
Algorithms in Percolation

Problem: how to identify and
measure cluster size

distribution

1

Single-Cluster growth
“Leath-Alexandrowicz method”

2

P. L. Leath, Phys. Rev. B 14, 5046 (1976)
Z. Alexandrowicz, Phys. Lett. A 80, 284 (1980).

Paul Leath
Rutgers University

Leath-Alexandrowicz Algorithm

•  “Grow” clusters by adding sites one at a
time from an initial seed

•  Two methods:
–  “Breadth first” or “First-In-First-Out” (FIFO)

•  Requires making a list or queue
–  “Depth first” or “Last-In-Last-Out” (LIFO)

•  Can be done using stack and recursion

3

4

FIFO site percolation

Start with a seed site
that is “wet”

Check neighbors in
this order:

1

2

3

4

5

Occupy a site with
probability p

Orange = first shell

FIFO site percolation

Unchecked sites queue:

6

Occupy a site with
probability p

Orange = first shell

FIFO site percolation

Unchecked sites queue:

7

FIFO site percolation

Make site “vacant”
with probability 1-p

Orange = first shell

Unchecked sites queue:

8

FIFO site percolation

Make site “vacant”
with probability 1-p

Orange = first shell

Unchecked sites queue:

9

FIFO site percolation

Make site “vacant”
with probability 1-p

Orange = first shell

Unchecked sites queue:

10

FIFO site percolation

Green = second
shell

Unchecked sites queue:

11

FIFO site percolation

Green = second
shell

Unchecked sites queue:

12

FIFO site percolation

Green = second
shell

Unchecked sites queue:

13

FIFO site percolation

Green = second
shell

Unchecked sites queue:

14

FIFO site percolation

Green = second
shell

Unchecked sites queue:

15

FIFO site percolation

Blue = third shell

Unchecked sites queue:

16

FIFO site percolation

Blue = third shell

Unchecked sites queue:

17

FIFO site percolation

Blue = third shell

Unchecked sites queue:

18

FIFO site percolation

Blue = third shell

Unchecked sites queue:

19

FIFO site percolation

Violet = fourth shell

Unchecked sites queue:

20

FIFO site percolation

Violet = fourth shell

Unchecked sites queue:

FIFO algorithm

“Pop” new growth site from queue
For (neighbors = 1 to 4)

 if (neighbor == unvisited)
 if (randomnumber < prob)
 neighbor = occupied
 “push” neighbor on queue
 else neighbor = vacant.

22

LIFO site percolation

23

LIFO site percolation

Orange = growth
from first neighbor of
seed

24

LIFO site percolation

Orange = growth
from first neighbor of
seed

25

LIFO site percolation

Orange = growth
from first neighbor of
seed

26

LIFO site percolation

Orange = growth
from first neighbor of
seed

27

LIFO site percolation

Orange = growth
from first neighbor of
seed

28

LIFO site percolation

Orange = growth
from first neighbor of
seed

Put all growing
sites on a stack

29

LIFO site percolation

Orange = growth
from first neighbor of
seed

30

LIFO site percolation

Orange = growth
from first neighbor of
seed

31

LIFO site percolation

Orange = growth
from first neighbor of
seed

32

LIFO site percolation

Orange = growth
from first neighbor of
seed

33

LIFO site percolation

Orange = growth
from first neighbor of
seed

34

LIFO site percolation

Orange = growth
from first neighbor of
seed

35

LIFO site percolation

Orange = growth
from first neighbor of
seed

36

LIFO site percolation

Blue = growth from
third neighbor of
seed

37

LIFO site percolation

Violet = growth from
fourth neighbor of
seed

LIFO algorithm (can also use recursion)

Get new growth site from stack
For (neighbors = 1 to 4)

 if (neighbor == unvisited)
 if (randomnumber < prob)
 neighbor = occupied
 put neighbor on stack
 else neighbor = vacant.

39

FIFO bond percolation

Red = seed
“activated” or “wet”
site

40

FIFO bond percolation

Orange = first shell
of bonds

Add bonds to dry sites
with probability p

41

FIFO bond percolation

Orange = first shell
of bonds

Add bonds to dry sites
with probability p

42

FIFO bond percolation

Orange = first shell
of bonds

Vacant bond with
probability 1 - p

43

FIFO bond percolation

Orange = first shell
of bonds

Vacant bond with
probability 1 - p

44

FIFO bond percolation

Green = second
shell of bonds

45

FIFO bond percolation

Green = second
shell of bonds

46

FIFO bond percolation

Green = second
shell of bonds

47

FIFO bond percolation

Green = second
shell of bonds

Here we are
concerned with the
wet sites only and do
not add bonds
already wet sites

48

FIFO bond percolation

Green = second
shell of bonds

Here we are
concerned with the
wet sites only and do
not add bonds
already wet sites

49

FIFO bond percolation

Blue = third shell of
bonds

Here we are
concerned with the
wet sites only and do
not add bonds
already wet sites

50

FIFO bond percolation

Blue = third shell of
bonds

Here we are
concerned with the
wet sites only and do
not add bonds
already wet sites

51

FIFO bond percolation

Blue = third shell of
bonds

Here we are
concerned with the
wet sites only and do
not add bonds
already wet sites

52

FIFO bond percolation

Blue = third shell of
bonds

Here we are
concerned with the
wet sites only and do
not add bonds
already wet sites

53

FIFO bond percolation

Violet = fourth shell
of bonds

Here we are
concerned with the
wet sites only and do
not add bonds
already wet sites

54

FIFO bond percolation

Violet = fourth shell
of bonds

The final object is a
minimally spanning
tree that connects to
every wet site of the
cluster

FIFO bond percolation
(finding wetted sites)

“Pop” new growth site from queue
For (neighbors = 1 to 4)

 if (neighbor == unvisited)
 if (randomnumber < prob)
 neighbor = occupied
 “push” neighbor on queue
 else neighbor = vacant.

Identical to FIFO
site perc. except
for this line being
taken out

Hoshen-Kopelman algorithm 1976

56

J. Hoshen and R. Kopelman, Phys. Rev. B 14:3438 (1976).

Raoul Kopelman,
University of Michigan

57

Hoshen-Kopelman Algorithm

Look at last row of
growing inteface.

Each color
represents a
connected cluster

(Bond percolation)

58

Hoshen-Kopelman Algorithm

Add bonds
sequentially with
probability p

(Bond percolation)

59

Hoshen-Kopelman Algorithm

Add bonds
sequentially with
probability p

(Bond percolation)

60

Hoshen-Kopelman Algorithm

Add bonds
sequentially with
probability p

(Bond percolation)

61

Hoshen-Kopelman Algorithm

Add bonds
sequentially with
probability p

(Bond percolation)

62

Hoshen-Kopelman Algorithm

Add bonds
sequentially with
probability p

(Bond percolation)

63

Hoshen-Kopelman Algorithm

Add bonds
sequentially with
probability p

(Bond percolation)

64

Hoshen-Kopelman Algorithm

Add bonds
sequentially with
probability p

(Bond percolation)

65

Hoshen-Kopelman Algorithm

Repeat!!!!

(Bond percolation)

Can simulate lattices
as large as
100,000,000 x
100,000,000 this
way!!!!!

Newman-Ziff algorithm 2000

66

67

Newman-Ziff Algorithm

Start with an empty
lattice, compute Q
(Γ0) = Q0

68

Newman-Ziff Algorithm

Randomly occupy a
bond, compute Q(Γ1)

69

Newman-Ziff Algorithm

Randomly occupy an
unoccupied bond,
compute Q(Γ2)

70

Newman-Ziff Algorithm

And so on and
compute Q(Γb) with
b number of bonds

71

Newman-Ziff Algorithm

Until all bonds are
occupied, compute
Q(ΓM)

M is the total number
of bonds

72

•  Any quantity as a function of p is
computed as

 where Qb = Q(Γb).
•  Each sweep takes time of O(N)

0

! (1)
!()!

M
b M b

b
b

MQ p p Q
b M b

−

=

= −
−∑

Newman-Ziff Algorithm

M. E .J. Newman and R. M. Ziff, Phys. Rev. Letters 85, 4104 (2000)

•  Bonds are added one at a time, and a bookkeeping
scheme is used to keep track of the cluster structure.

Mark	
 Newman,	
 U.	
 Michigan	

data structure

•  At each lattice site is a variable, ptr[i]
•  If the ptr[i] > 0, it gives the position of another site on

the cluster (a link).
•  If ptr[i] < 0, “i” is the root of the cluster, and |ptr[i]|

gives the number of sites belonging to the cluster.

procedure
•  Initially, a random ordering of the bonds of the system is

made
•  1. A bond is chosen randomly, and findroot is used to

find the root at each end (and the link paths are
collapsed)

•  a) If the two ends belong to different clusters, the two
are merged.

•  b) If both ends of the bond are in the same cluster,
nothing is done.

findroot

-- findroot jumps from link to link until it
gets to the root
-- when the recursive calls “unwind”, they
rename every link to point to the root

Before

After

merging

-- the root of the smaller cluster is linked
to the root of the larger cluster, and the
size is adjusted accordingly

convolution
To go from the canonical (fixed number of bonds) to the grand-
canonical (fixed occupancy p), one must convolve with a

binomial distribution:

Qn = quantity (such as mean size) for a system of fixed n
Q(p) = same quantity for a fixed probability p

 Example of Exact canonical-grand canonical: the crossing
probability of a square system, up to 7 x 7 (from exact
enumeration):

example: probability of wrapping a
square torus in one direction but not

the other for all values of p
•  L x L, L = 32, 64, 128, 256
•  Reaches maximum ≈ pc

•  Excellent convergence:

Easily find
•  pc = 0.5927462..

p

“Percolation
Threshold” Wikipedia
page

ns = number of clusters of size s, at the
critical threshold pc. τ = 187/91.

Used Cardys’ result for crossing of an annulus

to find size distribution

Simulation results – up to 2.5 x 1011
clusters up to size s = 1000.

Explosive growth in clusters created
through a biased “Achlioptas” growth

process on a regular lattice

Achlioptas process
•  Recently, Achlioptas, D’Sousa, and Spencer considered cluster growth

on random (Erdös-Rényi) lattices by the so-called Achlioptas process:
–  Pick two bonds
–  Calculate weight = product of masses of the two clusters the bond connects
–  Choose bond of lower weight

•  ER = Erdös-Rényi (regular percolation), BF = Bounded size rule, PR =
product rule. C/n = maximum cluster size divided by the number of
sites

•  They find “Explosive Growth” in the PR model.

Explosive growth

Achlioptas et al, Science 2009

Dimitris	
 Achlioptas,	
 UCSC	

Raissa	
 D’Sousa,	
 UCD	

Joel	
 Spencer,	
 NYU	

 Alfréd	
 Rényi	
 1921-­‐1970	

My	
 Erdös	
 number	
 is	
 2	
 by	
 way	
 of	
 Mark	
 Kac	
 Tree	
 form	

Minimum	
 spanning	

tree	

Achlioptas processes on a regular
(percolation) lattices

•  Define t = time = number of bonds added to

connect distinct clusters.
•  Then, the number of clusters is n – t, where n

is the initial number of sites, since adding
additional

Regular percolation transition at
t/n = 1 – Nc/n = (7 – 3 √3)/2 =

0.9019

t/n	

	

C/n	

	

For	
 laQce	
 percolaRon,	
 I	
 find	
 (1024x1024	
 laQce):	

Product Rule
(PR)

The SIR model on a square
lattice

Susceptible-Infected-Recovered

With David de Souza and Tânia
Tomé.

•  That is S → I with rate (1-c)Ineighbors/4
•  I →R with rate c

•  (I remains I for an exponentially
distributed time)

