risk- and inefficiency-plots for the models considered in
this study may be looked at, using access name radius, password unknown, un-
der http://www.uni-bayreuth.de/departments/math/org/mathe7/radius and
downloaded. A small sample of the plots is attached at the end of this paper.



46 H. Rieder, M. Kohl, P. Ruckdeschel

6 Tabulated Inefficiencies And Least Fav. Radii

6.1 k -Dimensional Location

relMSE over r/
√
n -contamination neighborhoods (k ≥ 1) and, in case k = 1,

relVar over symmetric s -contamination neighborhoods, where s = r2
/
(1 + r2) .

k relMSE (η∞, 0) ρ = 0 ρ = 1
3 ρ = 1

2 r0 r3 r2
1 1.571 1.181 1.088 1.044 0.621 0.548 0.574
2 1.273 1.121 1.063 1.032 0.627 0.527 0.558
3 1.178 1.091 1.049 1.026 0.611 0.496 0.529
5 1.104 1.062 1.035 1.018 0.577 0.450 0.481
10 1.051 1.035 1.020 1.011 0.520 0.385 0.413
15 1.034 1.025 1.014 1.008 0.485 0.351 0.375

6.2 One-Dimensional Normal Scale

6.2.1 r/
√

n -Contamination Neighborhoods

relMSE (η∞, 0) ρ = 0 ρ = 1
3 ρ = 1

2 r0 r3 r2
2.721 1.505 1.208 1.099 0.499 0.485 0.557

6.2.2 r/
√

n -Total Variation Neighborhoods

relMSE (η∞, 0) ρ = 0 ρ = 1
3 ρ = 1

2 r0 r3 r2
1.850 1.254 1.115 1.056 0.265 0.237 0.249

6.3 One-Dimensional Exponential Scale

6.3.1 r/
√

n -Contamination Neighborhoods

relMSE (η∞, 0) ρ = 0 ρ = 1
3 ρ = 1

2 r0 r3 r2
2.081 1.381 1.167 1.082 0.495 0.417 0.438

6.3.2 r/
√

n -Total Variation Neighborhoods

relMSE (η∞, 0) ρ = 0 ρ = 1
3 ρ = 1

2 r0 r3 r2
1.718 1.222 1.104 1.051 0.285 0.252 0.265

6.4 One-Dimensional Location and Scale, Contamination

relMSE (η∞, 0) ρ = 0 ρ = 1
3 ρ = 1

2 r0 r3 r2
1.746 1.314 1.147 1.072 0.579 0.536 0.591
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6.5 Binomial Model

6.5.1 r/
√

n -Contamination Neighborhoods

n θ relMSE (η∞, 0) ρ = 0 ρ = 1
3 ρ = 1

2 r0 r3 r2
1 arbit. 1.000 1.000 1.000 1.000 arbit. arbit. arbit.

2 0.1 1.056 1.053 1.036 1.022 0.108 0.083 0.085
0.2 1.125 1.112 1.075 1.046 0.237 0.185 0.189
0.2934 1.207 1.174 1.116 1.070 0.381 0.303 0.309
0.5 1.000 1.000 1.000 1.000 arbit. arbit. arbit.

10 0.0674 1.393 1.280 1.157 1.096 0.496 0.421 0.438
0.2 1.212 1.143 1.081 1.051 0.455 0.381 0.417
0.3554 1.491 1.193 1.104 1.061 0.792 0.717 0.928
0.5 1.245 1.149 1.086 1.050 0.558 0.445 0.542

6.5.2 r/
√

n -Total Variation Neighborhoods

n θ relMSE (η∞, 0) ρ = 0 ρ = 1
3 ρ = 1

2 r0 r3 r2
1 arbit. 1.000 1.000 1.000 1.000 arbit. arbit. arbit.

2 0.1 1.056 1.052 1.036 1.022 0.098 0.077 0.078
0.2 1.125 1.105 1.072 1.045 0.193 0.158 0.161
0.2934 1.207 1.144 1.100 1.063 0.284 0.245 0.250
0.5 1.000 1.000 1.000 1.000 arbit. arbit. arbit.

10 0.0674 1.393 1.186 1.110 1.070 0.385 0.378 0.389
0.2 1.189 1.128 1.078 1.045 0.232 0.180 0.200
0.3554 1.491 1.191 1.102 1.059 0.391 0.359 0.462
0.5 1.245 1.149 1.086 1.050 0.279 0.222 0.271

6.6 Poisson Model

6.6.1 r/
√

n -Contamination Neighborhoods

λ relMSE (η∞, 0) ρ = 0 ρ = 1
3 ρ = 1

2 r0 r3 r2
0.1 1.052 1.049 1.032 1.020 0.071 0.055 0.056
0.5 1.297 1.227 1.130 1.080 0.368 0.310 0.317

0.693 4 1.443 1.302 1.164 1.099 0.517 0.417 0.468
1.0 1.222 1.160 1.088 1.050 0.372 0.252 0.278
1.5 1.355 1.183 1.089 1.052 0.617 0.504 0.677

1.6784 1.517 1.232 1.120 1.075 0.738 0.672 0.802
10.0 1.419 1.178 1.089 1.044 0.605 0.557 0.606
10.5 1.474 1.181 1.088 1.044 0.599 0.520 0.550

10.6694 1.563 1.186 1.088 1.045 0.620 0.501 0.533
∞ 1.571 1.181 1.088 1.044 0.621 0.548 0.574

4median not uniquely defined
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6.6.2 r/
√

n -Total Variation Neighborhoods

λ relMSE (η∞, 0) ρ = 0 ρ = 1
3 ρ = 1

2 r0 r3 r2
0.1 1.052 1.049 1.032 1.020 0.068 0.053 0.054
0.5 1.297 1.187 1.110 1.070 0.300 0.271 0.278

0.6935 1.443 1.188 1.106 1.068 0.404 0.383 0.429
1.0 1.136 1.098 1.058 1.035 0.215 0.167 0.196
1.5 1.468 1.211 1.122 1.070 0.363 0.325 0.383

1.6785 1.517 1.189 1.097 1.050 0.306 0.305 0.228
10.0 1.394 1.173 1.089 1.044 0.302 0.271 0.312
10.5 1.556 1.183 1.087 1.044 0.314 0.269 0.279

10.6695 1.563 1.182 1.088 1.045 0.316 0.283 0.299
∞ 1.571 1.181 1.088 1.044 0.311 0.274 0.287

6.7 Gamma Model, contamination

6.7.1 r/
√

n -Contamination Neighborhoods

σ α relMSE (η∞, 0) ρ = 0 ρ = 1
3 ρ = 1

2 r0 r3 r2
1 2 2.611 1.495 0.510

6.8 Regression, Average (Square) Contamination

6.8.1 Average Contamination Neighborhoods (∗ = c, α = 1)

K(dx) = Ufok(0, m)

k relMSE (η∞, 0) ρ = 0 ρ = 1
3 ρ = 1

2 r0 r3 r2
1 2.094 1.271 1.122 1.060 0.566 0.517 0.540
2 1.767 1.227 1.107 1.053 0.595 0.532 0.558
3 1.677 1.209 1.100 1.049 0.604 0.536 0.562
5 1.616 1.194 1.094 1.047 0.611 0.540 0.565
10 1.584 1.185 1.090 1.045 0.617 0.545 0.570
15 1.577 1.183 1.089 1.044 0.619 0.546 0.572

K(dx) = N (0, σ2Ik)

k relMSE (η∞, 0) ρ = 0 ρ = 1
3 ρ = 1

2 r0 r3 r2
1 2.467 1.347 1.146 1.070 0.515 0.474 0.496
2 2.000 1.287 1.127 1.062 0.555 0.499 0.525
3 1.851 1.258 1.117 1.057 0.569 0.506 0.534
5 1.735 1.231 1.107 1.053 0.583 0.514 0.542
10 1.651 1.207 1.098 1.049 0.598 0.526 0.553
15 1.624 1.199 1.095 1.047 0.605 0.532 0.558

5median not uniquely defined
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6.8.2 Average Square Contamination Neighborhoods (∗ = c, α = 2)

Same numbers as in one-dimensional location.

6.9 Regression, Average (Square) Hellinger

6.9.1 Average Hellinger Neighborhoods (∗ = h, α = 1)

K(dx) = Ufok(0, m)

k relMSE (η∞, 0) ρ = 0 ρ = 1
3 ρ = 1

2 r0 r3 r2
1 1.333 1.101 1.055 1.029 0.255 0.231 0.238
2 1.125 1.055 1.032 1.017 0.247 0.211 0.220
3 1.067 1.035 1.021 1.011 0.232 0.191 0.199
5 1.029 1.018 1.011 1.006 0.207 0.162 0.169
10 1.008 1.006 1.004 1.002 0.170 0.124 0.129
15 1.004 1.003 1.002 1.000 0.149 0.104 arbitrary

K(dx) = N (0, σ2Ik)
Same numbers as in k -dimensional location, but rρ = rk.loc

ρ /
√

8 .

k relMSE (η∞, 0) ρ = 0 ρ = 1
3 ρ = 1

2 r0 r3 r2
1 1.571 1.181 1.088 1.044 0.220 0.194 0.203
2 1.273 1.121 1.063 1.032 0.222 0.186 0.197
3 1.178 1.091 1.049 1.026 0.216 0.175 0.187
5 1.104 1.062 1.035 1.018 0.204 0.159 0.170
10 1.051 1.035 1.020 1.011 0.184 0.136 0.146
15 1.034 1.025 1.014 1.008 0.171 0.124 0.133

6.9.2 Average Square Hellinger Neighborhoods (∗ = h, α = 2)

relMSE ≡ 1 .

6.10 Constant Conditional Neighborhoods

6.10.1 Constant Contamination Neighborhoods (∗ = c, α = ∞)

K(dx) = Ufok(0, m)

k ρ = 0 ρ = 1
3 ρ = 1

2 r0 r3 r2
1 1.577 1.185 1.085 1.579 1.621 1.579
2 1.481 1.159 1.074 1.310 1.383 1.355
3 1.420 1.141 1.065 1.198 1.270 1.253
5 1.348 1.117 1.054 1.071 1.064 1.010
10 1.271 1.096 1.047 0.894 0.691 0.652
15 1.241 1.092 1.045 0.807 0.607 0.606
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K(dx) = N (0, σ2Ik)

k [0, 2
√
k ] ρ = 1

3 ρ = 1
2 r0 r3 r2

1 1.224 1.343 1.144 0.790 4.805 4.254
2 1.320 1.323 1.137 0.923 3.895 3.463
3 1.367 1.307 1.131 0.994 3.604 3.164
5 1.409 1.281 1.121 1.075 3.410 2.982
10 1.428 1.240 1.104 1.164 3.434 2.990
15 1.421 1.214 1.094 1.200 3.533 3.093

6.10.2 Constant Hellinger Neighborhoods (∗ = h, α = ∞)

K(dx) = Ufok(0, m)

k ρ = 0 ρ = 1
3 ρ = 1

2 r0 r3 r2
1 1.378 1.144 1.068 0.839 0.924 0.862
2 1.300 1.120 1.058 0.737 0.857 0.793
3 1.250 1.102 1.050 0.713 0.866 0.797
5 1.189 1.080 1.039 0.715 0.924 0.848
10 1.120 1.051 1.026 0.768 1.091 1.004
15 1.088 1.038 1.019 0.822 1.240 1.147

K(dx) = N (0, σ2Ik)

k [0, 2
√
k ] ρ = 1

3 ρ = 1
2 r0 r3 r2

1 1.312 1.332 1.140 0.672 2.198 1.938
2 1.427 1.313 1.133 0.720 1.784 1.559
3 1.474 1.297 1.127 0.743 1.636 1.420
5 1.505 1.273 1.118 0.772 1.530 1.317
10 1.497 1.233 1.102 0.813 1.499 1.277
15 1.472 1.208 1.092 0.841 1.528 1.296

6.11 ARMA(1,1), Average (Square) Contamination

6.11.1 Average Contamination Neighborhoods (∗ = c, α = 1)

φ = −0.7, ξ = 0.35 :

relMSE (η∞, 0) ρ = 0 ρ = 1
3 ρ = 1

2 r0 r3 r2
2.163 1.314 1.136 1.065 0.541 0.494 0.520

6.11.2 Average Square Contamination Neighborhoods (∗ = c, α = 2)

Same numbers as one-dimensional location independent from φ and ξ .
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6.12 ARCH(1), Average (Square) Contamination

6.12.1 Average Contamination Neighborhoods (∗ = c, α = 1)

θ = 1

relMSE (η∞, 0) ρ = 0 ρ = 1
3 ρ = 1

2 r0 r3 r2
3.8476 1.5837 1.2308 1.1178 0.4247 0.3818 0.4058

6.12.2 Average Square Contamination Neighborhoods (∗ = c, α = 2)

Same numbers as one-dimensional scale (contamination neighborhoods).

6.13 ARCH(1), Average (Square) Total Variation

6.13.1 Average Total Variation Neighborhoods (∗ = v, α = 1)

θ = 1

relMSE (η∞, 0) ρ = 0 ρ = 1
3 ρ = 1

2 r0 r3 r2
2.6169 1.3329 1.14010 1.06710 0.2359 0.21510 0.22510

6.13.2 Average Square Total Variation Neighborhoods (∗ = v, α = 2)

Same numbers as one-dimensional scale (total variation neighborhoods).

7mean of 100 Monte Carlo simulations, standard error < 0.0005
8mean of 10 Monte Carlo simulations, standard error < 0.0007
9mean of 100 Monte Carlo simulations, standard error < 0.0005

10mean of 10 Monte Carlo simulations, standard error < 0.0007
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