FOUR GENERATED 4-INSTANTONS

I will present a joint work with Cristian Anghel, Iustin Coandă (arXiv:1604.01970). We show that there exist mathematical 4 -instanton bundles F on the projective 3 -space such that $F(2)$ is globally generated (by four global sections). This is equivalent to the existence of elliptic space curves of degree 8 defined by quartic equations. There is a (possibly incomplete) intersection theoretic argument for the existence of such curves in D'Almeida [Bull. Soc. Math. France 128 (2000), 577-584] and another argument, using results of Mori [Nagoya Math. J. 96 (1984), 127-132], in Chiodera and Ellia [Rend. Istit. Univ. Trieste 44 (2012), 413-422]. Our argument is quite different. We prove directly the former fact, using the method of Hartshorne and Hirschowitz [Ann. Scient. Éc. Norm. Sup. (4) 15 (1982), 365-390] and the geometry of five lines in the projective 3 -space.

A mathematical n-instanton bundle on \mathbb{P}^{3} (n-instanton, for short) is a rank 2 vector bundle F on \mathbb{P}^{3}, with $c_{1}(F)=0, c_{2}(F)=n$, such that $\mathrm{H}^{i}(F(-2))=0, i=0, \ldots, 3$. Examples of n-instantons are the bundles that can be obtained as extensions:

$$
\begin{equation*}
0 \longrightarrow \mathscr{O}_{\mathbb{P}^{3}}(-1) \longrightarrow F \longrightarrow \mathscr{I}_{L_{1} \cup \ldots \cup L_{n+1}}(1) \longrightarrow 0 \tag{1}
\end{equation*}
$$

where L_{1}, \ldots, L_{n+1} are mutually disjoint lines in \mathbb{P}^{3}. For $n \leq 2$, all n-instantons can be obtained in this way. This is no longer true for $n \geq 3$.

We are concerned with the problem of the global generation of twists of instantons. It is well known that if F is an n-instanton then F is n-regular hence $F(n)$ is globally generated. Gruson and Skiti showed that if F is a 3 -instanton having no jumping line of maximal order 3 then $F(2)$ is globally generated. Our aim here is to prove the following :
Proposition 1. There exist 4-instantons F on \mathbb{P}^{3} such that $F(2)$ is globally generated.
One shows that if F is a 4-instanton with $F(2)$ globally generated then $\mathrm{H}^{0}(F(1))=0$ and $\mathrm{H}^{1}(F(2))=0$ (hence $\left.\mathrm{h}^{0}(F(2))=4\right)$. It follows that the 4-instantons F with $F(2)$ globally generated form a nonempty open subset of the moduli space of 4-instantons.

We prove this proposition in an elementary way using the method of Hartshorne and Hirschowitz. The key point of our proof is the following :
Lemma 2. Let L_{1}, \ldots, L_{5} be mutually disjoint lines in \mathbb{P}^{3} such that their union admits no 5-secant. Then there exist epimorphisms:

$$
\Omega_{\mathbb{P}^{3}}(1) \longrightarrow \mathscr{I}_{L_{1} \cup \ldots \cup L_{5}}(3) \longrightarrow 0
$$

Acknowledgements. The special form of the morphisms $\sigma: \Omega_{\mathbb{P}^{3}}(1) \rightarrow \mathscr{O}_{\mathbb{P}^{3}}(3)$ used in the proof of Lemma 2 was "guessed" after several experiments using the progam Macaulay2 of Grayson and Stillman.

I would like to expresses my thanks to Udo Vetter and the Institute of Mathematics, Oldenburg University, for warm hospitality during the preparation of this paper.

