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Abstract We consider estimation of a one-dim. location parameter by means of M-
estimators S n with monotone influence curve ψ. For growing sample size n, on suit-
ably thinned out convex contamination balls Q̃n of shrinking radius r/

√
n about the

ideal distribution, we obtain an expansion of the asymptotic maximal mean squared
error MSE of form

max
Qn∈Q̃n

n MSE(S n,Qn) = r2 supψ2 + Eidψ
2 + r

√
n A1 + 1

n A2 + o( 1
n ),

where A1, A2 are constants depending on ψ and r. Hence S n not only is uniformly
(square) integrable in n (in the ideal model) but also on Q̃n, which is not self-evident.
For this result, the thinning of the neighborhoods, by a breakdown-driven, sample-
wise restriction, is crucial, but exponentially negligible. Moreover, our results essen-
tially characterize contaminations generating maximal MSE up to o(n−1). Our results
are confirmed empirically by simulations as well as numerical evaluations of the risk.

Keywords higher order asymptotics · location M-estimator · uniform integrability ·
Edgeworth expansion · gross error neighborhood · shrinking neighborhood ·
breakdown point
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1 Motivation/introduction

In the setup of shrinking neighborhoods about a general, parametric ideal central
model, Rieder [22] determines the asymptotically linear estimator (ALE) minimax-
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ing as.. MSE on these neighborhoods. We address the question to which degree this
asymptotic optimality carries over to finite sample size and try to identify and quan-
tify which aspects of both estimator and neighborhood are responsible for the quality
of the approximation.

1.1 Setup: one-dimensional location

As a starting point for assessing such questions we consider the most basic parametric
model of statistics, the one-dimensional location model {Pθ(dx) = F(dx − θ), θ ∈ R}
for some ideal distribution F with finite Fisher-Information of location I(F) in the
sense of Huber [14, 4.Def.4.1, Thm.4.2], i.e. I(F) := supϕ∈C1

c
(
∫
ϕ̇ dF)2/(

∫
ϕ2 dF),

entailing that Λ f = − ḟ / f ∈ L2(F), I(F) = E[Λ2
f ]. Paralleling Huber [13], we also

assume that Λ f is increasing. By translation equivariance, we may restrict ourselves
to θ0 = 0 which is suppressed in the notation.

The set of influence curves (IC’s) Ψ in this model is defined as in Rieder [22]

Ψ := {ψ ∈ L2(F) | E[ψ] = 0, E[ψΛ f ] = 1}, (1.1)

where both expectations are evaluated under F.

Shrinking neighborhoods Robust Statistics enlarges the ideal model assumptions by
suitable neighborhoods about them. The shrinking neighborhood approach—compare
e.g. Rieder [22], Kohl et al. [17], balances bias and variance, which would be of dif-
ferent scaling in n otherwise, see also Ruckdeschel [24]. For this paper we consider
contamination neighborhoods, i.e. the set Qn(r) of distributions

Lreal
θ (X1, . . . , Xn) = Qn =

n⊗
i=1

[(1 − rn√
n )F + rn√

n Pdi
n,i] (1.2)

with rn = min(r,
√

n), r > 0 the contamination radius and Pdi
n,i ∈ M1(B) arbitrary, un-

controllable contaminating distributions. As usual, we interpret Qn as the distribution
of the vector (Xi)i≤n with components

Xi := (1 − Ui)X id
i + UiXdi

i , i = 1, . . . , n (1.3)

for X id
i , Ui, Xdi

i stochastically independent, X id
i

i.i.d.
∼ F, Ui

i.i.d.
∼ Bin(1, r/

√
n), and (Xdi

i ) ∼
Pdi

n for some arbitrary Pdi
n ∈ M1(Bn).

First order optimality For a sequence of estimators S n, consider as risk the asymp-
totically (modified) maximal MSE on Qn

R̃(S n, r) := lim
t→∞

lim
n→∞

sup
Qn∈Qn(r)

∫
min{t, n |S n − θ0|

2} dQn (1.4)

Following Rieder [22, Ch. 5] a (suitably constructed) ALE S n with IC ψ has risk

R̃(S n, r) = r2 sup |ψ|2 + Eid |ψ|
2 (1.5)
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By Theorem 5.5.7 (ibid.), together with its preceding remarks, for given r ≥ 0, a
(suitably constructed) ALE with IC η̂ minimizes R̃( · , r) among all ALE’s iff η̂ = ηc0

for Lagrange multipliers z and A such that ηc0 is an IC for

ηc0 = A(Λ f − z) min{1, c0/|Λ f − z|}, E[(|Λ f − z| − c0)+] = r2c0 (1.6)

Open issues in this setup Being bound to first order asymptotics, so far these results
do not come along with an indication for the speed of the convergence; it is not clear
to what degree radius r, sample size n and clipping height b affect this approximation.
The theorem only characterizes the optimal expansion in terms of ICs.

Finally, modification (1.4) of the MSE, which is common in asymptotic statistics,
cf. Le Cam [18], Rieder [22], Bickel et al. [4], van der Vaart [31], and which forces
the integrals to converge under weak convergence, has no statistical justification. One
would perhaps prefer a modification that is statistically motivated.

1.2 M-estimators for location

There are several constructions for an ALE to achieve a given IC ψ—one-step con-
structions, M-estimators, L-estimators and many more. In this paper we confine our-
selves to M-estimators. We require ψ to be monotone and bounded and write ψt( · )
for ψ( · − t). For technical reasons we assume that the set Dt of discontinuities of the
c.d.f. of ψt(X id) has to carry less mass than 1 uniformly:

pD := supt Pid(Dt) < 1 (1.7)

Following the notation in Huber [14, pp. 46], let

S ∗n := sup
{

t |
∑
i≤n

ψt(xi) > 0
}
, S ∗∗n := inf

{
t |

∑
i≤n

ψt(xi) < 0
}

(1.8)

and S n be any estimator satisfying S ∗n ≤ S n ≤ S ∗∗n . By monotonicity of ψ, we get

Pr{S ∗n < t} = Pr
{∑

i≤n

ψt(xi) ≤ 0
}
, Pr{S ∗∗n < t} = Pr

{∑
i≤n

ψt(xi) < 0
}

(1.9)

in the continuity points t of the LHS. The next lemma, an immediate consequence
of Hall [10, Theorem 2.3], shows that we may ignore the event S ∗n , S ∗∗n if we are
interested in statements valid up to o(1/n).

Lemma 1.1 Under (1.7), Pr(S ∗n , S ∗∗n ) = O(exp(−γn)) for some γ > 0.

Remark 1.2 If
⋃

t Dt = {±c} for some c > 0, Pr(S ∗n , S ∗∗n ) = 0 for n odd.
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1.3 Organization of this paper and description of the results

This paper provides answers to some of the open questions mentioned in subsec-
tion 1.1; these answers were initiated by an attempt to check the validity of Rieder’s
asymptotic approach at finite sample sizes by simulations in 2003. At closer inspec-
tion of these simulations, M. Kohl found out that larger inaccuracies of (first order)
asymptotics only occurred in extraneous sample situations where more than half the
sample size stemmed from a contamination, which made him conjecture that exclud-
ing such samples, asymptotics might then prove useful even for very small samples.
With regard to our shrinking setup, such an exclusion on the one hand is asymptoti-
cally negligible, hence does not affect the results of subsection 1.1, but on the other
hand under this restriction indeed the unmodified MSE converges along with weak
convergence. We discuss this modification in section 2. In section 3, we present the
central theoretical result, Theorem 3.5. This result is of the following form

sup
Qn∈Q̃n(r;ε0)

n MSE(Sn,Qn) = r2 sup |ψ|2 + Eψ2 + r
√

n
A1 +

1
n A2 + o( 1

n) (1.10)

Here S n is an M-estimator to IC ψ, and A1, A2 are polynomials in the contamination
radius r, in b = sup |ψ|, and in the moment functions t 7→ Eψl

t, l = 1, . . . , 4 and their
derivatives evaluated in t = 0. We recognize at once that the speed of the convergence
to the first order asymptotic value is one order faster in the ideal model.

Notation 1.3 For indices we start counting with 0, so that terms of first-order asymptotics have an
index 0, second-order ones a 1 and so on. Also we abbreviate first-order, second-order and third-order by f-
o, s-o, t-o respectively, and we write f-o-o, s-o-o, and t-o-o for first, second, and third-order asymptotically
optimal respectively.

As to the correctness of our main result, we give a number of cross checks and com-
ments on this result in section 4. The relevance of these results for (small) finite
sample sizes is shown by a simulation study which is presented in section 5 as to its
design and results. By means of an adopted convolution algorithm taken from Ruck-
deschel and Kohl [27], we also compute numerically exact values of the MSE. Proofs
are delegated to the appendix section A. These contain rather tedious Taylor expan-
sions where we need the help of a symbolic Algebra program like MAPLE. To ease
readability, we therefore start the proof of the main theorem with an outline of the es-
sential steps. Some auxiliary results needed in the proofs are provided in an appendix
in section B.

On a web-page to this page, additional tables and figures, the MAPLE script to
generate the expansions, and the R-script to calculate numerically exact MSE are
available for download.

2 Modification of the shrinking neighborhood setup

The key property in the shrinking-neighborhood setup is the LAN-property1 in the
sense of Hájek and LeCam. LAN holds for L2-differentiable models, cf. Rieder [22,
Thm. 2.3.5]. and together with LeCam’s third Lemma—cf. Cor. 2.2.6 ibid.—implies

1 for local asymptotic normality
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uniform weak convergence of any (suitably constructed) ALE to a bounded IC on a
representative subclass of the system of neighboring distributions Qn—those distri-
butions induced by simple perturbations Qn(ζ, t), see p. 126 (ibid.).
Without additional assumptions, this weak convergence however does not carry over
to convergence of the risk for an unbounded loss function in general, i.e. uniform
integrability fails on any proper neighborhoods shrinking arbitrarily fast; which can
be seen along the lines of Ruckdeschel [25, Prop. 2.1].

Modification of the shrinking neighborhood setup We instead propose the following
modification of the neighborhoods for finite n: Only realizations of U1, . . . ,Un are
permitted, where

∑
Ui < n/2. More precisely, accounting for non-symmetric ψ, we

introduce

b̌ := inf ψ, b̂ = supψ, b̄ := 1
2 (b̂ − b̌), δ0 := |b̌+b̂|

min((−b̌),b̂)
≥ 0 (2.1)

and recall that in our situation, both the functional (Huber [14, (2.39),(2.40)]) and
the finite sample (ε-contamination) breakdown point (Donoho and Huber [6, section
2.2]) of T respectively S n are

ε0 = 1/(2 + δ0) = sup |ψ|/(b̂ − b̌) (2.2)

With these expressions, our modification amounts to considering the neighborhood
system Q̃n(r; ε0) of conditional distributions

Qn = L
{
[(1 − Ui)X id

i + UiXdi
i ]i

∣∣∣∣ ∑ Ui ≤ pε0n q − 1
}

(2.3)

This restriction hence combines a restriction to the marginals L(Xreal
i ) which are

“close” to L(X id
i ) for each i as well as a sample-wise restriction.

Correspondingly, we will consider the asymptotics of the unmodified MSE risk

Rn(S n, r; ε0) := sup
Qn∈Q̃n(r;ε0)

n
∫
|S n − θ0|

2 dQn (2.4)

Asymptotic negligibility of this modification The effect of this modification is negli-
gible asymptotically: By the Hoeffding bound (B.1),

P(
∑

Ui ≥ nε0) ≤ exp
(
− 2n(ε0 − r/

√
n )2

)
(2.5)

which decays exponentially fast. Thus all results on convergence in law of the shrink-
ing neighborhood setup are not affected when passing from Qn(r) to Q̃n(r; ε0).

Remark 2.1 (a) Thinning out the neighborhoods is equally relevant for the interchange of integra-
tion and maximization in the context of neighborhoods to a fixed radius ε: Replacing r/

√
n by ε, asymptotic

negligibility (2.5) continues to hold, as long as ε < ε0, while the failure of uniform integrability persists.
(b) M-estimators have the well-known feature that in general the procedure with optimal efficiency

[minimax MSE in our context] does not attain maximal breakdown point [works with minimally thinned
out neighborhoods]; but just as already mentioned in Rousseeuw [23] and similarly as worked out in Yohai
[32], both goals may be achieved simultaneously combining a starting M-estimator of maximal breakdown
point with a correction by a one-/k-step construction with the f-o-o (or s-o-o, t-o-o) IC.
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3 Main Theorem

Notation To ψ : R → R monotone let ψt(x) := ψ(x − t) and ψ0
t := ψt − Eψt define

the following functions

L(t) = Eψt, V(t)2 = E(ψ0
t )2, ρ(t) = E(ψ0

t )3V(t)−3, κ(t) = E(ψ0
t )4V(t)−4 − 3 (3.1)

Let y̌n and ŷn sequences in R such that for some γ > 1

ψ(y̌n) = inf ψ + o( 1
nγ ), ψ(ŷn) = supψ + o( 1

nγ ) (3.2)

For H ∈ M1(Bn) and an ordered set of indices I = (1 ≤ i1 < . . . < ik ≤ n) denote HI

the marginal of H with respect to I.

Definition 3.1 Consider sequences cn, dn, and κn in R, in (0,∞), and in {1, . . . , n},
respectively. We say that (H(n)) ⊂ M1(Bn) is κn–concentrated left [right] of cn up to
o(dn), if for each sequence of ordered sets In of cardinality in ≤ κn

1 − H(n)
In

(
(−∞; cn]in) = o(dn)

[
1 − H(n)

In

(
(cn,∞)in) = o(dn)

]
(3.3)

General assumptions in this paper

(bmi) sup ‖ψ‖ = b < ∞, ψ monotone, ψ ∈ Ψ
(D) For some δ ∈ (0, 1], L, V , ρ, and κ from (3.1) allow the expansions

L(t) = l1t + 1
2 l2 t2 + 1

6 l3 t3 + O(t3+δ), V(t) = v0(1 + ṽ1 t + 1
2 ṽ2 t2) + O(t2+δ) (3.4)

ρ(t) = ρ0 + ρ1 t + O(t1+δ), κ(t) = κ0 + O(tδ) (3.5)

(Vb) V(t) = O(|t|−(1+δ)) for |t| → ∞ and some δ ∈ (0, 1]
(C) Let ft be the characteristic function of ψt(X id); then

lim
t0→0

lim sup
s→∞

sup
|t|≤t0
| ft(s)| < 1 (3.6)

Condition (C) is a local uniform Cramér condition; it is implied by

Lemma 3.2 Assume L(ψ(X id)) has a nontrivial absolute continuous part and that ψ
is continuous. Then (C) is fulfilled.

Remark 3.3 (a) By condition (bmi) —as ψ ∈ Ψ—, l1 = −1.
(b) Condition (C) is not fulfilled for the median, as its influence curve just takes the values −b, b F-a.e.

A direct proof for an analogue to Theorem 3.5 is possible, however, and given in Ruckdeschel [25].
(c) For an expansion of the MSE up to o(n−1/2), the κ part of assumption (3.5) can be dropped, and

we may use assumptions
(D’) For some δ ∈ (0, 1], L, V , and ρ allow the expansions

L(t) = l1t + l2/2 t2 + O(t2+δ), V(t) = v0(1 + ṽ1 t) + O(t1+δ), ρ(t) = ρ0 + O(tδ) (3.7)

(C’) There exist t0 > 0, s0 > 0 such that for all s1 > s0

f̂s0 ,t0 (s1) := sup
s0≤s≤s1

sup
|t|≤t0
| ft(s)| < 1 (3.8)

Note that (C) implies (C’), but contrary to (C), in (C’) the case sups1
f̂s0 ,t0 (s1) = 1 for all s0 > 0 and all

t0 > 0 is allowed.
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Illustration We specialize the assumptions for F = N(0, 1), i.e. Λ f (x) = x, and
ψ(x) = η̂c(x) = Acx min{1, c/|x|} from (1.6) with Ac such that η̂c ∈ Ψ :

Proposition 3.4 For F = N(0, 1) and for ψ = ηc an influence curve to c ∈ (0,∞) of
Hampel-form ηc = Ac(x min{1, c/|x|} with Ac = (2Φ(c) − 1)−1, assumptions (bmi) to
(C) are in force; in particular the bounds in (Lb) and (Vb) are even exponential.
With Φ(x) the c.d.f. of N(0, 1) and ϕ(x) its density, we obtain l2 = 0, ṽ1 = 0, ρ0 = 0.
For c ∈ (0,∞), we get

l3 =
2cϕ(c)

(2Φ(c) − 1)
, v2

0 = 2b2(1 −Φ(c)) + Ac(1 − 2bϕ(c)), ṽ2 =
6Φ(c) − 4Φ(c)2 − 2 − 2cϕ(c)

2c2(1 −Φ(c)) + 2Φ(c) − 1 − 2cϕ(c)

ρ1 =
3A3

c (1 − 2Φ(c) + 2cϕ(c))

v3
0

+ 3v−1
0 , κ0 =

2c4 (1 −Φ(c)) − 2c(c2 + 3)ϕ(c) + 3(2Φ(c) − 1)
[2c2 (1 −Φ(c)) + 2Φ(c) − 1 − 2cϕ(c)]2 − 3

For c ↓ 0, l3 = 1, v2
0 = π

2 , ṽ2 = − 2
π
, ρ1 = 2

√
2
π
, κ0 = −2, and formally, for c ↑ ∞,

l3 = 0, v0 = 1, ṽ2 = 0, ρ1 = 0, κ0 = 0.

Theorem 3.5 (Main Theorem) In our one-dim. location model assume (bmi) to (C)
(a) the maximal MSE of the M-estimator S n to scores-function ψ expands to

Rn(S n, r, ε0) = r2b2 + v0
2 + r

√
n A1 + 1

n A2 + o(n−1) (3.9)

with

A1 = v0
2
(
± (4 ṽ1 + 3 l2 )b + 1

)
+ b2 + [2 b2 ± l2 b3 ] r2 (3.10)

A2 = v0
3
(
(l2 + 2 ṽ1 )ρ0 + 2

3 ρ1

)
+ v0

4 (3 ṽ2 + 15
4 l22 + l3 + 9 ṽ2

1 + 12 ṽ1 l2 ) +

+[ v0
2
(
(3 ṽ2 + 3 ṽ2

1 + 15
2 l22 + 2 l3 + 12 ṽ1 l2 )b2 + 1 ± (8 ṽ1 + 6 l2 ) b

)
+

± 3 l2 b3 + 5 b2 ] r2 +
(
( 5

4 l22 + 1
3 l3 )b4 ± 3 l2 b3 + 3 b2

)
r4 (3.11)

and we are in the − [+]-case depending on whether (3.12) or (3.13) below applies.
(b) let Pdi

n :=
⊗n

i=1 Pdi
n,i be contaminating measures for (1.2). Then Qn with Pdi

n
as contaminating measures generates maximal risk in (3.9) if for k1 > 1 and k2 >
2 ∨ ( 3

2 + 3
2δ ) with δ from (Vb) and K1(n) = pk1r

√
nq either

(Pdi
n) is K1(n)–concentrated left of y̌n − b

√
k2 log(n)/n up to o(n−1) (3.12)

or

(Pdi
n) is K1(n)–concentrated right of ŷn + b

√
k2 log(n)/n up to o(n−1) (3.13)

More precisely, if supψ < [>] − inf ψ, the maximal MSE is achieved by contami-
nations according to (3.12) [(3.13)]. In case supψ = − inf ψ, (3.12) [(3.13)] applies
if

ṽ1 > [<] − l2
4

(
b2

v2
0
(r2 + 3)(1 + r

√
n −

2r2

n ) + 3(1 − b2

v2
0
)
)

(3.14)

If supψ = − inf ψ and there is “=” in (3.14), (3.12) and (3.13) generate the same risk
up to order o(n−1).
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Remark 3.6 (a) A sufficient condition for (3.12)/(3.13) is that Pdi
n is concentrated strictly right

[left] of ŷn + b
√

2 log(n)/n [y̌n − b
√

2 log(n)/n ].
(b) An almost necessary condition for (3.12)/(3.13) to achieve maximal risk is that Pdi

n is concentrated
strictly right [left] of ŷn − b

√
2 log(n)/n [y̌n + b

√
2 log(n)/n ].

(c) Curiously, although being of corresponding order, no ρ0 [κ0]-term shows up in the correction term
A1 [A2], which is probably due to the special loss function.

(d) As announced, for r = 0, the approximation is one order faster than under contamination.
(e) The maximal MSE on Q̃n is always underestimated by f-o asymptotics, as maximality always

forces A1 to be non-negative.
(f) Let Q0

n be any distribution in Q̃n attaining maximal risk in Theorem 3.5. Under symmetry or more
specifically if l2 = v1 = ρ0 = 0, (3.9) becomes

n EQ0
n
[S 2

n ] =
(
r2b2 + v0

2
) (

1 + r√
n

)
+ r√

n

(
b2(1 + r2)

)
+ O(n−1) (3.15)

(g) Relevance for the fixed neighborhood approach: If you consider the fixed neighborhood ap-
proach (of radius ε) and formally plug in r = ε

√
n into (3.9), you obtain the following approximation for

the unstandardized maximal MSE on the thinned out (fixed-radius) neighborhood:

MSE(S n, ε, ε0) = ε2b2 + ε3 [2 b2 ± l2 b3 ] + ε4
(
( 5

4 l22 + 1
3 l3 )b4 ± 3 l2 b3 + 3 b2

)
+

+
1
n

v2
0 +

ε

n

[
v0

2
(
± (4 ṽ1 + 3 l2 )b + 1

)
+ b2

]
+
ε2

n

[
5 b2 ± 3 l2 b3 +

+v0
2
(
(3ṽ2 + 3ṽ2

1 + 15
2 l22 + 2l3 + 12ṽ1l2)b2 + 1 ± (8ṽ1 + 6l2) b

) ]
+ Rn (3.16)

for some remainder Rn the order of which however is uncertain; it should be valid for small ε, and is at
least of order O(1/n2) + O(ε5). These terms once more show that for the fixed-neighborhood approach,
already for moderate sample sizes, bias becomes dominant, i.e.; in our case, we end up with the median as
optimal procedure.

3.1 Cross-checks

3.1.1 Check with results by Fraiman et al.

In the symmetric case, the first cross check comes with the asymptotic formula for
variance asVar(ψ) and (maximal) bias B(ψ) := asBias(ψ) as to be found in Fraiman
et al. [8], where we have to identify ε = r/

√
n. Here, asBias(ψ)/

√
n is defined as zero

β of β 7→ (1−ε)
∫
ψβ dF +εb, and asVar(ψ) := V1/V2

2 for V1 = (1−ε)
∫
ψ2

B(ψ) dF +εb2

and V2 = (1 − ε)
∫
ψ̇B(ψ) dF. Assuming that

∫
ψ̇B(ψ) dF = L′(B(ψ)) and using that∫

ψB(ψ) dF = −B(ψ) + o(B2)),
∫
ψ2

B(ψ) dF = V(B(ψ))2 + L(B(ψ))2 = v2
0(1 + o(B)),

L′(B(ψ))2 = −1 + o(B), we get that

asBias(ψ) =
√

n bε(1 + ε + o(ε)) = rb(1 + r
√

n + o(n−1/2)) (3.17)

asVar(ψ) = (1 + ε)v2
0 + εb + o(ε) = v2

0 + r
√

n (v2
0 + b) + o(n−1/2) (3.18)

and hence —in accordance with formula (3.9)—

asMSE(ψ) = (v2
0 + r2b2)(1 + r

√
n ) + r

√
n b2(1 + r2) + o(n−1/2) (3.19)
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3.1.2 Check with higher order asymptotics for the median

The second check comes with the higher asymptotics for the median from Ruckde-
schel [25]. In a first step, we assume that with f0 > 0 and some δ ∈ (0, 1],

f (t) = f0 + f1t + O(t1+δ) (3.20)

As for the median, ψMed = sign(x)/(2 f0), we have v0 = b = 1
2 f0

and ε0 = 1/2.
For the moment we ignore the fact, that conditions (C)/(C’) are not fulfilled. Easy
calculations give l2 = − f1/ f0, ṽ1 = 0, ρ0 = 0, so that with our formula (3.9) we
obtain for odd sample size n

Rn(ψMedn , r,
1
2 )=

1
4 f 2

0

(
(1 + r2)

[
1 + 2r

√
n

]
− r
√

n
f1

2 f 2
0

(r2 + 3)
)

+ o(n−1/2) (3.21)

in complete agreement with Ruckdeschel [25]. As a next step we compare this to
t-o asymptotics to be obtained by (3.9)—again ignoring condition (C). We get l3 =

− f2/ f0, ṽ2 = −4 f 2
0 , ρ1 = 4 f0, and hence for odd sample size n, after some reordering

Rn(ψMedn , r,
1
2 ) ?

= o( 1
n ) + 1

4 f 2
0

{
(1 + r2) + r

√
n

(
2(1 + r2) + r2+3

2
| f1 |
f 2
0

)
+

+ 1
n

(
4
3 − 3 + 3r2 + 3r4 +

3r2(3+r2)
2

| f1 |
f 2
0
− 3+6r2+r4

12
f2
f 3
0

+
5(3+6r2+r4)

16
f 2
1

f 4
0

)}
(3.22)

and it is just the framed term 4
3 , which is coming in as 2

3ρ1v0 from (3.11), which causes
a difference to the result of Ruckdeschel [25], where we get the value 1 instead.
This discrepancy, however, is in fact due to the failure of condition (C), because
Theorem B.2, which we need to prove (3.9), is not available in this case.

4 Relations to other approaches

Of course the idea of assessing the quality / speed of convergence of CLT-type argu-
ments by means of higher order asymptotics is common in Mathematical Statistics,
cf. among others Ibragimov and Linnik [16], Bhattacharya and Rao [3], Pfanzagl
[20], Hall [10], Barndorff-Nielsen and Cox [2] and Taniguchi and Kakizawa [30].
Asymptotic expansions of the moments of statistical estimators —like MSE in our
case— have already been studied by Gusev [9] and Pfaff [19]; both approaches, how-
ever, only consider the ideal model, and work with pointwise expansions of the like-
lihood.
Also the idea to improve convergence by means of saddlepoint techniques and con-
jugate densities, respectively, has been a large success in this context, cf. Daniels [5],
Hampel [11], Field and Ronchetti [7].
Our approach is simpler in the sense that instead of approximating the c.d.f. or the
density of our procedures on the whole range of arguments, we directly approxi-
mate our risk. Doing so, we do not run into problems of bad approximations in the
tails of a distribution, because all that is interesting for our risk will occur within
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a (decreasing) compact; using saddlepoint techniques, we would have to solve the
saddlepoint-equation for a grid of evaluation points ti to get an accurate estimate for
the density which makes the corresponding solution less explicite than ours.
Even more important, note that a highly accurate approximation of the distribution
of the M-estimator would not suffice to enforce uniform convergence of the MSE,
which was the reason for our modification of the neighborhoods (2.3). Also, contrary
to “usual” small sample asymptotics, by our approach no particular contamination
has to be assumed right from the beginning but we rather identify a least favorable
one within the proof.

In the setup of saddlepoint-approximations, one would apply Field and Ronchetti
[7, Theorem 4.3] which at least covers the Hampel-type solutions. The pointwise
formulation of assumption A4.2 therein, i.e.; there exists an open subset U ⊂ R, such
that (i) for each θ ∈ R, F(U − θ) = 1 and (ii) Dψ, D2ψ, D3ψ exist on U, seems
problematic, however, as it allows for pathological ψ-functions defined similar to
the Cantor distribution function (while F may be something like N(0, 1)), for which
the interchange of differentiation and integration becomes awkward. As may be read
off from (3.9), in the ideal model, as for the saddlepoint approach, we, too, get an
expansion of order 1/n, a fact, which is not due to symmetry of Λ and/or ψ! So in fact
we get the same approximation quality as with the saddlepoint approach —indeed, by
the Taylor-expansion step in section A.3, we extract an argument to be expanded from
the exponential, which also is an idea behind the saddlepoint approximation, cf. Field
and Ronchetti [7, p. 26]. On the other hand, even in the restricted neighborhoods of
(2.3), it is not clear to the present author, if in general, the saddlepoint approximation
holds uniformly in t, so it is not clear, whether an improved approximation for the
density will result in a better approximation of the risk. A detailed empirical and
numerical investigation of such questions is contained in Ruckdeschel and Kohl [26].

5 A simulation study and numerical evaluations

Before starting with the theoretical findings we summarize the results of a simulation
study that actually lead us to the closer examination of the higher order expansions
of the MSE.

5.1 Simulation design

Under R 2.11.0, cf. R Development Core Team [21], we simulated M = 10000 runs
of sample size n = 5, 10, 30, 50, 100 in the ideal location model P = N(θ, 1) at θ = 0.
In a contaminated situation, we used observations stemming from

Qn = L{[(1 − Ui)X id
i + UiXdi

i ]i

∣∣∣∣ ∑ Ui ≤ pn/2q − 1 } (5.1)

for Ui
i.i.d.
∼ Bin(1, r/

√
n), X id

i
i.i.d.
∼ N(0, 1), Xdi

i
i.i.d.
∼ I{100} all stochastically independent and

for contamination radii r = 0.1, 0.25, 0.5, 1.0.
As estimators we considered the median (with the mid-point variant for even sample
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size), and M-estimators to Hampel-type ICs ηc of form (1.6) with clipping heights c =

0.5, 0.7, 1, 1.5, 2 and c0(r), the f-o-o clipping height according to (1.6). All empirical
MSE’s come with asymptotic 95%–confidence intervals, which are based on the CLT
for the variables

empMSEn = n
10000

∑
j[S n(sample j)]

2 (5.2)
Note that with respect to (3.12)/(3.13), and the considered estimators, a contamina-
tion point 100 will largely suffice to attain the maximal MSE on Q̃n.

5.2 Numerical evaluations

By means of relations (1.9) we may reduce the problem of finding the exact distri-
bution of our M-estimators to the calculation of the “exact” distribution of

∑
i ψ(Xi).

For this purpose, we may apply the general convolution algorithm for arbitrarily dis-
tributed real-valued random variables introduced in Ruckdeschel and Kohl [27]. This
algorithm is based on FFT resp. discrete Fourier Transformation (DFT) and is im-
plemented in R within the package distr available on CRAN, see Ruckdeschel et al.
[28], Ruckdeschel et al. [29].
In Ruckdeschel and Kohl [26], to increase accuracy for M-estimators to Hampel IC’s,
we extend our algorithm from distr to (a) better cope with mass points in ±b and
(b) to calculate the “exact” finite-sample maximum MSE on Q̃n.

Here we confine ourselves to attach extra columns “numeric” to the following
tables summarizing our simulation. “numeric” will then stand for application of Al-
gorithm C respectively Algorithm D from Ruckdeschel and Kohl [26].
More specifically, for “exact” terms, as worked out in Algorithm C (ibid.), we have
to take into account that after conditioning w.r.t. the event that the number of con-
taminations K in the sample is less than half the sample size, the switching variables
Ui from (1.3) no longer are independent. So we may only apply the FFT-based Al-
gorithm from Ruckdeschel and Kohl [26] to an absolutely continuous inner part and
have to calculate the rest by explicitly summing up the events—for details see the
cited reference and the R-program available on the web-page to this article.

On the other side, Algorithm D uses the fact that by the exponential negligibility
shown in subsection 2, the dependency of the Ui may be ignored for n sufficiently
large—in our case this was possible for n ≥ 30, moderate radius r and robust clip-
ping height c. Then, we simply may determine the corresponding convolutions of the
corresponding distributions of the summands directly by Algorithm 4.4 from Ruck-
deschel and Kohl [27].
To demonstrate the negligibility, for n ≤ 30, we calculate both “exact” terms (Algo-
rtihm C) and those obtained by superposition of the a.c. part and the random walk,
ignoring all mass points of the law of the sum (Algortihm D).

5.3 Results

A more detailed account of the results of the simulation study in tables may be found
at the web-page to this article. Here we only present some few results which led to
the subsequent investigation.
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Table 1 emp., num., and as. MSE at r = 0.1, c = 0.7

n/ simulation numeric asymptotics
situation S̄ n [low; up] Algo C Algo D n0 n−1/2 n−1

id 1.147 [ 1.114 ;1.179 ] 1.172 1.168 1.187 1.187 1.1695
cont 1.403 [ 1.359 ;1.447 ] 1.434 1.535 1.205 1.342 1.345

id 1.179 [ 1.139 ;1.205 ] 1.177 1.174 1.187 1.187 1.17810
cont 1.331 [ 1.292 ;1.369 ] 1.327 1.326 1.205 1.302 1.303

id 1.209 [ 1.175 ;1.242 ] 1.183 1.180 1.187 1.187 1.18430
cont 1.301 [ 1.264 ;1.337 ] 1.265 1.262 1.205 1.261 1.261

id 1.192 [ 1.158 ;1.225 ] – 1.181 1.187 1.187 1.18550
cont 1.250 [ 1.214 ;1.285 ] – 1.247 1.205 1.248 1.249

id 1.161 [ 1.128 ;1.193 ] – 1.182 1.187 1.187 1.186100
cont 1.212 [ 1.178 ;1.246 ] – 1.232 1.205 1.236 1.236

Table 2 emp., num., and as. MSE at r = 0.5, c = 0.7

n/ simulation numeric asymptotics
situation S̄ n [low; up] Algo C Algo D n0 n−1/2 n−1

id 1.166 [ 1.134 ;1.199 ] 1.172 1.168 1.187 1.187 1.1695
cont 2.989 [ 2.892 ;3.087 ] 3.016 12.491 1.647 2.529 3.103

id 1.191 [ 1.157 ;1.224 ] 1.177 1.174 1.187 1.187 1.17810
cont 2.934 [ 2.836 ;3.032 ] 2.840 4.820 1.647 2.271 2.557

id 1.194 [ 1.161 ;1.227 ] 1.183 1.180 1.187 1.187 1.18430
cont 2.183 [ 2.119 ;2.247 ] 2.167 2.167 1.647 2.007 2.102

id 1.165 [ 1.133 ;1.197 ] – 1.181 1.187 1.187 1.18550
cont 1.946 [ 1.893 ;1.998 ] – 2.008 1.647 1.926 1.983

id 1.192 [ 1.159 ;1.226 ] – 1.182 1.187 1.187 1.186100
cont 1.894 [ 1.844 ;1.944 ] – 1.879 1.647 1.844 1.873

5.3.1 Fixed procedure, fixed radius

To get an idea of the speed of the convergence of the MSE to its asymptotic values,
we consider the H07-estimator from Andrews et al. [1], i.e. the M-estimator to η0.7 at
r = 0.1 and at r = 0.5 for different sample sizes n.
The simulated empirical risk comes with an (empirical) 95% confidence interval and
is compared to the corresponding numerical approximations and to the f-o, s-o, and
t-o asymptotics from Theorem 3.5. Corresponding tables for the f-o-o M-estimator
to ηc0 may be drawn from the web-page to this article. The results are tabulated in
Tables 1/2. In Table 3 we consider the relative MSE, calculated as the quotient
MSE(c, r)/MSE(c0(r), r). This is a natural expression to compare the efficiency of
different procedures. We compare the empirical terms from the simulation to the cor-
responding numerical approximations and to the asymptotic terms derived by means
of Theorem 3.5. We already recognize a very good approximation down to very small
sample sizes.

5.3.2 Fixed procedure, fixed sample size

In order to study the effect of the radius on the quality of the approximation, we
consider the M-estimator to η0.5 at sample size n = 30 at varying radii. The results are
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Table 3 emp., num., and as. relMSE at r = 0.1, 0.5, c = 0.7 relative to Var[X̄n] for id and MSE(c0(r)) for
cont

r = 0.1 r = 0.5
n/ sim num asymptotics sim num asymptotics

situation ex/∗ n0 n−1/2 ex/∗ n0 n−1/2

id 1.161 1.163 1.173 1.173 1.038 1.042 1.041 1.0415
cont 1.003 0.956 1.143 1.039 0.992 0.978 1.006 0.989

id 1.167 1.166 1.173 1.173 1.037 1.041 1.041 1.04110
cont 1.049 1.029 1.143 1.065 0.993 0.977 1.006 0.992

id 1.174 1.170 1.173 1.173 1.037 1.041 1.041 1.04130
cont 1.094 1.086 1.143 1.095 0.994 0.993 1.006 0.997

id 1.160 1.169∗ 1.173 1.173 1.038 1.041∗ 1.041 1.04150
cont 1.096 1.096∗ 1.143 1.105 0.996 0.995∗ 1.006 0.999

id 1.180 1.170∗ 1.173 1.173 1.044 1.041∗ 1.041 1.041100
cont 1.122 1.110∗ 1.143 1.116 0.999 0.999∗ 1.006 1.001

Table 4 emp., num., and as. MSE at n = 30, c = 0.5

simulation numeric asymptoticsr
S̄ n [low; up] Algo C Algo D n0 n−1/2 n−1

0.00 1.272 [ 1.237 ;1.307 ] 1.259 1.256 1.263 1.263 1.259
0.10 1.374 [ 1.336 ;1.413 ] 1.337 1.335 1.280 1.334 1.334
0.25 1.545 [ 1.502 ;1.588 ] 1.545 1.542 1.588 1.514 1.532
0.50 2.204 [ 2.139 ;2.268 ] 2.189 2.187 1.689 2.037 2.128
1.00 5.362 [ 5.219 ;5.505 ] 5.238 5.265 2.967 4.132 4.652

tabulated in Table 4. The simulations and the numeric values clearly show that with
increasing radius, the approximation quality of f-o asymptotics decreases, which is
conformal to the infinitesimal character of our neighborhoods. A corresponding table
for the more liberal M-estimator to η2 at sample size n = 50 may be drawn from the
web-page.

5.3.3 Fixed radius, fixed sample size

In this paragraph we want to compare M-estimators to different clipping heights and
see whether the choice of c0 may also be considered reasonable for moderate n. To
this end, we consider the situation r = 0.25 and n = 30. The results are tabulated in
Tables 5 and 6. The simulations already indicate that the answer should be affirmative.
The numeric and asymptotic values for the median are taken from Ruckdeschel [25].
Corresponding tables to the situation r = 0.5 and n = 100 are on the web-page.

5.3.4 Relative error compared to numerically exact risk

A closer look onto the relative error of our higher order asymptotics w.r.t. the numer-
ically exact risk MSEn is provided by figure 1. A zoom-in for n ≥ 16 is available on
the web-page. Indeed for all investigated radii r = 0.00, 0.10, 0.25, 1.00, the relative
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Table 5 emp., num., and as. MSE at n = 30, r = 0.25

estimator/ simulation num asymptotics
situation S̄ n [low; up] ex n0 n−1/2 n−1

id 1.492 [ 1.451 ;1.532 ] 1.501 1.571 1.571 1.496Med
cont 1.786 [ 1.736 ;1.835 ] 1.779 1.669 1.821 1.767

id 1.250 [ 1.216 ;1.284 ] 1.259 1.263 1.263 1.259c = 0.5
cont 1.545 [ 1.502 ;1.588 ] 1.545 1.369 1.514 1.532

id 1.092 [ 1.062 ;1.122 ] 1.105 1.107 1.107 1.105c = 1.0
cont 1.433 [ 1.393 ;1.473 ] 1.440 1.241 1.402 1.425

id 0.991 [ 0.963 ;1.018 ] 1.010 1.010 1.010 1.010c = 2.0
cont 1.611 [ 1.566 ;1.656 ] 1.633 1.285 1.556 1.604

id 1.035 [ 1.006 ;1.063 ] 1.051 1.139 1.053 1.052c = c0 = 1.3393
cont 1.438 [ 1.398 ;1.479 ] 1.452 1.220 1.405 1.434

Table 6 emp., num., and as. relMSE at n = 30, r = 0.25 relative to Var[X̄n] for id and MSE(c0(r)) for cont,
c0(r) = 1.3393

estimator/ simulation numeric asymptotics
situation ex n0 n−1/2

id 1.435 1.427 1.379 1.379Med
cont 1.241 1.224 1.320 1.263

id 1.202 1.197 1.199 1.198c = 0.5
cont 1.073 1.064 1.077 1.068

id 1.051 1.051 1.051 1.051c = 1.0
cont 0.995 0.991 0.998 0.994

id 0.953 0.960 0.959 0.960c = 2.0
cont 1.119 1.125 1.107 1.119

error of our asymptotic formula w.r.t. the corresponding numeric figures is quickly
decreasing in absolute value in n; also, we notice that we have a certain oscillation
between odd and even sample sizes for very small n which is explained by the fact
that for even n there may be ties. By Lemma 1.1, the contribution of these ties to the
risk is however decaying exponentially in n.
In table 7, we have determined the smallest sample size n0 such that for n ≥ n0
the relative error using first to third order asymptotics for approximating MSEn(ψc)
to c = 0.7 is smaller than 1% resp. 5% which shows that for r ≤ 0.5 we need no
more than 25 (60) observations to stay within an error corridor of 5% (1%) in t-o
asymptotics. For f-o asymptotics, however we need considerable sample sizes for
reasonable approximations unless the radius is rather small.
The figures in this table are to be taken “cum grano salis” due to numerical inaccura-
cies in MSEn w.r.t. the exact risk of order 1E−5 which may result in a deviation from
the “real” n0 of ±2 for n0 < 200.
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Fig. 1 The mapping n 7→ rel.error(MSEn(ψc)) for c = 0.7 and F = N(0, 1).

Table 7 Minimal n0 such that for n ≥ n0 the relative error using first to third order asymptotics for approx-
imating MSEn(ψc) for c = 0.7 is smaller than 1% resp. 5%

rel.err order r = 0.00 r = 0.10 r = 0.25 r = 0.50 r = 1.00
1% 1st order asy. 9 > 640∗ > 3927∗ > 14425∗ > 49220∗

2nd order asy. 9 15 60 196 > 580∗

3rd order asy. 5 15 30 59 146
5% 1st order asy. 3 28 162 > 590∗ > 1995∗

2nd order asy. 3 6 17 43 119
3rd order asy. 3 6 12 23 49

∗: for n > 200 computation of MSEn gets too expensive in time; instead we use the the corresponding t-o
figure. Assuming an error of t-o asymptotics of order O(n−3/2), a corresponding regression onto the error
term gives estimates for the regression coefficient to the term n−3/2 of about −50, −166, −534, and −1940
for r = 0.1, 0.25, 0.5, and 1.0, so that the error (read from top to bottom and then left to right) incurred by
this replacement is about −3E − 3, −7E − 4, −3E − 4, −2E − 2, −2E − 2, −1.3E − 1, and −2E − 4.

6 Ramifications

6.1 Ideal distributions with polynomially decaying tails

In order to be able to cover ideal distributions with polynomially decaying tails, we
sharpen the restriction of the original neighborhood system Q̃n(r, ε0) from (2.3) to

Qn = L
{
[(1 − Ui)X id

i + UiXdi
i ]i

∣∣∣∣ lim sup
n

1
n
∑n

i=1 Ui ≤ ε
′
0

}
(6.1)
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for some fixed ε′0 such that

0 ≤ ε′0 < ε0 (6.2)

giving the new neighborhood system Q̃′n(r; ε′0). Correspondingly, we will consider the
asymptotics of

R′n(S n, r; ε′0) := sup
Qn∈Q̃

′
n(r;ε′0)

n
∫
|S n − θ0|

2 dQn (6.3)

It is not surprising that all results up to this point on maximal risks are unaffected by
this subtle modification. But, we may replace assumption (Vb) by

(Pd) There are some T > 0 and η > 0 such that

F(t) ≥ 1 − t−η, for t > T, F(t) ≤ (−t)−η for t < −T (6.4)

Proposition 6.1 In the location model of Subsection 1.1, assume (bmi), (D), and (C)
from section 3; additionally assume that the central distribution F satisfies (6.4).
Then, on Q̃′n(r; ε′0), the assertions of Theorem 3.5 —with any k2 > 2— continue to
hold.

Property (6.4) can be made plausible by the following proposition:

Proposition 6.2 In the location model of Subsection 1.1, assume: For any d > 0,

lim inf
t→∞

td(1 − F(t)) > 0 or lim inf
t→∞

tdF(−t) > 0 (6.5)

Then for any sample size n, the MSE of the M-estimator S n to any IC ψ according to
(bmi) in the ideal model is infinite.

Conditions (3.12) resp. (3.13) almost characterize the risk-maximizing contami-
nations:

Proposition 6.3 Under the assumptions of Theorem 3.5, let δ0, c0 > 0. Assume that
b̂ = b and let Bn := inf{x

∣∣∣ψ(x) ≥ b − c0/
√

n}. Assume that, for K =
∑n

i=1 Ui and
k > (1 − δ)r

√
n,

Pr
( n∑

i=1

Ui I(Xdi
i ≤ Bn + v0

√
log(n)/n) ≥ 1

∣∣∣∣K = k
)
≥ p0 > 0 (6.6)

Then, eventually in n, for any such sequence of contaminations Q[
n ∈ Q̃(r), the max-

imal MSE as in condition (3.13) (i.e. with positive bias) in (3.9) cannot be attained.
More precisely,

Rn(S n, r) − n EQ[
n

S 2
n ≥ 2p0v0(rc0 + b)/(n

√
2π) (6.7)

A corresponding relation holds for condition (3.12).
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6.2 Convergence of variance and bias separately

The technique used to derive Theorem 3.5 also applies if we are interested in variance
and bias separately; we get

Proposition 6.4 Under Assumptions (bmi) to (C) and for sample size n, an M-estimator
S n for scores-function ψ under a measure Q0

n ∈ Q̃n(r; ε0) according to (3.12) resp.
(3.13) admits the following expansions

√
n
∣∣∣∣Bias(S n,Q0

n)
∣∣∣∣ =

∣∣∣∣ rb + 1
√

n B1,0 + r2
√

n B1,1 + r
n B2

∣∣∣∣ + o(n−1) (6.8)

n Bias2(S n,Q0
n) = r2b2 + r

√
n C1 + 1

n C2 + o(n−1) (6.9)

n Var(S n,Q0
n) = v2

0 + r
√

n D1 + 1
n D2 + o(n−1) (6.10)

with

B1,0 = ( 1
2 l2 + ṽ1)v2

0, B1,1 = b(1 ± 1
2 l2b) (6.11)

B2 =
[
( 1

2 l22 + 1
6 l3)b3 + b ± l2b2

]
r2 + b(1 ± 1

2 l2b) +

+
[
( 1

2 l3 + 3
2 l22 + ṽ2 + ṽ2

1 + 3 ṽ1 l2)b ± 1
2 l2 ± ṽ1

]
v0

2 (6.12)

C1 = b2r2(±l2b + 2) ± b(l2 + 2ṽ1)v2
0 (6.13)

C2 = (ṽ1 l2 + 1
4 l22 + ṽ2

1)v0
4 +

[
3 b2 ± 3 l2 b3 + ( 5

4 l22 + 1
3 l3)b4

]
r4 +

+
[
( 7

2 l22 + l3 + 2 ṽ2 + 2 ṽ2
1 + 7 ṽ1 l2)b2 v0

2 ± (2 l2 + 4 ṽ1) b v2
0 + 2b2 ± l2 b3

]
r2 (6.14)

D1 =
[
± 2( l2 + ṽ1)b + 1

]
v0

2 + b2 (6.15)

D2 = (l3 + 7
2 l22 + 11 ṽ1 l2 + 8 ṽ2

1 + 3 ṽ2)v0
4 +

(
2
3 ρ1 + (l2 + 2 ṽ1)ρ0

)
v0

3 +[(
(l3 + ṽ2

1 + ṽ2 + 5 ṽ1 l2 + 4 l22)b2 ± 4(l2 + ṽ1)b + 1
)
v0

2 ± 2 l2 b3 + 3b2
]
r2 (6.16)

where we are in the − [+]-case according to whether (3.12) or (3.13) applies.

For a proof to this proposition, we may proceed exactly as in the proof of Theo-
rem 3.5; only in (A.38), we keep the integration domain and replace the integrand
u1(s)2 ϕ(s) gn(s) by u1(s)ϕ(s) gn(s); we do not spell this out here. In MAPLE the ex-
pressions are obtained by means of our procedure asESi.

A Proofs

A.1 Proof to Lemma 3.2

Let Gt be the law of ψt(Xid). By assumption, the Lebesgue decomposition yields dG0 = ag dλ+ (1− a) dG̃
for a ∈ (0, 1], g some probability density and G̃ ⊥ λ. The support of g contains an open interval (c1, c2)
and G0(c2) > G0(c1). On (c1, c2), ψ is strictly isotone and continuous, so that with di = ψ−1(ci)

P(ψt(Xid) ∈ (c1, c2)) = P(d1 + t < Xid < t + d2) =

∫ d2+t

d1+t
dF (A.1)
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But ∫ d2+t

d1+t
dF = G0(c2) −G0(c1) + o(t0) (A.2)

so that for t small enough, the absolute continuous part of Gt is uniformly bounded away from 0 and hence
by the Lebesgue Lemma our condition (3.6) holds. ut

A.2 Proof to Proposition 3.4

To get E[η̂cΛ f ] = 1, the Lagrange multiplier Ac must be determined by A−1
c = 2Φ(c) − 1. It holds that

b = Acc. For c→ ∞ we obtain the classically optimal IC, and c→ 0, using l’Hospital yields the IC of the
sample median. As to L(t), we obtain

Lc(t) = A[c−(c+t)Φ(t+c)+(t−c)Φ(t−c)+ϕ(t−c)−ϕ(t+c)], L∞(t) = −t, L0(t) =

√
π
2 (1−2Φ(t)) (A.3)

all arbitrarily often differentiable functions, so the li-part of (D) holds as stated in the proposition. For V(t)
introduce

S (t) := E[ψ(x − t)2], W(t) := V(t)2

Then, suppressing the argument t, W = S − L2, W′ = S ′ − 2LL′, W′′ = S ′′ − 2L′2 − 2LL′′and
with W0 = W(0), W̃1(0) = W′(0)/W0, W̃2(0) = W′′(0)/W0, we get

W0 = S (0), W̃1 = S ′(0)/S (0), W̃2 = (S ′′(0) − 2)/S (0)

and hence V(t) =
√

W0(1 +
W̃1 t

2 +
(2W̃2−W̃2

1 ) t2

8 ) + O(t2+δ) so that

v0 =
√

S (0), ṽ1 =
S ′(0)
2S (0)

, ṽ2 =
2S ′′(0) − 4 − S ′(0)2/S (0)

4S (0)

In our case we have for 0 < c < ∞

S (t) = A2
c

[
c2(1 −Φ(t + c) +Φ(t − c)

)
+ (1 + t2)

(
Φ(t + c) −Φ(t − c)

)
+ (t − c)ϕ(t + c) − (t + c)ϕ(t − c)

]
and S (t) = 1 + t2 for c = ∞, S (t) = π

2 = b2 for c = 0, so (3.4) holds with
0 < c < ∞ c = 0 c = ∞

S (0) 2b2(1 −Φ(c)) + Ac(1 − 2bϕ(c)) 1 π
2

S ′(0) 0 0 0
S ′′(0) 2A2

c (2Φ(c) − 1 − 2cϕ(c)) 2 0

and the assertions as to v0, ṽ1, ṽ2 follow. As to (Vb), for |t| → ∞, we get with Mill’s ratio for any δ > 0

∣∣∣∣ b − |L(t)|
∣∣∣∣ = Ac

∣∣∣∣ (c + t)Φ̄(t + c) − (t − c)Φ̄(t − c) + ϕ(t − c) − ϕ(t + c)
∣∣∣∣ = = o(exp(−

t2

2 + δ
))

Again with Mill’s ratio, |S (t)− b2 | ≤ A2
c

[
2(t2 + 1)Φ̄(|t| − c) + 2(|t|+ c)ϕ(|t| − c)

]
= o(exp(− t2

2+δ )) and hence

V2(t) = S (t) − L(t)2 = o(exp(− t2
2+δ )). For c = 0 we get

∣∣∣∣ b − |L(t)|
∣∣∣∣ =
√

2 π Φ̄(t) = o(exp(−t2/2)) and

V2(t) = b2 − (b + o(exp(−t2/2)))2 = o(exp(−t2/2))

For ρ(t) and κ(t), we introduce M(t) := E[ψ(X − t)3], N(t) := E[ψ(X − t)4]. Then, again suppressing the
argument t

ρ = V−3[M − 3LS + 2L3], κ = V−4[N − 4ML + 6S L2 − 3L4] − 3

and hence ρ0 = v−3
0 M(0), κ0 = V−4N(0) − 3. For ρ1 we note

ρ′ = V−3
(
− 3[M − 3LS + 2L3] V′/V + (M′ − 3L′S − 3LS ′ + 3L′L2)

)
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so that ρ1 = v−3
0 (−3M(0)ṽ1 + M′(0) + 3S (0)). In our case, for c = ∞, M(t) = −3t − t3, M′(t) = −3 − 3t2,

N(t) = t4 + 6t2 + 3and for c = 0, M(t) = (
√

π
2 )3(1 − 2Φ(t)), M′(t) = −2 (

√
π
2 )3ϕ(t), N(t) = π2

4 , while for
0 < c < ∞

M(t) = A3
c

[
c3 −Φ(t + c)(c3 + t3 + 3t) −Φ(t − c)(c3 − t3 − 3t) +

+(t2 + tc + 2 + c2)ϕ(t − c) − (t2 − tc + c2 + 2)ϕ(t + c)
]

M′(t) = A3
c

[
3
(
Φ(t − c) −Φ(t + c)

)
(t2 + 1) − 3(t − c)ϕ(t + c) + 3(t + c)ϕ(t − c)

]
N(t) = A4

c

[
c4 +

(
Φ(t + c) −Φ(t − c)

)
(t4 + 6t2 + 3 − c4) + (t3 − t2c + tc2 − c3 + 5t − 3c)ϕ(t + c) −

−(t3 + t2c + tc2 + c3 + 5t + 3c)ϕ(t − c)
]

This gives the assertion as to ρ0, ρ1 and κ0, and hence (3.5) holds. For c > 0, Pr(|ηc | < b) > 0 and ηc is
continuous. But, on {|ηc | < b}, L(ηc) is a.c. and hence Lemma 3.2 entails (C). ut

A.3 Proof of Theorem 3.5

We plug in (Xi) ∼ Qn for some Qn ∈ Q̃n(r) into the defining relations for M-estimators of (1.8).

Outline of the proof We begin with conditioning w.r.t. the number K =
∑

i Ui = k of contaminated
observations; next for fixed t ∈ R, we consider T̃n,k,t(t) =

∑
i:Ui=1 ψ(Xi − t) and condition the probability

w.r.t. its realization t̃n,k,t . In the sequel we suppress the indices of t̃n,k,t . Denote this event by

Dk,t̃ := {K = k, T̃n,k(
√

t ) = t̃ } (A.4)

Thus

n MSE(S n,Qn |Dk,t̃ ) =

∫ ∞

0
Pr(S 2

n ≥ t |Dk,t̃ ) dt =

∫ ∞

0
Pr(S n ≥

√
t |Dk,t̃ ) dt +

∫ ∞

0
Pr(S n ≤ −

√
t |Dk,t̃ ) dt

(A.5)
For the sequel, we define n̄ := n − k, sn,k := sn,k(t) =

−t̃−n̄L(t)
√

n̄ V(t)
. To derive the result, we then partition the

integrand according to the following tableau where C′ > 0 is some constant and δ is the exponent from
assumption (Vb):

K < k1r
√

n k1r
√

n ≤ K < ε0n K ≥ ε0n

|t| ≤ k2b2log(n)/n (I)

k2b2log(n)/n < |t| ≤ Cn1+3/δ (III)
(II)

excluded

|t| > Cn1+3/δ (IV)

At this point we also summarize the constants that will be used throughout this section.
constant k1 k2

value > 1 > 2 ∨ ( 3
2 + 3

2δ )

For all cases except for (I), we will show that they contribute only terms of order o(n−1) to n MSE(S n)
and hence can be neglected. Applying Taylor expansions at large, we derive an expression in which it
becomes clear, that independently from t and eventually in n, the maximal MSE is attained for t̃n,k either
kb or identically −kb for all t in (I) — or equivalently all contaminated observations are either smaller than
y̌n − k2b2 log(n)/n or larger than ŷn + k2b2 log(n)/n. Integrating out first t and then k we obtain the result
(3.9) stated in Theorem 3.5.

Conditioning w.r.t. the number of contaminated observations As announced, for the moment we condition
w.r.t. the number K =

∑
i Ui = k of contaminated observations in the sample. Denote the ideally distributed

part as Tn,k(t) :=
∑

i:Ui=0 ψt(Xi). Then we get

Pr{S n ≤ t
∣∣∣∣ K = k } + R(0)

n (k) = Pr(Tn,k(t) < −T̃n,k(t)) = Pr(
Tn,k(t) − n̄L(t)
√

n̄V(t)
< −

T̃n,k(t) − n̄L(t)
√

n̄V(t)
) (A.6)

where R(0)
n (k) , 0 can only happen for mass points of L(Tn,k(t) + T̃n,k(t)).
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Conditioning w.r.t. the actual contamination Next, we condition the probability w.r.t. the actual value of
the contamination T̃n,k = t̃. This gives

Pr{S n ≤ t |Dk,t̃} + R̃(0)
n (k, t̃) = Pr

(Tn,k(t) − n̄L(t)
√

n̄ V(t)
< sn,k(t)

)
(A.7)

where again R̃(0)
n (k, t̃) , 0 can only happen for mass points of L(Tn,k(t)).

Negligibility of case (IV) Without loss, assume that b = b̂. By monotonicity and boundedness in assump-
tion (bmi), to given 0 < η < −b̌ there is a t0 > 0 such that for t > t0,

b̌ < L(t) = E[ψ(Xid − t)] ≤ b̌ + η

Let t1 > t0, δ > 0 and C′ > 0 so that for t > t1, by (Vb), |V(t)| ≤ C′t−1−δ. Then we apply the Chebyshev
inequality to obtain for t > t21

Pr{S n >
√

t
∣∣∣∣ Dk,t̃} ≤ Pr

(
Tn,k(

√
t ) − n̄L(

√
t ) ≥ −t̃ − n̄L(

√
t )

) Cheb.
≤

n̄V2(
√

t )

(t̃ + n̄L(
√

t ))2

(Vb)
≤

n̄C′t−(1+δ)

(t̃ + n̄L(
√

t ))2
≤

≤
nC′t−(1+δ)

(t̃ + n̄b̌ + η)2

t̃≤kb̂
≤

nC′t−(1+δ)

[kb̂ + n̄b̌ + η]2
=

nC′t−(1+δ)

[k(b̂ − b̌) + nb̌ + η]2

k≤ε0n
≤

nC′t−(1+δ)

(b̌ − η)2
(A.8)

and correspondingly (with b = −b̌) for Pr{S n ≤ −
√

t
∣∣∣ Dk,t̃}; but

C′n2

(b − η)2

∫ ∞

Cn1+3/δ
t−(1+δ) dt =

C′C−δn−1−δ

δ(b̌ − η)2
= o(n−1) (A.9)

Negligibility of case (II)

Lemma A.1 Let
κ := k1 log k1 + 1 − k1 (A.10)

Then it holds that
Pr(Bin(n, r/

√
n ) > k1r

√
n) ≤ exp

(
− κ r

√
n + o(

√
n )

)
(A.11)

Proof Ruckdeschel [25, Lem. A.2] ut

As in (II), |t| < Cn1+3/δ, the integrand of n MSE(S n,Qn | Dk,t̃ ) is bounded by some polynomial in n,
and hence by Lemma A.1 the contribution of (II) is indeed o(n−1).

Another consequence of the exponential decay of (A.11) is that we may neglect values of K >
k1(n)r

√
n when integrating along K.

Corollary A.2 Let K ∼ Bin(n, r/
√

n ). Then, in the setup of Lemma A.1, for any j ∈ N,

E[K j I{X≥k1(n)r
√

n}] = o(e−rnd
) (A.12)

for any 0 < d <
√

n.

Proof E[K j I{K≥k1(n)r
√

n}] ≤ n j Pr(X > k1(n)r
√

n)
(A.11)

= o(e−rnd
). ut

Negligibility of case (III) We apply Hoeffding’s first bound from Lemma B.1:

Pr{S n >
√

t
∣∣∣∣ Dk,t̃} ≤ Pr(Tn,k(

√
t ) ≥ −t̃

∣∣∣ Dk,t̃ ) ≤ exp(−2n∆2/b2) (A.13)

for ∆ := −L(
√

t ) − t̃
n . As ψ is isotone, L is antitone, hence in case (III),

L(
√

t ) ≤ L(b
√

k2 log(n)/n ) = −b
√

k2 log(n)/n + o(
√

log(n)/n ) (A.14)

Thus
∆ ≥ −L(

√
t ) −

kb
n

(A.14)
>

b
√

n
[
√

k2 log(n) + o(
√

log(n) )] (A.15)

and exp(−2 n∆2

b2 ) < n−2k2 (1 + o(n0)). This latter is o(n−3−3/δ) and thus integrating n MSE out along (III) we
get something of order o(n−1).



21

Asymptotic normality On (I), by Lemma 1.1

Pr
{
S n ≥

√
t
∣∣∣∣ Dk,t̃

}
= Pr

Tn,k(
√

t ) − n̄L(
√

t )
√

n̄ V(
√

t )
> sn,k(t)

 + O(e−γn) (A.16)

for some γ > 0, uniformly in t and k. For i = 1, . . . , n̄, let ji ∈ {1, . . . , n} be the indices such that U ji = 0.
We may apply Theorem B.2(b) to (A.5)/(A.7), identifying

ξi,t :=
1

V(t)
[ψt(X ji ) − L(t)], i = 1, . . . , n̄ (A.17)

and settingΘ := Θn = {|t| ≤ k2b2 log(n)/n}. This application is possible, as |ψ| < b, so supt∈Θn E |ξ̃i,t |
5 < ∞.

By condtion (C) of our assumptions, Cramér condition (B.7) of the theorem holds if n is large enough.
We note that if in Theorem 3.5, we limit ourselves to term A1 and hence only assume (C’), we may apply
Theorem B.2(a).
With Gn,t(s) from (B.4) we define G̃n,t(u) := Gn,t(sn,k(u)), G̃n(t) := G̃n,t(t) and obtain for |t| ≤ k2b2 log(n)/n
and K < k1r

√
n uniformly in t and k:

O(exp(−γn)) + Pr
{
S n ≥

√
t
∣∣∣∣ Dk,t̃

}
= Pr

( n̄∑
i=1

ξi,
√

t > sn,k(
√

t )
)

= 1 − G̃n(
√

t ) + O(n−3/2) (A.18)

Hence, using negligibility of (II), (III) and (IV), and setting

n\ =
√

n̄/n, ln = n\
√

k2 log(n), l(0)
n = k2b2 log(n)/n (A.19)

we obtain

n MSE(S n,Qn
∣∣∣ Dk,t̃ ) = (n\)−2 n̄

∫ l(0)
n

0
1 − G̃n(

√
t ) + G̃n(−

√
t ) dt + o(n−1) =

= 2(n\)−2
∫ bln

0
u
(
1 − G̃n(

u
√

n̄
) + G̃n(−

u
√

n̄
)
)

du + o(n−1) (A.20)

As G̃n is arbitrarily smooth, integration by parts is available and gives

n MSE(S n,Qn
∣∣∣ Dk,t̃ ) = Rn + (n\)−2

∫ bln

−bln

u2
√

n̄
G′n(

u
√

n̄
) du + o(n−1) (A.21)

with

Rn := k2 log(n) b2 [
1 − G̃n(b

√
k2 log(n)

n ) − G̃n(−b
√

k2 log(n)
n )

]
(A.22)

A closer look at sn,k(±b
√

k2 log(n)
n ) reveals

sn,k(±b
√

k2 log(n)
n )

(3.4)
=

O(
√

n ) ± b
√

k2 n̄2 log(n)
n + O( n̄ log(n)

n )
√

n̄ (v0 + o(n0))
=
±b

√
k2 log(n)
v0

(1 + o(n0)) (A.23)

We also note that, again by (bmi) v2
0 = E[ψ2] ≤ b2, hence b/v0 > 1. In particular, eventually in n,

|s̃n,k(±b
√

k2 log(n) )| >
√

2 log(n) (A.24)

But, as |ψ| ≤ b by (bmi), |κ| ≤ b4 and |ρ| ≤ b3, and thus by Mill’s ratio, there is some 0 < K < ∞,
independent of t, n, such that for any s > 0

max
(
1 −Gn,t(s), Gn,t(−s)

)
≤ K|s|5 exp(−s2/2) (A.25)

Thus for n sufficiently large

1 − G̃n(b
√

k2 log(n)
n ) = exp(−

k2b2 log(n)
2v2

0

+ o(n0))) = O(
log(n)5/2

n1+δ
) (A.26)
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for some δ > 0. The same goes for G̃n(−2b
√

log(n)
n ), and therefore, Rn = O(log(n)7/2/n1+δ) = o(n−1) and

n MSE(S n,Qn
∣∣∣ Dk,t̃ ) = (n\)−2

∫ bln

−bln

u2
√

n̄
G′n(

u
√

n̄
) du + o(n−1) (A.27)

To make more transparent, which terms are bounded to which degree, we introduce the following notation,
which will also help MAPLE to ignore irrelevant terms t\ := t̃√

n̄
,s̃n,k(x) = sn,k( x√

n̄
). Then on (I), u =

O(
√

log(n) ), t\ = O(n0). In particular this will not affect the remainder terms of the Taylor expansions of
assumption (D).
In the sequel, we drop the indices of sn,k and s̃n,k , where they are clear from the context. Next, we spell out
G̃′n(u) in (A.27) more explicitly. Denote

Gn(s, t) := Gn,t(s), G(1)
n,t (s) := [ ∂

∂sGn](s, t), G(2)
n,t (s) := [ ∂∂tGn](s, t) (A.28)

Then, as s̃′n,k(x) = s′n,k( x√
n̄

)/
√

n̄,

G̃′n( u√
n

) = [G(1)
n,x(s(x))s′(x) + G(2)

n,x(s(x))]
∣∣∣∣
x= u√

n̄

= G(1)
n,u/
√

n̄
(s̃(u)) s̃′(u)

√
n̄ + G(2)

n,u/
√

n̄
(s̃(u)) =: g̃n(u)

√
n̄

and therefore

n MSE(S n,Qn
∣∣∣ Dk,t̃ ) = (n\)−2

∫ bln

−bln
u2g̃n(u) du + o(n−1) (A.29)

Expanding g̃n(u) Considering g̃n(u) more closely, we expand the terms according to assumption (D) —
with the help of our MAPLE procedures asS, asS1, asg

s̃(u) =
−t\ −

√
n̄L( u√

n̄
)

V( u√
n̄

)
= 1

v0

[
(u − t\) − u√

n̄

( l2u
2 + ṽ1(u − t\)

)
+

+ 1
n̄

(
(l2

ṽ1
2 −

l3
6 )u3 + (u − t\)u2(ṽ2

1 − ṽ2/2)
)]

+ O(n−(1+δ)) (A.30)

s̃′(u) = −
L′( u√

n̄
)

V( u√
n̄

)
+

(t\ + L( u√
n̄

))V′( u√
n̄

)

V2( u√
n̄

)
= 1

v0

[
1 − l2 u√

n̄
− 2ṽ1

u√
n̄

+ t\√
n̄

ṽ1 +

+ 1
n̄

(
(3ṽ2

1 −
l3
2 −

3
2 ṽ2 + 3

2 ṽ1l2)u2 + ut\(ṽ2 − 2ṽ2
1)

)]
+ O(n−(1+δ)) (A.31)

as well as

G(1)
n,u/
√

n̄
(s̃) = ϕ(s̃)

[
1 + 1

6
√

n̄
(ρ0 + ρ1

u√
n̄

) (s̃3 − 3s̃) + 1
24n κ0(s̃4 − 6s̃2 + 3) +

+ 1
72nρ

2
0(s̃6 − 15s̃4 + 45s̃2 − 15)

]
+ O(n−(1+δ)) (A.32)

and respectively, G(2)
n,u/
√

n̄
(s̃) = ϕ(s̃) ρ1

6
√

n̄
(1 − s̃2) + O(n−(1/2+δ)). This gives

g̃n(u) = v0ϕ(s̃)[1 + 1√
n̄

P1(u, t\) + 1
n̄ P2(u, t\)] + O(n−(1+δ)) (A.33)

for
P1(u, t\) = −l2u − 2ṽ1u + t\ṽ1 +

ρ0
6v3

0
(u − t\)3 −

ρ0
2v0

(u − t\) (A.34)

and P2(u, t\) a corresponding polynomial in u, t\, ṽ1, ṽ2, l2, l3, ρ0, ρ1, and κ0, the exact expression of which
may be taken from our MAPLE procedure asg.
To be able to calculate the integrals, we expand ϕ(s̃) in a Taylor expansion about s1 = (u − t\)/v0 as

ϕ(s̃) = ϕ(s1)[1 − s1(s̃ − s1) + (s2
1 − 1)(s̃ − s1)2/2] + O(n−(1+δ)) (A.35)

and hence g̃n(u) = v0ϕ(s1)gn(s1) + O(n−(1+δ)) with gn(s1) := 1 + 1√
n̄

P̃1(s1, t\) + 1
n̄ P̃2(s1, t\) for

P̃1(s1, t\) = ρ0
s3

1 − 3s1

6
+ ( l2

2 + ṽ1)s3
1 − (l2 + 2ṽ1)s1v0 + (l2 + ṽ1)[s2

1 − 1]t\ +
(t\)2l2 s1

2v0
(A.36)
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and P̃2(s1, t\) a corresponding polynomial again to be looked up from our MAPLE procedure asgns. This
gives

n MSE(S n,Qn
∣∣∣ Dk,t̃ ) = (n\)−2

∫ bln/v0

−bln/v0

hn(s)ϕ(s) λ(ds) + o(n−1) (A.37)

for
hn(s) = u1(s)2gn(s), u1(s) = sv0 + t\ (A.38)

Selection of the least favorable contamination Function hn(s) from (A.38) is a polynomial in s, hence
on (I), where |s| = O(log(n)), we may ignore terms of (pointwise-in-s) order O(n−(1+δ)). This gives a
complicated expression of form

hn(s) = (sv0 + t\)2 +
1
√

n
Q1 +

1
n

Q2 (A.39)

where v0Q1 is a polynomial in s, t\, v0, l2, ṽ1, and ρ0 with deg(Q1, s) = 5 and deg(Q1, t) = 4, and v2
0Q2

is a polynomial in s, t\, v0, l2, ṽ1, ρ0, l3, ṽ2, ρ̃1, and κ0 with deg(Q2, s) = 8 and deg(Q1, t) = 6; the exact
expressions are available on the web-page and may be generated by our MAPLE-procedure ashn. Denoting
the second partial derivative w.r.t. t\ by an index t, t we consider hn,t,t(s) = 2 + 1√

n
Q1,t,t + 1

n Q2,t,t where
deg(Q1,t,t , s) = 3 and deg(Q2,t,t , s) = 6, and under symmetry, more specifically

l2 = ṽ1 = ρ0 = 0 (A.40)

Q1,t,t = 0 and deg(Q2,t,t , s) = 4. That is, on (I), uniformly in s, hn,t,t(s) = 2 + O(log(n)3/
√

n), and under
(A.40), the remainder is even O(log(n)4/n). Hence eventually in n, uniformly in s, hn is strictly convex in
t\, hence takes its maximum on the boundary, that is for |t\ | maximal.

Going back to the definition of t\, we note that for fixed n and k, t\ = t̃/
√

n̄ =
∑

i:Ui=1 ψ(Xi − t)/
√

n̄.
Obviously, t̃ is bounded in absolute value by kb. This value may be attained if (up to O(n−1)) all terms
ψ(Xi − t) are either b or −b for all t in (I). This amounts to concentrating essentially all the contamination
either right of ŷn + b

√
k2 log(n)/n or left of y̌n − b

√
k2 log(n)/n ; the decision which of the two alternatives

is least favorable is deferred to subsubsection A.3.
As we may allow for deviations from this “outlyingness” as long as we do no affect the expansion

of the MSE up to O(n−1), we may weaken the concentration property to (3.12) resp. (3.13): On (I), |t\ | is
bounded, so smallness of the probabilities in (3.12) resp. (3.13) entails that also the expectations of (t\) j,
j = 1, . . . , 6 arising in hn(s) are o(n−1).

Denote a distribution in Q̃n which is contaminated according to (3.12) resp. (3.13) by Q0
n. By the

previous considerations, under Q0
n, we may consider |t̃| as being exactly kb, and we will consider the cases

t̃ = ±kb simultaneously. For the substitution t\ = ±kb/
√

n̄, the following abbreviations are convenient

k̃ := k/
√

n, k\ := k/
√

n̄ = k̃/n\ (A.41)

Taking up the dependency on t\ in hn(s) as hn(s) = hn(s, t\), in the MAPLE procedure ash, we introduce

h̃n(s) = h̃n(s, k\) = hn(s, k\b) (A.42)

Integration w.r.t. s In this step we integrate out s in h̃n(s). As bln/v0 >
√

2 log(n), by Lemma B.4, we may
drop the integration limits and get

n MSE(S n,Q0
n

∣∣∣K = k ) = (n\)−2
∫ ∞

−∞

h̃n(s)ϕ(s) λ(ds) + o(n−1) (A.43)

So for integration, we use that for X ∼ N(0, 1), E[X j] = 0, for j = 1, 3, 5, 7, and

E[X2] = 1, E[X4] = 3, E[X6] = 15, E[X8] = 115 (A.44)

and get (by our MAPLE procedures intesout and asMSEK)

n MSE(S n,Q0
n

∣∣∣K = k ) = o(n−1) + (n\)−2
[
(k\)2b2 + v2

0 + 1√
n̄

[±(3l2 + 4ṽ1)v2
0k\b ± l2(k\)3b3] +

+ 1
n̄
[
( 5

4 l22 + 1
3 l3)(k\)4b4 + (3ṽ2 + 2l3 + 3ṽ2

1 + 15
2 l2 + 12ṽ1l2)v2

0(k\)2b2 +

+(ρ0(2ṽ1 + l2) + 2
3ρ1)v3

0) + (12ṽ1l2 + l3 + 3ṽ2 + 15
4 l22 + 9ṽ2

1)v4
0
]]

(A.45)

As mentioned in Remark 3.6(c), the terms of κ0 cancel out for A2 as do the terms of ρ0 for A1.
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Collection of terms As we want to calculate the expectation with respect to K, we have to expand terms
in a way that k is only appearing in integer powers and in the nominator. For this purpose we employ our
MAPLE procedures asNn, asKn, and get

(n\)−2 = 1 + k̃√
n

+ k̃2

n + o(n−1), (n\)−3 = 1 + 3k̃
2
√

n
+ o(n−1/2), (n\)−4 = 1 + o(n0) (A.46)

k\ = k̃ + k̃2

2
√

n
+ o(n−1/2), (k\)2 = k̃2 + k̃3

√
n

+ k̃4

n + o(n−1), (k\)3 = k̃3 + 3k̃4
√

n
+ o(n−1/2), (k\)4 = k̃4 + o(n0)

(A.47)
Substituting k\ and n\ by means of these expressions, we obtain (MAPLE procedure asMSEk)

n MSE(S n,Q0
n

∣∣∣ K = k ) = o(n−1) + k̃2b2 + v0
2 +

[± (4 ṽ1 + 3 l2 ) b + 1]k̃v0
2 + (2 ± l2b) k̃3b2

√
n

+

+

(
3 b2 ± 3 l2 b3 +

(
5
4 l22 + 1

3 l3
)

b4
)

k̃4 +
(
3ṽ2 + 9ṽ2

1 + 15
4 l22 + l3 + 12 l2 ṽ1

)
v0

4 +
(
(l2 + 2ṽ1) ρ0 + 2

3 ρ1
)

v0
3

n
+

+

((
3 ṽ2

1 + 3 ṽ2 + 12 l2ṽ1 + 15
2 l22 + 2 l3

)
b2 + 1 ± (6 l2 + 8 ṽ1 ) b

)
k̃2v2

0

n
(A.48)

Integration w.r.t. k̃ As by Corollary A.2 the event {K > (1+δ)r
√

n} only attributes o(n−1) to the expectation
of E[K j], j = 0, . . . , 4, we can now simply use Lemma A.1 to determine the MSE. This gives the result by
our MAPLE procedures intekout, asMSE:

n EQ0
n
[S 2

n ] = r2b2 + v0
2 + r√

n
A1 + 1

n A2 + o(n−1) (A.49)

with

A1 = v0
2
(
± (4 ṽ1 + 3 l2 )b + 1

)
+ b2 + [2 b2 ± l2 b3 ] r2 (A.50)

A2 = v0
3
(
(l2 + 2 ṽ1 )ρ0 + 2

3 ρ1
)

+ v0
4 (3 ṽ2 + 15

4 l22 + l3 + 9 ṽ2
1 + 12 ṽ1 l2 ) +

+
[
v0

2
(
(3 ṽ2 + 3 ṽ2

1 + 15
2 l22 + 2 l3 + 12 ṽ1 l2 )b2 + 1 ± (8 ṽ1 + 6 l2 ) b

)
± 3 l2 b3 + 5 b2 ]

r2 +

+
(
( 5

4 l22 + 1
3 l3 )b4 ± 3 l2 b3 + 3 b2

)
r4 (A.51)

Decision upon the alternative (3.12) or (3.13) Denote Q−n a contaminated member in Q̃n(r) according to
(3.12) and correspondingly Q+

n according to (3.13). With respect to terms of (A.49)–(A.51), obviously,
if supψ < − inf ψ, the maximal MSE is achieved by Q−n , respectively by Q+

n if supψ > − inf ψ. In case
supψ = − inf ψ, the terms in A1 are decisive:

n(EQ+
n

[S 2
n ] − EQ−n [S 2

n ]) = rb√
n

{
l2
[
(r2b2 + 3v2

0)(1 + 2 r√
n

) +
3b2r(r2+1)
√

n

]
+ 4v2

0(1 + r√
n

)v1
}

+ o(n−1) (A.52)

Hence, Q−n [Q+
n ] is least favorable up to o(n−1) if

ṽ1 > [<] − l2
4

(
b2

v2
0

(r2 + 3)(1 + r√
n
− 2r2

n ) + 3(1 − b2

v2
0

)
)

(A.53)

If there is “=” in (A.53), no decision can be taken up to order o(n−1). ut

A.4 Proofs to Propositions 6.1 and 6.2

For ε1 ∈ (0, 1), let N+(t) = N+(t; n, ε1, b̂), N−(t) = N−(t; n, ε1, b̌) be defined as

N+(t) := #
{
ψ(xi − t) ≥ b̂(1 − ε1), Ui = 0

}
, N−(t) := #

{
ψ(xi − t) ≤ b̌(1 − ε1), Ui = 0

}
(A.54)

The idea behind Propositions 6.1 and 6.2 is to use the inclusions{∑
ψ(xi − t) ≤ 0

}
⊂

{
N+(t) ≤ n+

}
,

{∑
ψ(xi − t) ≥ 0

}
⊂

{
N−(t) ≤ n−

}
(A.55)
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for some numbers n−, n+ yet to be specified.
For Proposition 6.1, symbolically in the tableau of page 19, we plug in δ = 0, so that the second and third
line are separated by |t| = Cn. All cases except for case (IV) remain unchanged. For (IV), we consider the
first inclusion of (A.55). In this case, {

∑
ψ(xi − t) ≤ 0} is distorted most importantly by t̃ = kb̂. On the

other hand the N′′ = n − N+ − K remaining observations cannot be smaller than N′′b̌, so∑
ψ(xi − t) ≤ 0 =⇒ N+b̂(1 − ε1) + Kb̂ + N′′b̌ ≤ 0 (A.56)

that is N+ ≤
(
− nb̌−K(b̂− b̌)

)/(
b̂(1− ε1)− b̌

)
, and as this has to hold for all K ≤ ε′0n, N+ ≤ n

(
− b̌− ε′0(b̂−

b̌)
)/(

b̂(1 − ε1) − b̌
)

=: n+ = n+(ε′0), where by (6.2) and as 0 < ε1 < 1, we get n+ = nε+ for

0 < ε+ =
(
− b̌ − ε′0(b̂ − b̌)

)/(
b̂(1 − ε1) − b̌

)
< 1 − ε′0 (A.57)

Accordingly, for the second inclusion in (A.55), we obtain

N− ≤ nε− =: n− = n−(ε′0) for ε− :=
(
b̂ − ε′0(b̂ − b̌)

)/(
b̂ − b̌(1 − ε1)

)
(A.58)

where again 0 < ε− < 1 − ε′0. Hence with k̄ = pε′0nq − 1

Pr{S n >
√

t
∣∣∣∣ Dk,t̃=−kb̌}

(1.9)
≤ Pr

{
Tn,k(

√
t ) ≥ kb̌

}
≤ Pr

{
Tn,k(

√
t ) ≥ k̄b̌

}
≤ Pr

{
N−(
√

t ) ≤ n−
∣∣∣ K = k̄

}
(A.59)

and correspondingly Pr
{
S n < −

√
t
∣∣∣∣ Dk,t̃=kb̂

}
≤ Pr

{
N+(−

√
t ) ≤ n+

∣∣∣ K = k̄
}
. But, L(N± |K = k) is Bin(n −

k, p±) for

p−(t) = Pr
(
ψ(Xid −

√
t ) ≤ b̌(1 − ε1)

)
=, p+(t) = Pr

(
ψ(Xid +

√
t ) ≥ b̂(1 − ε1)

)
(A.60)

That is, p−(t) = F(
√

t + B−), p+(t) = F̄(
√

t − B+) where F̄ = 1 − F and

B− := inf
{
y
∣∣∣ψ(y) ≥ (1 − ε1)b̌

}
, B+ := sup

{
y
∣∣∣ψ(y) ≤ (1 − ε1)b̂

}
(A.61)

If we abbreviate m = n− k̄, m± = pn±q, pt = (1− p+(t))∨ p−(t), in the binomial probabilities in (A.59), we
obtain

(
m
j

)
≤ 2n, j = 0, . . .m±, and p−(t), (1 − p+(t)) ≤ 1, so that

sup
k

Pr
{
|S n | >

√
t
∣∣∣∣ Dk,|t̃|=kb̌

}
≤ n2n p[m−(m−∨m+)]

t (A.62)

But by (A.57), 1−ε′0−(ε−∨ε+) =: α > 0, so m−(m−∨m′+) ≥ αn−1. Now, by (6.4), for B̂ = max{B+,−B−},
if n is so large that Cn > (T − B̂)2,

sup
k

∫ ∞

Cn
Pr

{
|S n | >

√
t

∣∣∣∣ Dk,|t̃|=kb

}
≤ n2n+1

∫ ∞

Cn
t−η(αn−1)/2 dt = exp[−α̃n log(n)(1 − o(n0))]

for some α̃′ > 0. So (IV) is indeed negligible. ut

For Proposition 6.2, we only show the first case of (6.5); the second follows analogously. This time
K = 0, n is fixed, and we use the inclusions of the complements in (A.55). Thus

Pr{S n ≥
√

t} ≥ Pr
{
Tn,0(

√
t ) > 0

}
≥ Pr

{
N+(
√

t) > n+(0)
}

Let p̃+ = F̄(
√

t + B+). To δ > 0 there is a T > 0 such that for t > T and p̃n+
+ > 1 − δ. Hence for t > T 2 and

n′ = m+ + 1

Pr{S n >
√

t } ≥
(

n
n′

)
(1 − p̃+)n′ p̃n−n′

+ ≥

(
n
n′

)
(1 − δ)F̄(

√
t + B+)n′

Now by the first half of (6.5), for d = 1/n′ and some c > 0, T ′ > T and for all t > T ′

t1/n
′ (

1 − F(t)
)
> c ⇐⇒

(
1 − F(t)

)n′ > cn′ t−1 (A.63)

Then for the M-estimator S n,

EF [(Sn)2
+] ≥

∫ ∞

(T ′)2
Pr

{
S n >

√
t
}

dt ≥
∫ ∞

(T ′)2

(
n
n′

)
(1 − δ)cn′ (

√
t + B+)−1 dt = ∞ (A.64)

ut
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A.5 Proof of Proposition 6.3

For t > v2
0 log(n)/n, we consider the following inclusion{

ψ(x −
√

t ) > b − c0/
√

n
}

=
{
x >
√

t + Bn
}
⊂

{
x > v0

√
log(n)/n + Bn

}
Let Ak,t :=

{∑
i : Ui=1 ψ(Xi −

√
t ) ≤ (k − 1)(b − c0/

√
n )

}
. Hence if t > v2

0 log(n)/n, by (6.6), for all
k > (1 − δ)r

√
n,

Pr(Ak,t

∣∣∣∣ K = k) ≥ p0 (A.65)

Now we proceed as in section A.3, and even with restriction (A.65) the arguments of subsection A.3
remain in force, so that we have to maximize t\. But t > v2

0 log(n)/n ⇐⇒ s >
√

log n in (A.37).
Hence on the event Ak,t for s ∈ [

√
log n; bln/v0), we get the bound t\ ≤ (k\ − 1)(b − c0/

√
n)/
√

n̄, while
for s ∈ (−bln/v0;

√
log n) respectively on cAk,t , we bound t\ by k\b. Integrating out these two s-domains

separately as in subsection A.3, we obtain for ∆n = n
(
MSE(S n,Q0

n

∣∣∣K = k ) −MSE(S n,Q[
n

∣∣∣K = k )
)

∆n ≥ p0

∫ bln/v0

√
log n

(
2v0 sDn(k̃) + 2k̃bDn(k̃) − Dn(k̃)2

)
ϕ(s) ds + o(n−1)

for Dn(k̃) = k̃c0/
√

n + b/
√

n + o(1/
√

n). But for 0 < a1 < a2 < ∞, ϕ(a1)/a2 − ϕ(a2)/a2 ≤
∫ a2

a1
ϕ(s) ds, so

that with a1 =
√

log n, a2 = bln/v0, and as ϕ(a2) = o(n−1),

∆n ≥
p0
√

2πn
[2v0Dn(k̃) − 2 k̃bDn(k̃)+Dn(k̃)2

bln/v0
] + o(n−1) =

2p0v0√
2πn

Dn(k̃) + o(n−1)

Now the restriction to (1 − δ)r
√

n < K < k1r
√

n by Lemma A.1 may be dropped, giving ∆n ≥
2p0v0
n
√

2π
(rc0 +

b) + o(n−1). ut

B Auxiliary Results

B.1 Two Hoeffding Bounds

Lemma B.1 Let ξi
i.i.d.
∼ F, i = 1, . . . , n be real–valued random variables, |ξi | ≤ M Then for ε > 0

P(
1
n

∑
i

ξi − E[ξ1] ≥ ε) ≤ exp(−
2nε2

M2 ), P(
1
n

∑
i

ξi − E[ξ1] ≤ −ε) ≤ exp(−
2nε2

M2 ) (B.1)

Proof Hoeffding [12, Thm. 2. and Thm. 1, inequality (2.1)]. ut

B.2 A uniform Edgeworth expansion

In the following theorem, generalizes Ibragimov [15, Thm. 1] and Ibragimov and Linnik [16, Thm. 3.3.1]
to the situation where the law of ξi depends through an additional parameter t:

Theorem B.2 For some set Θ ⊂ R and fixed t ∈ Θ let ξi,t , i = 1, 2, . . . be a sequence of i.i.d. real-valued
random variables with distribution Ft and with

E ξi,t = 0, E ξ2
i,t = 1, E ξ3

i,t = ρt , E ξ4
i,t − 3 = κt (B.2)

Let Φ(s) and ϕ(s) be the c.d.f. and p.d.f. of N(0, 1) and

Fn(s, t) := P(
∑n

i=1 ξi,t < s
√

n), Hn(s, t) := Φ(s) −
ϕ(s)
√

n
ϕ(s)

ρt

6
(s2 − 1) (B.3)

Gn(s, t) := Hn(s, t) −
ϕ(s)

n

[ κt

24
(s3 − 3s) +

ρ2
t

72
(s5 − 10s3 + 15s)

]
(B.4)

Let ft be the characteristic function of Ft .
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(a) If supt κt < ∞ and if there is some u0 > 0 such that for all u1 the “no-lattice”-condition (C)’

f̂u0 (u1) := sup
u0<u<u1

sup
t
| ft(u)| < 1 (B.5)

is fulfilled, then
sup
s∈R

sup
t
|Fn(s, t) − Hn(s, t)| = o(n−1/2) (B.6)

(b) If supt E |ξi,t |
5 < ∞ and the uniform Cramér–condition (C)

lim sup
u→∞

sup
t
| ft(u)| < 1 (B.7)

is fulfilled, then
sup
s∈R

sup
t
|Fn(s, t) −Gn(s, t)| = O(n−3/2) (B.8)

Proof The general technique to prove Edgeworth expansions is to use Berry’s smoothing lemma, which
we take from Ibragimov and Linnik [16, Thm. 1.5.2] and apply it to our case: Let fn,t be the charac-
teristic function of Fn( · , t), and define the Edgeworth measures Gn, j,t , j = 1, 2 as Gn,1,t(s) = Hn(s, t),
Gn,2,t(s) = Gn(s, t) as well as their Fourier-Stieltjes transforms gn, j,t(u) =

∫
eisuG′n, j,t(s) λ(ds) and Ĝ′n, j =

supt sups∈R |G
′
n, j,t(s)|. Then for T > T ′ > 0, it holds that

sup
s∈R

sup
t
|Fn(s, t) −Gn, j,t(s)| ≤ sup

t

1
π

∫ T ′

−T ′

| fn,t(u) − gn, j,t(u)|
|u|

λ(du) + sup
t

1
π

∫
T ′≤|u|<T

| fn,t(u)|
|u|

λ(du) +

+ sup
t

1
π

∫
T ′≤|u|<T

|gn, j,t(u)|
|u|

λ(du) + sup
t

24
πT

Ĝ′n, j (B.9)

But similarly as in Ibragimov [15, pp. 462], for some constants γ > 0 and c j > 0, we get for T ′ = γ
√

n
and |u| ≤ T ′

| fn,t(u) − gn, j,t(u)|
|u|

≤ c j sup
t

E[|ξ1,t |
3+ j] n−( j+1)/2 (|u| j + |u|2+3 j) e−u2/4 (B.10)

and hence the first summand in the RHS of (B.9) is O(n−( j+1)/2). For the second summand, we note that
fn,t(u) = f n

t (u/
√

n) and hence

∫ T

T ′

| fn,t(u)|
u

λ(du) =

∫ T/
√

n

γ

| f n
t (u)|
u

λ(du) (B.11)

In case j = 2, for γ sufficiently large, by condition (C), supt sup|u|>γ | ft(u)| =: β < 1 and hence, for
T = n3/2,

sup
t

∫ T

T ′

| fn,t(u)|
u

λ(du) ≤ log(T/
√

n )βn = o(e−
√

n/2) (B.12)

In case j = 1, we proceed as in Ibragimov and Linnik [16, Lemma 3.3.1]: If supu1
f̂γ(u1) < 1 for γ

sufficiently large, we may proceed as in case j = 2; else, (C’) says that for γ sufficiently large, f̂γ(u1) is
isotone in u1 and tends to 1. So we may define l′n := inf{u1

∣∣∣ f̂γ(u1) ≥ 1 − 1/
√

n }. Setting T =
√

n ln for
ln = min(l′n,

√
n), we see that l−1

n = o(n0) and

sup
t

∫ T

T ′

| fn,t(u)|
u

λ(du) ≤ log(
√

n)(1 − 1/
√

n)n ≤ log(
√

n)e−
√

n = o(e−
√

n/2) (B.13)

Hence the second summand in the the RHS of (B.9) is O(n−( j+1)/2). Also, it is easy to see that Ĝ′n, j < ∞,
and hence by the choice of T , the last summand in the the RHS of (B.9) is O(l−1

n n−1/2) = o(n−1/2) in case
j = 1, and O(n−3/2) for j = 2. Finally, by Mill’s ratio, the third summand is again easily shown to be
O(exp(−γ2n/3)). ut
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B.3 Moments for the Binomial

Lemma B.3 Let X ∼ Bin(n, p). Then

E[X] = pn, E[X2] = p2n2 + pn − p2n, (B.14)

E[X3] = p3n3 − 3p3n2 + 2p3n + 3p2n2 − 3p2n + pn, (B.15)

E[X4] = p4n4 − 6p4n3 + 11p4n2 − 6p4n + 6p3n3 − 18p3n2 + 12p3n + 7p2n2 − 7p2n + pn (B.16)

and consequentially, for p = r/
√

n,

E[X] = rn1/2, E[X2] = r2n + rn1/2 − r2, (B.17)

E[X3] = r3n3/2 + 3r2n + (r − 3r3)n1/2 − 3r2 + 2r3n−1/2, (B.18)

E[X4] = r4n2 + 6r3n3/2 + (7r2 − 6r4)n + (r − 18r3)n1/2 + 11r4 − 7r2 + 12r3n−1/2 − 6r4n−1 (B.19)

Proof easy calculations for MAPLE— see procedure Binmoment. . . ut

B.4 Decay of the standard normal

Finally, we note the following Lemma for N(0, 1) variables

Lemma B.4 Let X ∼ N(0, 1). Then for 0 ≤ k ≤ 8 and any sequence (cn)n ⊂ R with lim infn cn >
√

2,

E[Xk I
{X≥cn

√
log(n)}] = o(n−1) (B.20)

Proof Ruckdeschel [25, Lem. A.6]. ut
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