Algorithms in Percolation

Problem: how to identify and measure cluster size distribution

Single-Cluster growth "Leath-Alexandrowicz method"

Paul Leath Rutgers University

- P. L. Leath, Phys. Rev. B **14**, 5046 (1976)
- Z. Alexandrowicz, Phys. Lett. A 80, 284 (1980).

Leath-Alexandrowicz Algorithm

- "Grow" clusters by adding sites one at a time from an initial seed
- Two methods:
 - "Breadth first" or "First-In-First-Out" (FIFO)
 - Requires making a list or queue
 - "Depth first" or "Last-In-Last-Out" (LIFO)
 - Can be done using stack and recursion

Start with a seed site that is "wet"

Check neighbors in this order:

Occupy a site with probability p

Orange = first shell

Occupy a site with probability p

Orange = first shell

Make site "vacant" with probability 1-p

Orange = first shell

Make site "vacant" with probability 1-p

Orange = first shell

Make site "vacant" with probability 1-p

Orange = first shell

Green = second shell

Green = second shell

Green = second shell

Green = second shell

Green = second shell

Blue = third shell

Blue = third shell

Unchecked sites queue:

Blue = third shell

Unchecked sites queue:

X

Blue = third shell

Unchecked sites queue:

X

Violet = fourth shell

Unchecked sites queue:

X

X

Violet = fourth shell

Unchecked sites queue:

FIFO algorithm

```
"Pop" new growth site from queue
For (neighbors = 1 \text{ to } 4)
     if (neighbor == unvisited)
          if (randomnumber < prob)
                neighbor = occupied
               "push" neighbor on queue
          else neighbor = vacant.
```


Orange = growth from first neighbor of seed

Put all growing sites on a stack

Blue = growth from third neighbor of seed

LIFO site percolation

Violet = growth from fourth neighbor of seed

LIFO algorithm (can also use recursion)

```
Get new growth site from stack
For (neighbors = 1 \text{ to } 4)
     if (neighbor == unvisited)
          if (randomnumber < prob)
                neighbor = occupied
                put neighbor on stack
          else neighbor = vacant.
```


Red = seed "activated" or "wet" site

Orange = first shell of bonds

Add bonds to dry sites with probability p

Orange = first shell of bonds

Add bonds to dry sites with probability p

Orange = first shell of bonds

Vacant bond with probability 1 - p

Orange = first shell of bonds

Vacant bond with probability 1 - p

Green = second shell of bonds

Blue = third shell of bonds

Violet = fourth shell of bonds

Violet = fourth shell of bonds

The final object is a minimally spanning tree that connects to every wet site of the cluster

FIFO bond percolation (finding wetted sites)

```
"Pop" new growth site from queue
For (neighbors = 1 to 4)
if (neighbor == unvisited)
```

Identical to FIFO site perc. except for this line being taken out

```
if (randomnumber < prob)
    neighbor = occupied
    "push" neighbor on queue</pre>
```

else neighbor = vacant.

Raoul Kopelman, University of Michigan

J. Hoshen and R. Kopelman, Phys. Rev. B 14:3438 (1976).

(Bond percolation)

Look at last row of growing inteface.

Each color represents a connected cluster

(Bond percolation)

(Bond percolation)

Repeat!!!!

Can simulate lattices as large as 100,000,000 x 100,000,000 this way!!!!!

Start with an empty lattice, compute Q $(\Gamma_0) = Q_0$

Randomly occupy a bond, compute $Q(\Gamma_1)$

Randomly occupy an unoccupied bond, compute $Q(\Gamma_2)$

And so on and compute $Q(\Gamma_b)$ with b number of bonds

Until all bonds are occupied, compute $Q(\Gamma_M)$

M is the total number of bonds

 Any quantity as a function of p is computed as

$$\langle Q \rangle = \sum_{b=0}^{M} \frac{M!}{b!(M-b)!} p^b (1-p)^{M-b} Q_b$$

where $Q_b = Q(\Gamma_b)$.

Each sweep takes time of O(N)

M. E.J. Newman and R. M. Ziff, Phys. Rev. Letters 85, 4104 (2000)

 Bonds are added one at a time, and a bookkeeping scheme is used to keep track of the cluster structure.

Mark Newman, U. Michigan

data structure

- At each lattice site is a variable, ptr[i]
- If the ptr[i] > 0, it gives the position of another site on the cluster (a link).
- If ptr[i] < 0, "i" is the root of the cluster, and |ptr[i]| gives the number of sites belonging to the cluster.

procedure

- Initially, a random ordering of the bonds of the system is made
- 1. A bond is chosen randomly, and findroot is used to find the root at each end (and the link paths are collapsed)
- a) If the two ends belong to different clusters, the two are merged.
- b) If both ends of the bond are in the same cluster, nothing is done.

Before

After

findroot

```
int findroot(int i)
{
   if (ptr[i]<0) return i;
   return ptr[i] = findroot(ptr[i]);
}</pre>
```

- findroot jumps from link to link until it gets to the root
- -- when the recursive calls "unwind", they rename every link to point to the root

merging

-- the root of the smaller cluster is linked to the root of the larger cluster, and the size is adjusted accordingly

convolution

To go from the canonical (fixed number of bonds) to the grand-canonical (fixed occupancy p), one must convolve with a

binomial distribution.

$$Q(p) = \sum_{n=0}^{N} B(N,n,p)Q_n = \sum_{n=0}^{N} {N \choose n} p^n (1-p)^{N-n} Q_n$$

 Q_n = quantity (such as mean size) for a system of fixed n Q(p) = same quantity for a fixed probability p

Example of Exact canonical-grand canonical: the crossing probability of a square system, up to 7 x 7 (from exact enumeration):

```
\boldsymbol{L}
                                                                                                R_L(p,q)
                                        2p^2q^2+4p^3q+p^4
2
                                        3p^3a^6 + 22p^4a^5 + 59p^5a^4 + 67p^6a^3 + 36p^7a^2 + 9p^8a + p^9
3
                                        4p^4q^{12} + 60p^5q^{11} + 390p^6q^{10} + 1452p^7q^9 + 3416p^8q^8 + 5272p^9q^7 + 5414p^{10}q^6 + 3736p^{11}q^5
                                           +1752p^{12}a^4+560p^{13}a^3+120p^{14}a^2+16p^{15}a+p^{16}
                                        5p^5q^{20} + 124p^6q^{19} + 1418p^7q^{18} + 9958p^8q^{17} + 48171p^9q^{16} + 170391p^{10}q^{15} + 456051p^{11}q^{14}
5
                                           +942\,077p^{12}q^{13}+151\,813\,3p^{13}q^{12}+191\,788\,7p^{14}q^{11}+190\,335\,9p^{15}q^{10}+148\,630\,8p^{16}q^{9}
                                           +915643p^{17}q^8+446538p^{18}q^7+172749p^{19}q^6+52871p^{20}q^5+12650p^{21}q^4+2300p^{22}q^3
                                           +300p^{23}a^2+25p^{24}a+p^{25}
                                        6p^6q^{30} + 220p^7q^{29} + 3830p^8q^{28} + 42200p^9q^{27} + 330862p^{10}q^{26} + 1966832p^{11}q^{25} + 9220051p^{12}q^{24}
6
                                           +349\,865\,68p^{13}q^{23}+109\,429\,240p^{14}q^{22}+285\,726\,952p^{15}q^{21}+628\,339\,894p^{16}q^{20}
                                           +117\,065\,617\,2p^{17}q^{19}+185\,451\,985\,6p^{18}q^{18}+250\,279\,719\,2p^{19}q^{17}+287\,954\,750\,7p^{20}q^{16}
                                           +282\,477\,386\,8p^{21}q^{15}+236\,295\,381\,8p^{22}q^{14}+168\,645\,572\,0p^{23}q^{13}+102\,808\,519\,7p^{24}q^{12}
                                           +536\,110\,144p^{25}q^{11}+239\,427\,498p^{26}q^{10}+915\,847\,20p^{27}q^9+299\,432\,38p^{28}q^8
                                           +8322620p^{29}q^7+1946842p^{30}q^6+376992p^{31}q^5+58905p^{32}q^4+7140p^{33}q^3+630p^{34}q^2
                                           +36p^{35}q+p^{36}
                                        7p^{7}q^{42} + 354p^{8}q^{41} + 8637p^{9}q^{40} + 135542p^{10}q^{39} + 1538918p^{11}q^{38} + 13480033p^{12}q^{37}
                                           +948\,508\,47p^{13}q^{36}+551\,119\,224p^{14}q^{35}+269\,732\,922\,5p^{15}q^{34}+112\,862\,456\,29p^{16}q^{33}
                                           +408\,335\,758\,12p^{17}q^{32}+128\,871\,332\,816p^{18}q^{31}+357\,226\,485\,246p^{19}q^{30}
                                           +874\,366\,412\,699p^{20}q^{29}+189\,748\,991\,302\,9p^{21}q^{28}+366\,204\,287\,877\,7p^{22}q^{27}
                                           +6298869803283p^{23}q^{26}+9669568447297p^{24}q^{25}+13258506844289p^{25}q^{24}
                                           +16242412033336p^{26}q^{23}+17776880198790p^{27}q^{22}+17378859362974p^{28}q^{21}
                                           +15172837588687p^{29}q^{20}+11830013256560p^{30}q^{19}+8239207757621p^{31}q^{18}
                                           +5128578282954p^{32}q^{17}+2855162977558p^{33}q^{16}+1422652678272p^{34}q^{15}
                                           +634745588151p^{35}q^{14}+253562760568p^{36}q^{13}+90598044853p^{37}q^{12}+28888611591p^{38}q^{11}
                                           +818\,938\,813\,8p^{39}q^{10}+205\,207\,815\,2p^{40}q^9+450\,849\,373p^{41}q^8+858\,971\,97p^{42}q^7
                                           + 13983816p^{43}q^6 + 1906884p^{44}q^5 + 211876p^{45}q^4 + 18424p^{46}q^3 + 1176p^{47}q^2
                                           +49p^{48}q+p^{49}
```

example: probability of wrapping a square torus in one direction but not the other for all values of p

- $L \times L$, L = 32, 64, 128, 256
- Reaches maximum ≈ p_c
- Excellent convergence:

$$p - p_c \sim L^{-2 - 1/\nu} = L^{-11/4}$$

Easily find

• $p_c = 0.5927462...$

Thresholds on 2d regular and Archimedean lattices

 $(3^2, 4, 3, 4)$

"Percolation Threshold" Wikipedia page

>	Lattice	z	\overline{z}	Site Percolation Threshold	Bond Percolation Threshold	
2	(3, 12 ²)	3	3	0.007000764 - /4 0.0ip /=/40\\1/2 [4]	0.74042195(80) ^[5] , 0.74042081(10) ^[6] , 0.74042077(2) ^[7] ,	
	(4, 6, 12)	3	3	0.747806(4) [4]	0.69373383(72) ^[5]	
	(4, 8 ²)	3	3	0.729724(3) [4]	0.67680232(63) ^[5]	
	honeycomb (6 ³)	3	3	0.697043(3) ^[4] 0.6970413(10) ^[6]	0.652703645 = 1-2 sin (π /18), 1+ ρ ³ -3 ρ ² =0 ^[8]	
	kagomé (3, 6, 3, 6)	4	4	0.650700645 4 0.6in/m/40\[8]	0.524404978(5) ^[7] , 0.52440499(2) ^[9] , 0.52440516(10) ^[6] , 0.5244053(3) ^[10]	
	(3, 4, 6, 4)	4	4	0.621819(3) [4]	0.52483258(53) ^[5]	
-	square (4 ⁴)	4	4	0.59274621(13) [11], 0.59274621(33) [12], 0.59274598(4) [13][14], 0.59274605(3)[9]	1/2	
	(3 ⁴ ,6)	5	5	0.579498(3) [4]	0.43430621(50) ^[5]	
	puzzle (3 ² , 4, 3, 4)	5	5	0.550806(3) [4]	0.41413743(46) ^[5]	
((3 ³ , 4 ²)	5	5	0.550213(3) [4]	0.41964191(43) [5]	
	triangular (3 ⁶)	6	6	1/2	0.347296355 = 2 sin ($\pi/18$), 1+ p^3 -3 p =0 ^[8]	

Correction-to-scaling exponent for two-dimensional percolation

$$n_s(p_c) \sim As^{-\tau}(1 + Cs^{-\Omega} + \ldots),$$

 n_s = number of clusters of size s, at the critical threshold pc. τ = 187/91.

TABLE I. History of determinations of Ω , $\omega = D\Omega = (91/48)\Omega$, and $\Delta_1 = \Omega/\sigma = (91/36)\Omega$. Numbers in parentheses represent errors in last digit(s), and are shown on original values only.

Year	Author	Method	Ω	ω	Δ_1
1976	Gaunt and Sykes [4]	Series	0.75(5)	1.42	1.90
1978	Houghton, Reeve, and Wallace [5]	Field theory	0.54-0.68	0.989 - 1.28	1.32-1.71
1979	Hoshen et al. [6]	MC	0.67(10)	1.27	1.69
1980	Pearson [7]	Conjecture	$64/91 \approx 0.703$	1.333	1.778
1980	Nakanishi and Stanley [8]	MC	0.6-1		
1982	Nienhuis [9]	Field theory	$96/91 \approx 1.055$	2	2.667
1982,1983	Adler, Moshe, and Privman [10,11]	Series $p < p_c$	0.5	0.95	1.26
	Adler, Moshe, and Privman [10,11]	Series	0.66(7)	1.25	1.67
1983	Aharony and Fisher [12,13]	RG theory	$55/91 \approx 0.604$	$55/48 \approx 1.15$	55/36 ≈ 1.5
1983,1984	Margolina et al. [13,14]	MC	0.64(8)	1.21	1.62
	Margolina et al. [13,14]	Series	0.8(1)	1.52	2.02
1985	Adler [15]	Series	0.63(5)	1.19	1.59
1986	Rapaport [16]	MC	0.71 - 0.74		
1998	MacLeod and Jan [17]	MC	0.65(5)	1.23	1.64
1999	Ziff and Babalievski [18]	MC	0.77(2)	1.46	1.95
2001	Tiggemann [19]	MC	0.70(2)	1.33	1.77
2003	Aharony and Asikainen [20,21]	Theory (hulls)	72/91	1.5	2
2007	Tiggemann [22]	MC	0.73(2)	1.38	1.85
2008	Kammerer, Höfling, and Franosch [23]	MC	0.77(4)	1.46	1.95
2010	This work	Theory	$72/91 \approx 0.791$	1.5	2

Used Cardys' result for crossing of an annulus to find size distribution

$$\Pi(\tau) = \frac{\eta(-1/3\tau)\eta(-4/3\tau)}{\eta(-1/\tau)\eta(-2/3\tau)} = (3/2)^{1/2} \frac{\eta(3\tau)\eta(3\tau/4)}{\eta(\tau)\eta(3\tau/2)}, \quad (3)$$

where
$$\eta(\tau) = q^{1/24} \prod_{n=1}^{\infty} (1 - q^n) = \sum_{n=-\infty}^{\infty} (-1)^n q^{(6n+1)^2/24}$$

$$\Pi(R/R_1) = \sqrt{\frac{3}{2}} \left(\frac{R}{R_1}\right)^{-5/48} \left\{ 1 - \left(\frac{R}{R_1}\right)^{-3/2} + \left(\frac{R}{R_1}\right)^{-2} - \left(\frac{R}{R_1}\right)^{-7/2} + 2\left(\frac{R}{R_1}\right)^{-4} - \dots \right\},$$
 (5)

Simulation results – up to 2.5×10^{11} clusters up to size s = 1000.

Explosive growth in clusters created through a biased "Achlioptas" growth process on a regular lattice

Achlioptas process

- Recently, Achlioptas, D'Sousa, and Spencer considered cluster growth on random (Erdös-Rényi) lattices by the so-called Achlioptas process:
 - Pick two bonds
 - Calculate weight = product of masses of the two clusters the bond connects
 - Choose bond of *lower* weight

Achlioptas et al, Science 2009

- ER = Erdös-Rényi (regular percolation), BF = Bounded size rule, PR = product rule. C/n = maximum cluster size divided by the number of sites
- They find "Explosive Growth" in the PR model.

Dimitris Achlioptas, UCSC

Raissa D'Sousa, UCD

Joel Spencer, NYU

Erdős Rényi Random Graph

Alfréd Rényi 1921-1970

Minimum spanning tree

Paul (Pál) Erdős 1913-1996

My Erdös number is 2 by way of Mark Kac

Tree form

Achlioptas processes on a regular (percolation) lattices

- Define t = time = number of bonds added to connect distinct clusters.
- Then, the number of clusters is n t, where n
 is the initial number of sites, since adding
 additional

For lattice percolation, I find (1024x1024 lattice):

The SIR model on a square lattice

Susceptible-Infected-Recovered

With David de Souza and Tânia Tomé.

- That is S → I with rate (1-c)I_{neighbors}/4
- I →R with rate c

(I remains I for an exponentially distributed time)