Algorithms in Percolation

Problem: how to identify and
measure cluster size
distribution



Single-Cluster growth
“Leath-Alexandrowicz method”

Paul Leath
Rutgers University

P. L. Leath, Phys. Rev. B 14, 5046 (1976)
Z. Alexandrowicz, Phys. Lett. A 80, 284 (1980).



Leath-Alexandrowicz Algorithm

« “Grow” clusters by adding sites one at a
time from an initial seed

* Two methods:
— “Breadth first” or “First-In-First-Out” (FIFO)

* Requires making a list or queue

— “Depth first” or “Last-In-Last-Out” (LIFO)

« Can be done using stack and recursion



FIFO site percolation

Start with a seed site

that is “wet”

Check neighbors in

¢ this order:
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FIFO site percolation

Occupy a site with

probability p

o o Orange = first shell

Unchecked sites queue:
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FIFO site percolation
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FIFO site percolation
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FIFO site percolation
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FIFO site percolation
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FIFO site percolation
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FIFO site percolation
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FIFO site percolation

Violet = fourth shell
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FIFO algorithm

“Pop” new growth site from queue
For (neighbors = 1 to 4)
if (neighbor == unvisited)
if (randomnumber < prob)
neighbor = occupied
“push” neighbor on queue
else neighbor = vacant.



LIFO site percolation
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LIFO site percolation

Orange = growth

from first neighbor of

seed
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LIFO site percolation

Orange = growth

from first neighbor of

seed
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LIFO site percolation
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LIFO site percolation
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fan W on WY an.
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Orange = growth
from first neighbor of
seed

Put all growing
sites on a stack
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LIFO site percolation
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LIFO site percolation
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LIFO site percolation
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LIFO site percolation
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LIFO site percolation
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LIFO site percolation
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LIFO site percolation
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LIFO site percolation
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LIFO site percolation
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LI FO algOrithm (can also use recursion)

Get new growth site from stack
For (neighbors = 1 to 4)
if (neighbor == unvisited)
if (randomnumber < prob)
neighbor = occupied
put neighbor on stack
else neighbor = vacant.



FIFO bond percolation

Red = seed
“activated” or “wet”
site
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FIFO bond percolation

Orange = first shell
of bonds

Add bonds to dry sites
with probability p
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FIFO bond percolation

l.

Orange = first shell
of bonds

Add bonds to dry sites
with probability p
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FIFO bond percolation

1

Orange = first shell
of bonds

Vacant bond with
probability 1 - p
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FIFO bond percolation

4_.

Orange = first shell
of bonds

Vacant bond with
probability 1 - p
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FIFO bond percolation

4_%

Green = second
shell of bonds
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FIFO bond percolation
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Green = second
shell of bonds
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FIFO bond percolation

ﬂHf

Green = second
shell of bonds
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FIFO bond percolation

Green = second
shell of bonds

Here we are
concerned with the
wet sites only and do
not add bonds
already wet sites
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FIFO bond percolation

Green = second
shell of bonds
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FIFO bond percolation

Blue = third shell of
bonds

Here we are
concerned with the

wet sites only and do
not add bonds
already wet sites
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FIFO bond percolation
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FIFO bond percolation

Blue = third shell of
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FIFO bond percolation

Violet = fourth shell
of bonds

Here we are
concerned with the
wet sites only and do
not add bonds
already wet sites
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FIFO bond percolation

Violet = fourth shell
of bonds

The final object is a
minimally spanning
tree that connects to
every wet site of the
cluster
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FIFO bond percolation
(finding wetted sites)

“Pop” new growth site from queue

For (neighbors = 1 to 4)

if (neighbor == unvisited)
if (randomnumber < prob)
neighbor = occupied
“push” neighbor on queue

|dentical to FIFO
site perc. except
for this line being
taken out




Hoshen-Kopelman algorithm 1976

Raoul Kopelman,
University of Michigan

J. Hoshen and R. Kopelman, Phys. Rev. B 14:3438 (1976).
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Hoshen-Kopelman Algorithm

o o o & 0 0 ¢

(Bond percolation)

Look at last row of
growing inteface.

Each color
represents a
connected cluster
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Hoshen-Kopelman Algorithm

peeeees

(Bond percolation)

Add bonds
sequentially with
probability p
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Hoshen-Kopelman Algorithm

SSERES

(Bond percolation)

Add bonds
sequentially with
probability p
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Hoshen-Kopelman Algorithm

Lot

(Bond percolation)

Add bonds
sequentially with
probability p
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Hoshen-Kopelman Algorithm

11112

(Bond percolation)

Add bonds
sequentially with
probability p
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Hoshen-Kopelman Algorithm

12111

(Bond percolation)

Add bonds
sequentially with
probability p
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Hoshen-Kopelman Algorithm

121111

(Bond percolation)

Add bonds
sequentially with
probability p
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Hoshen-Kopelman Algorithm

1211111

(Bond percolation)

Add bonds
sequentially with
probability p
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Hoshen-Kopelman Algorithm

SARSSS

(Bond percolation)

Repeat!!!!

Can simulate lattices
as large as
100,000,000 x
100,000,000 this
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Newman-Ziff algorithm 2000
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Newman-Ziff Algorithm

Start with an empty
lattice, compute Q

(M) = Qg
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Newman-Ziff Algorithm

Randomly occupy a
bond, compute Q(I')
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Newman-Ziff Algorithm

|

Randomly occupy an
unoccupied bond,
compute Q(I',)
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Newman-Ziff Algorithm

-

And so on and
compute Q(I',) with
b number of bonds
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Newman-Ziff Algorithm

Until all bonds are
occupied, compute
Q(I"y)

M is the total number
of bonds
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Newman-Ziff Algorithm

* Any quantity as a function of p is
Computed as

M! M-b
gb'(/ﬂ b)|p(_P) @)

where Q, = Q(I',).
» Each sweep takes time of O(N)
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M. E .J. Newman and R. M. Ziff, Phys. Rev. Letters 85, 4104 (2000)

 Bonds are added one at a time, and a bookkeeping
scheme is used to keep track of the cluster structure.
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Mark Newman, U. Michigan



data structure

At each lattice site is a variable, ptr[i]

If the ptr[i] > O, it gives the position of another site on
the cluster (a link).

If ptr[i] < O, “i" is the root of the cluster, and |ptr]i]|
gives the number of sites belonging to the cluster.

g




procedure

Initially, a random ordering of the bonds of the system is
made

1. A bond is chosen randomly, and findroot is used to
find the root at each end (and the link paths are
collapsed)

a) If the two ends belong to different clusters, the two
are merged.

b) If both ends of the bond are in the same cluster,
nothing is done.




findroot

O ®
® ® int findroot(int i)
{ if (ptr[i]<0) return i;
Before } return ptr{i] = findroot(ptr(i]);
o
O ®
o ®

== findroot jumps from link to link until it

gets to the root
-- when the recursive calls “unwind”, they
After rename every link to point to the root



merging

-- the root of the smaller cluster is linked
to the root of the larger cluster, and the
size is adjusted accordingly
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convolution

To go from the canonical (fixed number of bonds) to the grand-
canonical (fixed occupancy p), one must convolve with a

binomial distribution:

N

N
Q<p>=g,0 B(N.n,p)Q,= >,

n=0

N
pn(l _p)N_nQn

Q, = quantity (such as mean size) for a system of fixed n
Q(p) = same quantity for a fixed probability p



Example of Exact canonical-grand canonical: the crossing

probability of a square system, up to 7 x 7 (from exact
enumeration):

Ri(p.q)

2p*q*+4p’q+p*

3p3q°+22p*q>+59p3q*+ 61p°q> +36p7q*+9piq+p°

4p*q'2+60p3q" +390p°q 0+ 1452p7¢° + 3416p8q8+ 5272p°q" +5414p'%%+3736p'iq°
+ 1752p12q4+560p13q3+ 120p 14q2+ 16p15q +p

5p5q20+ 124p6q'9+ 1418p7q'8+ 9958p8q17+ 48 171p9q16+ 170 391p‘°q15+ 456 051p11 14
+942077p'%2q"3+ 151 813 3p'3¢'2+ 191 788 Tp'q' '+ 190 335 9p 3¢ '°+ 148 630 8p '°¢°
+915643p'7g%+ 446 538p 87 + 172 749p q® + 52 871p?°¢° + 12 650p*' ¢* + 2300p*¢>
+ 300p23q2+25p24q+p25

6p%q>0+220p" g%+ 3830p3 ¢85+ 42 200p°q?" + 330 862p %920+ 196 683 2p ' 'g*+ 922 005 1p '2¢%*
+349 865 68p °g %>+ 109 429 240p g%+ 285 726 952p 1°¢*' + 628 339 894p 6%
+117065 617 2p g%+ 185 451 985 6p 3¢ '8+ 250 279 719 2p ¢ "7+ 287 954 750 7p*°q'®
+282477 386 8p?'q ">+ 236 295 381 8p g4+ 168 645 572 0pF¢ '3+ 102 808 519 7p*g?
+536 110 144p2g'1+239 427 498p 26410+ 915 847 20p?"g° + 299 432 38p 2848
+ 832262 0p%q" + 194 684 2p*°¢%+ 376 992p>'¢> + 58 905p32g* + 7140p>3¢> + 630p**¢>
+ 36p35q+p36

7p7q**+354p8g*' +8637p%q 0+ 135 542p %39+ 153 891 8p g8+ 134 800 33p 2¢%7
+948 508 47p ¢3¢+ 551 119 224p 4>+ 269 732 922 5p ¢4+ 112 862 456 29p16 3
+408 335758 12p'7¢**+ 128 871 332 816p 18¢>! + 357 226 485 246p >
+ 874 366 412 699p >+ 189 748 991 302 9p?'¢?8+ 366 204 287 877 7p22 z
+ 629 886 980 328 3p23g%0+ 966 956 844 729 Tp*q*+ 132 585 068 442 89p+ ¢
+ 162 424 120 333 36p >+ 177 768 801 987 90p?"q*2+ 173 788 593 629 74p*¢?!
+ 151728 375 886 87p*°g*°+ 118 300 132 565 60p*’q '+ 823 920 775 762 1p>'q"®
+512 857 828 295 4p32q "7+ 285 516 297 755 8p33q '+ 142 265 267 827 2p3q'?
+ 634 745 588 151p*°¢'“+ 253 562 760 568p36q ">+ 905 980 448 53p>"¢'2+ 288 886 115 91p*¥g!!
+ 818 938 813 8p*%¢ '+ 205 207 815 2p*°¢°+ 450 849 373p* ¢ + 858 971 97p*%q’
+139 838 16p*3¢%+ 190 688 4p*4g°> + 211 876p*3g* + 18424p*5¢> + 1176p*7g>
+49p‘“']q+p49




example: probability of wrapping a
square torus in one direction but not
the other for all values of p

« LxL, L=32,64, 128, 256
« Reaches maximum = p,

« Excellent convergence: L L 0.2
F-(d)y----— i “““““
p_pCNL—Z—l/V:L—IlM i
Easily find ] ; 191
* p.=0.5927462.. i |
: S ~I 0.0
0.55 0.60 0.65



Thresholds on 2d regular and Archimedean lattices

“Percolation
Threshold” Wikipedia

page

Lattice 2|z Site Percolation Threshold Bond Percolation Threshold
0.74042195(80)'%,
(3, 122) 3/3 /0.807900764... = (1 - 2 sin (rv18))1/2 [4] 0.74042081(10) 9], 0.74042077¢2)7,
(4, 6, 12) 3/3 |0.747806(4) (4] 0.69373383(72)'°!
(4, 8% 313 0.729724(3) 4 0.67680232(63)"°!
honeycomb (6%) |33 0.697043(3)%! 0.6970413(10) [© 0.652703645... = 1-2 sin (/18), 1+ p>-3p?=0/€]

0.524404978(5)7), 0.52440499(2)'%),

2 =1-2si 8]
kagome (3, 6, 3, 6) 4/4 |0.652703645... =1-2 Sln(ﬂ/18) 0.52440516(10) [6]’ 05244053(3) [10]

(3, 4, 6, 4) 44 0.621819(3) 4 0.52483258(53)'°!

square (4%) 44 0.59274621(13) ['1], 0.59274621(33) (12, 0.59274598(4) ['3114], 0.59274605(3)%! 1/2

(346) 55 0.579498(3) [4! 0.43430621(50)°!

puzzle (32, 4, 3, 4) 55 0.550806(3) (4! 0.41413743(46)15!

(33, 43 55 0.550213(3) [4! 0.41964191(43) %]

triangular (35) 86 1/2 0.347296355... = 2 sin (/18), 1+ p>-3p=0/¢!




Correction-to-scaling exponent for two-dimensional percolation

ng(pe) ~ As (1 +Cs % +..),

n, = number of clusters of size s, at the
critical threshold pc. T= 187/91.



TABLE 1. History of determinations of Q, w = DQ = (91/48)Q2, and A, = Q/o = (91/36)2. Numbers in parentheses represent errors in

last digit(s), and are shown on original values only.

Year Author Method Q w Ay
1976 Gaunt and Sykes [4] Series 0.75(5) 1.42 1.90
1978 Houghton, Reeve, and Wallace [5] Field theory 0.54-0.68 0.989-1.28 1.32-1.71
1979 Hoshen et al. [6] MC 0.67(10) 1.27 1.69
1980 Pearson [7] Conjecture 64/91 ~ 0.703 1.333 1.778
1980 Nakanishi and Stanley [8] MC 0.6-1
1982 Nienhuis [9] Field theory 96/91 ~ 1.055 2 2.667
1982,1983 Adler, Moshe, and Privman [10,11] Series p < p, 0.5 0.95 1.26
Adler, Moshe, and Privman [10,11] Series 0.66(7) 1.25 1.67
1983 Aharony and Fisher [12,13] RG theory 55/91 ~ 0.604 55/48 ~ 1.15 55/36 ~ 1.53
1983,1984 Margolina et al. [13,14] MC 0.64(8) 1.21 1.62
Margolina et al. [13,14] Series 0.8(1) 1.52 2.02
1985 Adler [15] Series 0.63(5) 1.19 1.59
1986 Rapaport [16] MC 0.71-0.74
1998 MacLeod and Jan [17] MC 0.65(5) 1.23 1.64
1999 Ziff and Babalievski [18] MC 0.77(2) 1.46 1.95
2001 Tiggemann [19] MC 0.70(2) 1.33 1.77
2003 Aharony and Asikainen [20,21] Theory (hulls) 72/91 1.5 2
2007 Tiggemann [22] MC 0.73(2) 1.38 1.85
2008 Kammerer, Hofling, and Franosch [23] MC 0.77(4) 1.46 1.95
2010 This work Theory 72/91 =~ 0.791 1.5 2




Used Cardys’ result for crossing of an annulus

to find size distribution

_ n(=1/30)n(~4/37)
n(—1/0)n(=2/37)

nBt)nB3z/4)
n(t)n(3t/2)

I(7) =(3/2)"? 3)

where n(t) — q1/24 l—[:il(l _ qn) — Z;:i__oo(_l)nq(6n+1)2/24

3 / R\ /48 R\ 32 R\ 2
/e = () [“(ze—l) +()
R\ 72 R\~
—(R_l) +2(R_1) —...], (¢



Simulation results — up to 2.5 x 107"
clusters up to size s = 1000.
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Explosive growth in clusters created
through a biased “Achlioptas™ growth
process on a reqgular lattice



Achlioptas process

Recently, Achlioptas, D’'Sousa, and Spencer considered cluster growth
on random (Erdos-Rényi ) lattices by the so-called Achlioptas process:
— Pick two bonds
— Calculate weight = product of masses of the two clusters the bond connects
— Choose bond of lower weight

- ®) B i (@) C -
(@)
00 e® o % 0o @ o "o @,
O O
OQ'~., @) Q OQ..‘_ O o Q
g O O g 0] ©
'._'.' O O '.'_‘e1 O = o
0% © o0 O o% o L *® S
0O o O (@) O 0O o® @) =1
- - © O o O '®) 0 O .-'. 1
O O ~
By © o 5. 2 o &0 S
0 o O 0 o
000p O e®0g O 3

0.0 05 r 1.0 1.5

ER = Erd0s- Renyl (regular percolatlon) BF = Bounded size rule, PR =
product rule. C/n = maximum cluster size divided by the number of

sites

They find “Explosive Growth” in the PR model.



Dimitris Achlioptas, UCSC

Raissa D’Sousa, UCD

Joel Spencer, NYU



Erdos Rényi Random Graph

Alfréd Rényi 1921-1970

Minimum spanning
tree

Paul (P4l) Erdés 1913-1996

Tree form

My Erdos number is 2 by way of Mark Kac




Achlioptas processes on a regular
(percolation) lattices

« Define t = time = number of bonds added to
connect distinct clusters.
 Then, the number of clusters is n — t, where n

IS the initial number of sites, since adding
additional



For lattice percolation, | find (1024x1024 lattice):
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The SIR model on a square
lattice

Susceptible-Infected-Recovered

With David de Souza and Tania
Tome.




 Thatis S — | with rate (1-c)l /4

« | R with rate ¢

neighbors

* (I remains | for an exponentially
distributed time)



