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Intro
Kinetic Monte Carlo:

Simulation of the dynamics of stochastic processes

Simulation here means:
Generation / sampling of time sequences on a computer 

Examples:
• Random walk in discrete time and discrete space
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• Diffusion (Brownian dynamics) in discrete time and continuous space
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Examples cont.

• Diffusion in continuous space AND continuous time
- Greens function kinetic Monte Carlo
- First passage time kinetic Monte Carlo 

• Multi particle diffusion  - with barriers (e.g. surface diffusion / epitaxial growth)
- with collisions / exclusions (lattice gas, ASEP, …)
- with chemical reactions (Reaction-diffusion simulations)  

• Chemical reactions

e.g.   A + B  C    (1)     with (forward) reaction rate k1
k1

System state:  S = (#A, #B, #C)
Possible transitions for reaction 1:   S  S’ = ( #A-1, #B-1, #C+1 )
Transition probability: P(S’,t+dt | S,t) = a1dt + O(dt2)
Propensity a1 = k1  #A  #B (because of #A  #B possibilities for reaction 1)

Transition rate w(SS’) = P(S’,t+dt | S,t) /dt
(independent of time since process is Markov) 



Chemical reactions cont.

Discrete state space (number of molecules of each species S=(#A,#B,#C,…)
Chemical reactions = stochastic process in this discrete state space

Example:
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Reactions one process realization Reaction times and types

For 0  #A  9, 0  #B  9, 0  #C  9, … Master eq has 107 coupled ODEs
too complex to solve numerically

Master equation



Exact stochastic simulation
Remark: For large number of molecules and well stirred condition (spatial homogeneity) 

deterministic mean-field description good
ODEs for A(t)=<#A>(t), B(t)=<#B>(t), …
neglects number fluctuations!! 

For small number of reaction partners: exact stochastic simulation

One reaction SS’:  
P(S’,t+dt| S,t) = a1dt  Prob. That the transition SS’ happens at time 

P(S’,t+|S,t) = a1exp(-a1) (Poisson process)

Numerical generation of transition times: 
Generate exponentially distributed random numbers
X = ln y / a1,   y uniformly distributed over [0,1]

Many reactions – like  Gillespie’s algorithm



Gillespie’s direct method

• Which reaction occurs next?
• When does it occur?

Basic problem in a simulation of a stochastic process with many possible transitions

Gillespie’s answer [J. Comp. Phys. 22, 403 (1976)]:

Probability density P(,) that the next reaction is  and it occurs at time :

Probability distribution for reactions:
integrating (*) over  

Probability distribution for times:
summing (*) over  

Related idea in standard Monte Carlo for Ising spin systems:
Bortz, Kalos, Lebowitz [J. Comp. Physics 17, 10 (1975)]



Gillespies direct algorithm



Gillespies First Reaction Method

Generate a putative time i for each reaction to occur (if no other reaction before)
Then choose the reaction  whose putative time is first and let  be 

Computations in each iteration: 1) Update all r of the propensities ai
2) Generate a putative time i
3) Identify the smallest putative time 

Modification (next reaction method) will do away with each of these  in turn 



Next reaction method
• Store i not just ai
• Update only the minimum number of ais (dependency graphs)
• Re-use is where appropriate
• Switch from relative times to absolute times
• Use appropriate data structures to store ais and is (indexed priority queue)

Event-driven algorithm,
similar to MD-simulation of
hard spheres or granular media

[Gibson, Bruck – J. Phys. Chem. A (2000)]



Reactions + Diffusion: Next sub-volume method

Not well stirred medium / non-uniform distribution of molecules:

Spatial inhomogeneity important! 

Particles diffuse in space:

Space discretization:
subvolumes of lateral size l

 random walk with jump rate



Next sub-volume method: Data structures



Algorithm: Next sub-volume method

[Elf, Ehrenberg – Syst. Biol.  2004]

Again: Event driven algorithm (now with diffusion events)!



Example: Min-system in Eschericha-Coli

[Fange, Elf – PLoS 2006]

Sofware package for simulations of
Mesoscopic Reaction-Diffusion Systems – MESO-RD:
http://mesord.sourceforge.net



Reaction-diffusion systems in continuous space:
Green‘s Function Reaction Dynamics

For low concentrations particles diffuse far before reacting:
 Choose maximum time tmax such that

each particle can interact with at most one other particle within this time



Green‘s function reaction dynamics

1 particle:

2 particles (with interaction force F(r)):

Separation in two independent processes:

interparticle
distance



Green‘s function reaction dynamics

Free diffusion of coordinate R:

Inter-particle coordinate r: Reaction (with rate ka) taken into account as 
absorbing boundary condition at distance 

j = outward radial flux of p2 through contact surface area 42

(via reactions)



Core algorithm for GFRD:

Survival probability:

Probability per unit time that
particle pair reacts at time:

Probability per unit time that
next reaction occurs at time t:

Dissociation:  C  A+B:

[van Zon, ten Wolde – J. Chem. Phys. 2005]

For F=0: p2 analytical solution,
For F0: numerical solution



First passage time kinetic Monte Carlo
„Diffusion without all the hops“

• protection zone (p.z.): domain around a particle with no other particles
• particles are freely diffusing within p.z.
• draw p.z. around each particle
• sample first passage time when a particle reaches the p.z. boundary
• propagate particle to boundary of p.z.
• update p.z.

[Oppelstrup et al – Phys. Rev. Lett. 2006]



First passage time kinetic Monte Carlo algorithm



Example: Sampling of first passage times in 1d



Example: Two reacting particles in the interval
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Example 2d: Two reacting particles in a box



Demonstration of FPTMC in 2d: 
Many reacting particles in a rectangle

Green particles on the left, red particles on the right, G+RB



Demonstration of FPTMC in 2d: 
Many reacting particles in an ellipse



RD dynamics with spatially varying reaction rate
Consider diffusion with spatially varying annihilation rate k(r,t):

km(t) = maximum of k(r,t)
tmax = maximum time

m = PDF of first annihilation times 
in domain G for homogeneous 
annihilation rate km

b = PDF of first passage times
to domain boundary G

n = PDF of positions after free
diffusion from t to ta within G

f = PDF of positions on boundary G
after free diffusion from t to tb

on domain G 
with absorbing bc

Algorithm first passage times:

[Schwarz, Rieger – J. Comp. Phys. in press (2012)]



Example: Rectangle with oscillating annihilation zone
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