
Algorithms in Percolation 
 

Problem: how to identify and 
measure cluster size 

distribution 
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Single-Cluster growth 
“Leath-Alexandrowicz method” 
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P. L. Leath, Phys. Rev. B 14, 5046 (1976)  
Z. Alexandrowicz, Phys. Lett. A 80, 284 (1980). 

Paul Leath 
Rutgers University 



Leath-Alexandrowicz Algorithm 

•  “Grow” clusters by adding sites one at a 
time from an initial seed 

•  Two methods: 
–  “Breadth first” or “First-In-First-Out” (FIFO) 

•  Requires making a list or queue 
–  “Depth first” or “Last-In-Last-Out” (LIFO) 

•  Can be done using stack and recursion 
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FIFO site percolation 

Start with a seed site 
that is “wet” 

Check neighbors in 
this order: 

1

2

3

4
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Occupy a site with 
probability p 

Orange = first shell 

FIFO site percolation 

Unchecked sites queue: 



6 

Occupy a site with 
probability p 

Orange = first shell 

FIFO site percolation 

Unchecked sites queue: 
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FIFO site percolation 

Make site “vacant” 
with probability 1-p 

Orange = first shell 

Unchecked sites queue: 
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FIFO site percolation 

Make site “vacant” 
with probability 1-p 

Orange = first shell 

Unchecked sites queue: 
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FIFO site percolation 

Make site “vacant” 
with probability 1-p 

Orange = first shell 

Unchecked sites queue: 
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FIFO site percolation 

Green = second 
shell 

Unchecked sites queue: 
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FIFO site percolation 

Green = second 
shell 

Unchecked sites queue: 
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FIFO site percolation 

Green = second 
shell 

Unchecked sites queue: 
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FIFO site percolation 

Green = second 
shell 

Unchecked sites queue: 
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FIFO site percolation 

Green = second 
shell 

Unchecked sites queue: 
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FIFO site percolation 

Blue = third shell 

Unchecked sites queue: 
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FIFO site percolation 

Blue = third shell 

Unchecked sites queue: 
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FIFO site percolation 

Blue = third shell 

Unchecked sites queue: 
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FIFO site percolation 

Blue = third shell 

Unchecked sites queue: 
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FIFO site percolation 

Violet = fourth shell 

Unchecked sites queue: 
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FIFO site percolation 

Violet = fourth shell 

Unchecked sites queue: 



FIFO algorithm 

“Pop” new growth site from queue 
For (neighbors = 1 to 4) 

 if (neighbor == unvisited) 
  if (randomnumber < prob) 
   neighbor = occupied 
   “push” neighbor on queue 
  else neighbor = vacant. 
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LIFO site percolation 
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LIFO site percolation 

Orange = growth 
from first neighbor of 
seed 
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LIFO site percolation 

Orange = growth 
from first neighbor of 
seed 
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LIFO site percolation 

Orange = growth 
from first neighbor of 
seed 
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LIFO site percolation 

Orange = growth 
from first neighbor of 
seed 
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LIFO site percolation 

Orange = growth 
from first neighbor of 
seed 
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LIFO site percolation 

Orange = growth 
from first neighbor of 
seed 

Put all growing 
sites on a stack 



29 

LIFO site percolation 

Orange = growth 
from first neighbor of 
seed 
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LIFO site percolation 

Orange = growth 
from first neighbor of 
seed 
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LIFO site percolation 

Orange = growth 
from first neighbor of 
seed 
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LIFO site percolation 

Orange = growth 
from first neighbor of 
seed 
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LIFO site percolation 

Orange = growth 
from first neighbor of 
seed 
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LIFO site percolation 

Orange = growth 
from first neighbor of 
seed 
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LIFO site percolation 

Orange = growth 
from first neighbor of 
seed 
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LIFO site percolation 

Blue = growth from 
third neighbor of 
seed 
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LIFO site percolation 

Violet = growth from 
fourth neighbor of 
seed 



LIFO algorithm (can also use recursion)   

Get new growth site from stack 
For (neighbors = 1 to 4) 

 if (neighbor == unvisited) 
  if (randomnumber < prob) 
   neighbor = occupied 
   put neighbor on stack 
  else neighbor = vacant. 
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FIFO bond percolation 

Red = seed 
“activated” or “wet” 
site 



40 

FIFO bond percolation 

Orange = first shell 
of bonds 

Add bonds to dry sites 
with probability p 
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FIFO bond percolation 

Orange = first shell 
of bonds 

Add bonds to dry sites 
with probability p 



42 

FIFO bond percolation 

Orange = first shell 
of bonds 

Vacant bond with 
probability 1 - p 
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FIFO bond percolation 

Orange = first shell 
of bonds 

Vacant bond with 
probability 1 - p 
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FIFO bond percolation 

Green = second 
shell of bonds 
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FIFO bond percolation 

Green = second 
shell of bonds 
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FIFO bond percolation 

Green = second 
shell of bonds 
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FIFO bond percolation 

Green = second 
shell of bonds 

Here we are 
concerned with the 
wet sites only and do 
not add bonds 
already wet sites 
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FIFO bond percolation 

Green = second 
shell of bonds 

Here we are 
concerned with the 
wet sites only and do 
not add bonds 
already wet sites 
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FIFO bond percolation 

Blue = third shell of 
bonds 

Here we are 
concerned with the 
wet sites only and do 
not add bonds 
already wet sites 
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FIFO bond percolation 

Blue = third shell of 
bonds 

Here we are 
concerned with the 
wet sites only and do 
not add bonds 
already wet sites 



51 

FIFO bond percolation 

Blue = third shell of 
bonds 

Here we are 
concerned with the 
wet sites only and do 
not add bonds 
already wet sites 
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FIFO bond percolation 

Blue = third shell of 
bonds 

Here we are 
concerned with the 
wet sites only and do 
not add bonds 
already wet sites 
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FIFO bond percolation 

Violet = fourth shell 
of bonds 

Here we are 
concerned with the 
wet sites only and do 
not add bonds 
already wet sites 
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FIFO bond percolation 

Violet = fourth shell 
of bonds 

The final object is a 
minimally spanning 
tree that connects to 
every wet site of the 
cluster 



FIFO bond percolation 
(finding wetted sites) 

“Pop” new growth site from queue 
For (neighbors = 1 to 4) 

 if (neighbor == unvisited) 
  if (randomnumber < prob) 
   neighbor = occupied 
   “push” neighbor on queue 
  else neighbor = vacant. 
    

 

Identical to FIFO 
site perc. except 
for this line being 
taken out 



Hoshen-Kopelman algorithm 1976 
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J. Hoshen and R. Kopelman, Phys. Rev. B 14:3438 (1976). 

Raoul Kopelman, 
University of Michigan 



57 

Hoshen-Kopelman Algorithm 

Look at last row of 
growing inteface. 

Each color 
represents a 
connected cluster 

(Bond percolation) 
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Hoshen-Kopelman Algorithm 

Add bonds 
sequentially with 
probability p 

(Bond percolation) 
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Hoshen-Kopelman Algorithm 

Add bonds 
sequentially with 
probability p 

(Bond percolation) 
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Hoshen-Kopelman Algorithm 
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sequentially with 
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Hoshen-Kopelman Algorithm 
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Hoshen-Kopelman Algorithm 
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Hoshen-Kopelman Algorithm 

Add bonds 
sequentially with 
probability p 

(Bond percolation) 
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Hoshen-Kopelman Algorithm 

Add bonds 
sequentially with 
probability p 

(Bond percolation) 
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Hoshen-Kopelman Algorithm 

Repeat!!!! 

(Bond percolation) 

Can simulate lattices 
as large as 
100,000,000 x 
100,000,000 this 
way!!!!! 



Newman-Ziff algorithm 2000 
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Newman-Ziff Algorithm 

Start with an empty 
lattice, compute Q
(Γ0) = Q0 
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Newman-Ziff Algorithm 

Randomly occupy a 
bond, compute Q(Γ1) 



69 

Newman-Ziff Algorithm 

Randomly occupy an 
unoccupied bond, 
compute Q(Γ2)  
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Newman-Ziff Algorithm 

And so on and 
compute Q(Γb)  with 
b number of bonds 
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Newman-Ziff Algorithm 

Until all bonds are 
occupied, compute 
Q(ΓM)  

M is the total number 
of bonds 
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•  Any quantity as a function of p is 
computed as 

  where Qb = Q(Γb). 
•  Each sweep takes time of O(N) 
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Newman-Ziff Algorithm 



M. E .J. Newman and R. M. Ziff, Phys. Rev. Letters 85, 4104 (2000) 

•  Bonds are added one at a time, and a bookkeeping 
scheme is used to keep track of the cluster structure. 

Mark	
  Newman,	
  U.	
  Michigan	
  



data structure 

•  At each lattice site is a variable, ptr[i] 
•  If the ptr[i] > 0, it gives the position of another site on 

the cluster (a link). 
•  If ptr[i] < 0, “i” is the root of the cluster, and |ptr[i]| 

gives the number of sites belonging to the cluster. 



procedure 
•  Initially, a random ordering of the bonds of the system is 

made 
•  1.  A bond is chosen randomly, and findroot is used to 

find the root at each end (and the link paths are 
collapsed) 

•  a)  If the two ends belong to different clusters, the two 
are merged. 

•  b)  If both ends of the bond are in the same cluster, 
nothing is done. 



findroot 

-- findroot jumps from link to link until it 
gets to the root 
-- when the recursive calls “unwind”, they 
rename every link to point to the root 

Before 

After 



merging 

-- the root of the smaller cluster is linked 
to the root of the larger cluster, and the 
size is adjusted accordingly 



convolution 
To go from the canonical (fixed number of bonds) to the grand-
canonical (fixed occupancy  p), one must convolve with a 

binomial distribution: 

Qn = quantity (such as mean size) for a system of fixed n 
Q(p) = same quantity for a fixed probability p 



 Example of Exact canonical-grand canonical: the crossing 
probability of a square system, up to 7 x 7 (from exact 
enumeration): 



example: probability of wrapping a 
square torus in one direction but not 

the other for all values of p 
•  L x L,  L = 32, 64, 128, 256 
•  Reaches maximum ≈ pc 

•  Excellent convergence:  

Easily find 
•  pc = 0.5927462.. 

p 



“Percolation 
Threshold” Wikipedia 
page 



ns = number of clusters of size s, at the 
critical threshold pc.  τ = 187/91. 





Used Cardys’ result for crossing of an annulus 

to find size distribution 
 



Simulation results – up to 2.5 x 1011 
clusters up to size s = 1000. 



Explosive growth in clusters created 
through a biased “Achlioptas” growth 

process on a regular lattice 



Achlioptas process 
•  Recently, Achlioptas, D’Sousa, and Spencer considered cluster growth 

on random (Erdös-Rényi ) lattices by the so-called Achlioptas process: 
–  Pick two bonds 
–  Calculate weight = product of masses of the two clusters the bond connects 
–  Choose bond of lower weight 

•  ER = Erdös-Rényi (regular percolation), BF = Bounded size rule, PR = 
product rule.  C/n = maximum cluster size divided by the number of 
sites 

•  They find “Explosive Growth” in the PR model. 

 

Explosive growth 

Achlioptas et al, Science 2009 



Dimitris	
  Achlioptas,	
  UCSC	
  

Raissa	
  D’Sousa,	
  UCD	
  

Joel	
  Spencer,	
  NYU	
  



  Alfréd	
  Rényi	
  1921-­‐1970	
  

My	
  Erdös	
  number	
  is	
  2	
  by	
  way	
  of	
  Mark	
  Kac	
   Tree	
  form	
  

Minimum	
  spanning	
  
tree	
  



Achlioptas processes on a regular 
(percolation) lattices 

 
 
•  Define t = time = number of bonds added to 

connect distinct clusters. 
•  Then, the number of clusters is n – t, where n 

is the initial number of sites, since adding 
additional  

 



Regular percolation transition at  
t/n = 1 – Nc/n = (7 – 3 √3)/2 = 

0.9019 

t/n	
  
	
  

C/n	
  
	
  

For	
  laQce	
  percolaRon,	
  I	
  find	
  (1024x1024	
  laQce):	
  

Product Rule 
(PR) 



The SIR model on a square 
lattice 

Susceptible-Infected-Recovered 

With David de Souza and Tânia 
Tomé. 



•  That is S → I with rate (1-c)Ineighbors/4 
•  I →R with rate c  

•  (I remains I for an exponentially 
distributed time) 


