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The need for Quantum Monte Carlo

Many-Body Quantum Mechanics:

%, A
Schrédinger equation Zh& ‘\P(t» — H|\If(t)>
Time Evolution operator []’(t) — 6_%ﬁ
Tr e PHO
Thermal Expectation value <O> — -
Tr e—PH
T=0 Expectation Value (O) = (V|0|¥)

Would like to solve the dynamic, thermodynamic, and
groundstate properties of a system
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Consider the Time Independent Schrédinger Equation

matrix aAf « M M vector

Then for example the thermal expectation value:

e PR, i

Zf;\il e~ Ph

ie. we can solve all the model properties if we can solve the
eigenvalue problem (i.e. diagonalize the Hamiltonian)

Many efficient eigenvalue libraries exist (LAPACK, ARPACK...)
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Difficulty: Hilbert space is exponential
Consider a spin 1/2 system (e.g. electron spin)

5% = ::% T l two states

For an N-spin system, the Hilbert space is 2°"

If each vector element is an integer (4 bytes), the
memory needed to store it can be calculated:

N =9 2048 Dbytes
N = 40 ~ 1012  bytes

N = 256 ~ 1077 bytes
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Difficulty: Hilbert space is exponential

Consider a spin 1/2 system (e.g. electron spin)

5% = ::% T l two states

For an N-spin system, the Hilbert space is 2N

If each vector element is an integer (4 bytes), the
memory needed to store it can be calculated:

N =9 2048 Dbytes
N = 40 ~ 1012  bytes

N = 256 ~ 107" bytes ~ WATSON
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Can we diagonalize “parts” of the Hamiltonian?

A A A

For example, assume: H =T +V

e—gﬁ Xe—ﬁfe—ﬁv no
since  [T,V]#0

to see this: compare Taylor expansions of

AA+B)  and AANB

only agree up to order O()\?)
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Numerical Methods for Quantum Systems

. . . M e BE . .
e Exact diagonalization (o) = == (0|0 %)

>l e PP
obtain full spectrum N =~ 16 — 20
e Lanczos diagonalization
iterative: groundstate only W) N ~ 40
05—
2 O:OO —
RN .
g P 000220000 |
53 L Oooozg %00
8 2

00
000089888000000000000000OOOOOOOO —]

70 10 20 30 40 50 60
LLanczos Iteration
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Density Matrix Renormalization Group
(very basic idea)

e Reduce the size of the Hilbert space through some
clever decimation procedure

e Keep only the “important” information

e Perform an exact diagonalization 9 ¢ 9 999999909
using the remaining Hilbert space BESEBEBEE B
e I == = i B S S S

>3 O 03 90 090 9 00 o

>0 90 000 000 00 o

BI GG @ 99 0909 099 0 09

> 090 o0 0 99 099 099 009

¢ O 9 o o 0 ¢ ¢ O & 0 9O ¢ ¢ 0 ¢ o 9

¢ o9 »ooooog »cooooooooooo
i 99 009 @ 92920 000 0993 09

¢ o9 ¢ o0 0909 @ 090 0900 0090 009

Wednesday, 12 September, 12



e Early
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Density Matrix Renormalization Group
(very basic idea)

PHYSICAL REVIEW B

success: the Haldane Gap

VOLUME 48, NUMBER 6 1 AUGUST 1993-11

Numerical renormalization-group study of low-lying eigenstates of the
antiferromagnetic S = 1 Heisenberg chain

Steven R. White
Department of Physics, University of California, Irvine, California 92717

David A. Huse
ATET Bell Labs, Murray Hill, New Jersey 0797

(Received 3 February 1993; revised manuscript received 23 April 1993)

We present results of a numerical renormalization-group study of the isotropic S = 1 Heisenberg
chain. The density-matrix renormalization-group techniques used allow us to calculate a variety
of properties of the chain with unprecedented accuracy. The ground state energy per site of the

infinite chain is found to bejes = —1.401484038971(4)

The excitation energy of the first excited state, a state with one magnon
with momentum g = =, is the Haldane gap, which we find to be|A = 0.41050(2).
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Density Matrix Renormalization Group
(very basic idea)

e The DMRG works, because truncating the eigenvalues of the
reduced density matrix is able to preserve the entanglement
properties of typical 1D systems

S=—-Tr(palnpa)
AKLT

5= TDE DT DRI D
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Density Matrix Renormalization Group

(very basic idea)

e The DMRG doesn't work in D>1, because it doesn’t capture
typical entanglement properties...

L DAL DA PO PO
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Quantum Monte Carlo  Suzuki, 1993

Avoids the storage problem by importance sampling

Goal: simulate guantum many-body models,
particularly those with strong interactions, D>1

e |lattice or continuum
e free of systematic errors or bias
e often on as large sizes as possible:

Can characterize phases (and phase transitions) & — o0

Condensed matter, materials, atomic systems, quantum
information systems, lattice gauge theory, nuclear and
particle physics
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A “zoo” of QMC methods, depending on which model

you want to study

- ﬁ2 Z ~ b - — b d
= "5 Z Vi + Z Vext (73) + Z Vine (|75 —
7 1 1<)
Path Integral Monte Carlo

H=-J% (e +He) + v (I + =)

Diffusion Monte Carlo

H=7%"8,8, H=7Y (bb; +b;b!)
. . <,LJ
Continuous world-line, Stochastic Series Expansion

= —1t Z ZO Ja+hc +UZ”ZT”N

1=1

Auxmary field Monte Carlo

Ceperly

Syljuasen

Prokof’ev, Sandvik

Assaad, Evertz
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What unifies these methods as “Quantum” Monte Carlo?

e A D-dimensional quantum model has a D+1
dimensional representation on the computer

e The presence of some form of sign problem:

Not all guantum models are amenable to efficient simulation
by QMC. Something very fundamental precludes certain
(very interesting) models.

Temperature (K)

=
L.
=
)
=
w
<

.E.) l:' O 1 Vv 4
hole doping (p)
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Quantum Monte Carlo consists of three ingredients

e A D+1 dimensional “representation” on the

computer

e A procedure for updating configurations of the
representation

e A way of devising measurements

The first thing you need is a choice of basis:

SZ

1
2

T

== (It-111)
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Example: Path Integral Monte Carlo

gl
&
D. M. Ceperly, RMP 67, 279 (1995) ' \\24
;j\ N, \'
L \e\ 4

Say you want to simulation N particles in the continuum:

) h2 . N ~
H= =3 V2 Vo) + Y Vine(I7i = 75)

1<

H=T+V
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Example: Path Integral Monte Carlo

The partition function is:

Z = Tre PH
:/drl---/drN <r1,...rN|e_5ﬁ\7“1,---,"“N>

_ / DR (Rle~54|R)

Note [1,V]+#0
But, the Hamiltonian commutes with itself

o—(8/2+48/2)H _ ,—B/2H ,—B/2H

Wednesday, 12 September, 12



Example: Path Integral Monte Carlo

z - / DR (Rle~5H|R)

Z = /DR <R\e_%ﬁe_%ﬁe_%ﬁ...e_%ﬁm}

insert M-1 resolutions of the identity

B

Z = /DR()DRl . °DRM_1<R()‘G_M

B B

B

...<RM_1,e—Mﬁ\RO>

o

lly defi — —
we usually define 7= —
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Example: Path Integral Monte Carlo

notice that
(Re—1le” ™ |Ry) = (Ry—1|U(—ih7)|Ry)

We can imagine that each Hamiltonian
operator evolves the state of the system by

a single imaginary time step, and after M
such steps, we return to the initial state!

“Discrete Path Integral” picture of Feynmann

e A D-dimensional quantum model has a D+1
dimensional representation on the computer
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Example: Path Integral Monte Carlo

Consider a 1D system, consisting of N = 2 particles with M = 10:

Z = /DRO---/DRg (Role "™ |Ry) -+ (Rgle ™| Ry)

Ry =A{z10,220} Rio = Ro = {710,720}

o . 0—o._ | || e 4 i @
- - . — . -
& o \’\6/’ . O — ¢

5

imaginary time
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Example: Path Integral Monte Carlo

Examine one imaginary time “transition amplitude”:

<Rg_1 |e—T(T—I—V) |Rg>

One needs a way to solve this matrix element. Use the
“primitive approximation”

e—T(T—I—V) _ e—TTe—TV 4 0(7_2)
This is the “Trotter error”/

It gets smaller for increasing M: =

In practice, higher order terms included: 0(74)
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Example: Path Integral Monte Carlo

ie. We can approximate the high-temperature transition
amplitudes to high order in T (exact in the limit M — o0):

(Ro—1]e ™" Ry) ~ (Ro_1]e TR (R eV |Ry)
P Vo N PV g

Gaussian integral e V(R §(R — Ry)

M—1 - .
1 (Rm - Rm+1)2 )
Z Yy ——- D m m
N EP: ﬂgo/ m XD | T TV (Em)

kinetic: — § potential:

D. M. Ceperly, RMP 67, 279 (1995) connects ,\’\ connects
time steps ‘@ particles
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Quantum Monte Carlo:

e A D+1 dimensional “representation” on the _ /
computer 4

e A procedure for updating configurations of the
representation

o . 090 | || e 4 i @
- - . — . -
X o \’\6/’ . O — ¢

k

Imaginary time
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Quantum Monte Carlo:

e A D+1 dimensional “representation” on the
computer

e A procedure for updating configurations of the
representation

Path Integral Monte Carlo: "Worm Updates”
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http://www.delmaestro.org/adrian
http://www.delmaestro.org/adrian

Stochastic Series Expansion QMC  ,.cers sandvik

A simple to implement, powerful QMC method for lattice

models
aeeeees

P —d—d—J

Aesyses, A=sylenl) BT
fffffff

PP

ffffffk’

$ I————20—2—J

® Scales linearly in system size (and inverse temperature)

® Sign problem prevents simulation of fermions, frustrated
spins

® Finite and Zero-temperature representations available

(0) = S Tr{0c P} (0) =

Sael
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SSE Finite-T representation

(0) = %Tr{@e_BH}
B > O W(x)
= W)

partition function 2 = Z W (x

Taylor expand the exponential:

7 = Tr{e PHY = Z <a0

= Tr{e P}
-y
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Insert n-1 resolutions of the identity

2= 3" 3" Pl - Hlaw) (o] — Hlan) -~ (an | ~ Hla)

{ag } n=0

Qg = O to keep the trace nonzero

i.e. periodic in “imaginary time” (the propagation direction)

The weight W (z) is derived from this;

e proportional to the product of n» matrix elements
e each (o; |—H|a;11) is a real number

e must be positive to be interpreted as a probability for use
in a Metropolis condition: otherwise get the “sign problem”

Wednesday, 12 September, 12



The Hamiltonian is broken into elementary lattice operators

type lattice unit (e.g. bond) T' i

sequence of operator indices

S’n — [tla &1], [t27 CLQ], SR [tnv an]

We sample (using Monte Carlo) the operator sequence, basis
state, and expansion power n

Wednesday, 12 September, 12



A final (practical) step: truncate the length of the operator list

M > npax
P(n)

Keeping M fixed but sampling
different n: need to introduce
M-n null operators Hpo =1

s

450 550 650 750

Statistically, the number of different way of picking the
placement of the null operators in the expansion list is given

by the binomial coefficient (M) A

n

(M —n)n!

n
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SSE Zero-T representation (projector)

1

)= ~(Wow)  z= (u]w
0, O W ()
O =5

The ground state wavefunction is estimated by a procedure

where a large power of the Hamiltonian is applied to a “trial”
state |a)

First, write in terms of energy eigenstates: |«a) = ch\m
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Z =(0]0) isthen Z = {a|/(—H)"(—H)™|a)

using a Hamiltonian breakup: #=-) Y H,,

4 4
t a

insert a resolution of the identity between each operator

essentially identical to the finite-T representation, except:

e a fixed value of m is always used
e the simulation cell is not periodic: |ay) # |;.)
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SSE QMC: Representations

e Finite-T and zero-T representations available
e Both result in very similar practical implementations

e Both can have very similar updating schemes

N | © Tr e PHQO

Thermal Expectation value — -
Tr e BH

T=0 Expectation Value (O) = (¥]|O|¥)

To understand in more detail, we should examine
a specific example
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SSE QMC: Spin-1/2 Heisenberg Model

999939

999999
99— —9—3—9

H p— J S’L . S] ;JJ JJJf.I‘}T

99— 99 J—T

<7/]> P99

99—

Let’s examine the finite-T representation:

M

~+— (/)" (M — n)!
Z:>4>4(6) (M' ) H<az’—1 ‘Htiaai

(84 SM 1=1

Ozi>

. . . 2z L __1
First: choose a basis |a) 5% = + T l ® O

Next: specify a specific lattice decomposition: H=-> » H,
t a
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Choose a “bond” decomposition H=-> > Hy,
t a

null Hyo = 1,
diagonal Hi, = i — st;v’,
off-diagonal Hy o, = %(S;LSJ_ 4+ S;Sj)

/ a=0 a=1
“type”  bond label M

e A constant term 1/4 is added to the diagonal operator

- +
e Spin operators are rotated by /2 ¢ 3
around the z-axis on one of the sublattices
@ 4
+ -

All bond operators are positive
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|:| Hl,a, —

n==~06

1 y4 s
7~ Si8;

M =13

1 _ _
I H27a — §(SZ+S] _I_SZ SJ—I_)

O

00
OO0O

OO0OO0O0O0
900 00

OO0 OO0 O OO0

QO.Q[IQQQ

ONONONONONO
900000 0600
@ gO O OO0 O 0O00 © 00
I......I

O Og®

O

OO0 O OO

_/

)

) = |ao)

S, =10,0],12,0],10,0],[2,2],0,0], [1,4], |0, 0], [2,0], 0,0], [1, 3], |0, 0], [2, 2], [0, O]
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resembles a world line picture:

nesday, 12 September, 12



The weight W(x) of a sampled configuration x is proportional to the
product of the positive matrix elements.

¢ O)

(@ o ‘Hl,a (o e ‘Hl,a

o )=

<0 O ‘Hg,a

o e )

<O o ‘Hg’a

® 0)=

NO | —  DNO| =

We now have a representation. From this we design updates:

e Local updates can be used to sample diagonal operators

Hy 4 < Hpo

Y

e Non-local updates needed to sample off-diagonal
operators

HZ a <7 Hl,a

Y
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SSE “Diagonal” Updates

e Cycle through the operator list

e If a null operator is encountered, attempt to put a diagonal
operator on a random bond Hy, — Hi 4

e If a diagonal operator is encountered, attempt to remove it
(resulting in a null operator) H; , — Hy g

Like in classical Monte Carlo, we calculate the ratio of weights:
W(x")
W)

The transition probability is then obtained from detailed balance:

W(x)P(x — 2') = W(z")P(z' — x),

Wednesday, 12 September, 12



SSE “Diagonal” Updates

OO0OO00O0O0O0
9000 00

....IOOOOOO

ONONONO

OO

|

0 0000 00
COIOOOOOOI...O.
000 00

ONONONONONONO
0 006,60 00
I]OOO

X

OO0 O OO0

O @€ O @ & O
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SSE “Diagonal” Updates

OO0OO00O0O0O0
9000 00
OO0 O O

OO

|

®1® ® 6,00 OO OO
[I IQQ.C.Q.Q
90O 0O 000000 ©® 00
I....Q.I

ONONONONONONO
0 006,60 00
I]OOO

X

OO0 O OO0

O @€ O @ & O
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SSE “Diagonal” Updates

OOOOOOI]OO[I

O
O

|

0
...IOOOO
OO0 O"e 0 00

COIOOOOOOI
OO

OO0 OO0O0
® 00 0 O
OOI]OOO
.QQQIO
0 0 00
OO0 O OO0

O @€ O @ & O
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SSE “Diagonal” Updates

ONONONOIONOIONO,
.QQQQ.[I.Q[I
®o® ® 6,00 OO
O[IOOOIQQQC
® g0 O OO OO0
OOI....Q.I

OO0 OO0O0
0000
OO O Og®
.QQQIO
0 0 00
OO0 O OO0

O @€ O @ & O
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SSE “Diagonal” Updates

2= PO Z R o (o)
a Sy '

1=1

Transition probabilities for a Metropolis algorithm

Pn —n+1) =min <; (]évb_ﬁn) , 1>

e a lattice bond must be chosen at random for the insertion

e factor of 1/2 is the matrix element

P(n%n—l):min(z(M_n_Fl),l)

Ny
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SSE “Diagonal” Updates

e Sample the power of the expansion effectively
e Fasy to implement, local updates

e Do not result in an ergodic simulation: off-diagonal
operators are not sampled

O
O

O

O

we require a method to change the type of more than one
operator at once, if we are to preserve the periodic boundaries
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SSE “Operator-Loop” Updates

The fact that all non-trivial matrix elements are 1/2 means that
operator types can be changed without a change in weight

O <
o>

Closed “loops” are identified (in a linked list), then flipped with
a Swendsen-Wang algorithm
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SSE “Operator-Loop” Updates

The fact that all non-trivial matrix elements are 1/2 means that
operator types can be changed without a change in weight

O <

T

Closed “loops” are identified (in a linked list), then flipped with
a Swendsen-Wang algorithm
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SSE “Operator-Loop” Updates

The fact that all non-trivial matrix elements are 1/2 means that
operator types can be changed without a change in weight

O <

T

Closed “loops” are identified (in a linked list), then flipped with
a Swendsen-Wang algorithm
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SSE “Operator-Loop” Updates

The fact that all non-trivial matrix elements are 1/2 means that
operator types can be changed without a change in weight

O <
o>

Closed “loops” are identified (in a linked list), then flipped with
a Swendsen-Wang algorithm
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Other SSE updates:

e Spin-flips: required at high temperature

ONONONONONCNONONONOIOINONO
9000 0000 006,06 00
....OOOOOO[IOOO
OOOOIQCQ...QQIO
90O 0O 000000 ©® 00
OOI.Q..O.IOOOOO

O @€ O @ & O

e Other more sophisticated operator loops possible

e Can be used in conjunction with Parallel Tempering, etc.
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Other SSE updates:

e Spin-flips: required at high temperature

COQ.....Q.[IO..

00 6,00 OO OO0 Opg®
OOOOQQQ.Q.OQIO
90O 0O 000000 ©® 00
OOI.QQQQQIOOOOO

O @€ O & 0 ©

e Other more sophisticated operator loops possible

e Can be used in conjunction with Parallel Tempering, etc.
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SSE T=0 representation H=J) S;-S;

Remarkably, a very different representation can have essentially
the same updating procedure

S— e m——
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another example: Transverse Field Ising Model

H:—JZJfU;—hZUf

(2,7)

A convenient Hamiltonian decomposition: H = _>:>:Ht,a
t a

Hyo =1,
H—l,a _ h(a[f +Ob_),
HO,a — ha

Hy o = J(o70o; +1).

The index a can label a bond, or a single lattice site. Note:
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another example: Transverse Field Ising Model

Finite-T representation H=—J ) 00— hZUf
(%,9) :
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another example: Transverse Field Ising Model

zero-T representation H=—J ) 00— hZUf
(%,9) :
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The Sign Problem in SSE

e Any constant term can be added to diagonal operators

- +
e Spin operators are rotated by 7 /2 4 @
around the z-axis on one of the sublattices ...
& e
+ -

z= 3" T ool — Hlon){on| — Hlaw) -+~ (0| ~ Haw)
{a;} n=0

Alternatively, we can keep the matrix element unchanged, if we
are confident that off-diagonal operators always occur in even
numbers

1
H:—S:S:Ht,a H2,a:_§(sz+sg_+sz_‘s;|_)
t a
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The Sign Problem in SSE

In the finite-T representation, periodic boundary condition in
imaginary time enforce this:
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The Sign Problem in SSE

In the finite-T representation, periodic boundary condition in
imaginary time enforce this:

.
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Measurements in the SSE:

In general - expectation values of operators either:

e Diagonal in the basis  (S7S%)  S(q)

e Associated with the Hamiltonian
_ ot aq— — Q-+

example: Z_Z<ao i%(—ﬂ)” a0> o Oln Z
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Quantum Monte Carlo

e A large class of Metropolis based Monte Carlo
methods in D+1 dimension

e Extremely powerful, work well in higher D

e Inhibited by the “sign problem” for frustrated spins
and fermions

e Algorithms are not static: new models,
measurements, and tricks are discovered frequently

e At least one Nobel Prize lurking around...
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