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Intro

Kinetic Monte Carlo:
Simulation of the dynamics of stochastic processes

Simulation here means:
Generation / sampling of time sequences on a computer

Examples:

 Random walk in discrete time and discrete space
p=1/2«"\/" \p=1/2
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o Diffusion (Brownian dynamics) in discrete time and continuous space
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Examples cont.

« Multi particle diffusion - with barriers (e.g. surface diffusion / epitaxial growth)
- with collisions / exclusions (lattice gas, ASEP, ...)
- with chemical reactions (Reaction-diffusion simulations)

« Diffusion in continuous space AND continuous time
- Greens function kinetic Monte Carlo
- First passage time kinetic Monte Carlo

e Chemical reactions

eg.| A+B —ki C| (1) with (forward) reaction rate k,

System state: S = (#A, #B, #C)

Possible transitions for reaction 1. S —» S’ = ( #A-1, #B-1, #C+1)
Transition probability: P(S’,t+dt | S,t) = a,-dt + O(dt?)

Propensity a, = k, - #A - #B (because of #A - #B possibilities for reaction 1)

Transition rate w(S—S’) = P(S',t+dt | S,t) /dt
(independent of time since process is Markov)



Chemical reactions cont.

Discrete state space (number of molecules of each species S=(#A,#B,#C,...)

Chemical reactions = stochastic process in this discrete state space

Example:
Reactions one process realization Reaction times and types
ko ‘
A+B—( ®l.B Time | 0 17 50 60 93 108 121 150 155 175
% % #A 6 5 4 4 5 5 6 7 7 8
B4+ C—D 2 _ #B |14 13 12 11 11 11 11 11 10 10
. 3 #C |8 9 10 9 9 9 9 9 & 8
& 5 O r #D 12 12 12 13 13 14 14 14 15 15
iy e 2 A G #E 9 9 9 9 8 8 T 6 6 5
k, ES 1 T 1 _ #F 3 3 3 3 3 2 2 2 2 2
F—D+G = F,wr #G 5 5 5 5 4 5 4 3 3 2
" Reaction | — 1 1 2 5 4 5 5 2 5

v 0 0
E-+tir—A 0 50 100 150 200
Time (arbitrary units)

Master equation

d
dt

S."

ForO<#A<9,0<#B<9,0<#C <9, ... Master eq has 10’ coupled ODEs
too complex to solve numerically

—P(S,t) = [w(S" = S) P(S".t) —w(S — S') P(S.1)]



Exact stochastic simulation

Remark: For large number of molecules and well stirred condition (spatial homogeneity)

deterministic mean-field description good Lost) = —kipa(t)pp(t) +kap. ..
ODEs for pa(t)=<#A>(1), pg(t)=<#B>(1), ... sop(t) = —kipa(t)ps(t) + ksp. ..

neglects number fluctuations!! Epc(t)

For small number of reaction partners: exact stochastic simulation

One reaction S—S’:
P(S’,t+dt| S,t) = a,-dt = Prob. That the transition S—S’ happens at time t

P(S’,t+1|S,t) = a,exp(-ta;) | (Poisson process)

Numerical generation of transition times:
Generate exponentially distributed random numbers
X=Iny/a;, yuniformly distributed over [0,1]

kl
AT B—=(C

] ] B+ ('LI)
Many reactions —like . -, . .

ky
F—D+G

— Gillespie’s algorithm

ks

E+G—A

= +kipa()ps(t) + kap. ..



Gillespie’s direct method

Basic problem in a simulation of a stochastic process with many possible transitions
* Which reaction occurs next?

 When does it occur?

Gillespie’s answer [J. Comp. Phys. 22, 403 (1976)]:

Probability density P(«, 7) that the next reaction is x and it occurs at time

P(p,7)dr = a, exp (—T Zaj) dr

J

Probability distribution for reactions:
integrating (*) over Tt = prob (reaction i) = a,,/ Z a;
j
Probability distribution for times:

summing (*) over u = P(r)dr = (Z a)-) exp (—TZ a_}) dr
j j

Related idea in standard Monte Carlo for Ising spin systems:
Bortz, Kalos, Lebowitz [J. Comp. Physics 17, 10 (1975)]



Gillespies direct algorithm

Algorithm 1. Exact Stochastic Simulation — Direct Method

(Gillespie)
1. Initialize(i.e., set initial numbers of molecules, set
t~— ).

2. Calculate the propensity function, a;, for all i.
3. Choose u according to the distribution prob (reaction p) = a,/ > " aj

4. Choose T according to an exponential with parameter
Y ajie P(r)= (3 a;)-exp(-1 Y a;)

5. Change tne number of moiecules to reflect execution of
reaction u. Sett — 1t + T.

0. Go to Step 2.




Gillespies First Reaction Method

Generate a putative time t; for each reaction to occur (if no other reaction before)
Then choose the reaction u whose putative time is first and let t be t,

Algorithm 2. (Exact Stochastic Simulation — First Reaction
Method)

1. Initialize(i.e., set initial numbers of molecules, set
t<—0).

2. Calculate the propensity function, a;, for all i.

3. For each i, generate a putative time, T; according to
an exponential distribution with parameter a;.

4. Let u be the reaction whose putative time, T, is least.

5. Let T be 1.

6. Change the number of molecules to reflect execution of
reaction |. Sett <t + T.

7. Go to Step 2.

Computations in each iteration: 1) Update all r of the propensities a,
2) Generate a putative time T,
3) Identify the smallest putative time t,

Modification (next reaction method) will do away with each of these in turn



Next reaction method

e Store t; not just a,
» Update only the minimum number of a;s (dependency graphs)—>
» Re-use t1;s where appropriate

» Switch from relative times to absolute times
» Use appropriate data structures to store a;s and t;s (indexed priority queue)

Algorithm 5. (Exact Stochastic Simulation — Next Reaction
Method)
1. Initialize:
(a) set initial numbers of molecules, set t < 0, generate
a dependency graph &
(b) calculate the propensity function, a, for all i;
(c) for each i, generate a putative time, t; according fo
an exponential distribution with parameter a;;
(d) store the 1; values in an indexed priority queue ~’

\ 4

A

2. Let i be the reaction whose putative time, 1, stored in H
A s least. (5,9.1)| (10, 10.1){[(3, =)
3. Let T be 1,
4. Change the number of molecules to reflect execution of _ _ _
reaction u. Set t ~— T. BIF|J|E|H|C|G|A|D] I
5. For each edge (u, o) in the dependency graph & 112 314151617189 110
(a) update ay; . .
(b) if oo = u, set Ty ~— (Ag,old/ Aqnen) (T, — 1) + 1 (see Event-driven a|90rlthm,
";fe 11); , , . similar to MD-simulation of
c) If o = u, generate a random number, p, according .
( )fofan exj)onkenria] distribution with paranﬁfz)erer ap, anZ’ hard Spheres or granUIar media

sel o~ p + I
(d) replace the old 1, value in A~ with the new value.

6. Go to Step 2. [Gibson, Bruck — J. Phys. Chem. A (2000)]



Reactions + Diffusion: Next sub-volume method

Not well stirred medium / non-uniform distribution of molecules:

Spatial inhomogeneity important!

Particles diffuse in space:

6p(r,t)

. DV p(r,t)

Space discretization:

subvolumes of lateral size 7

= random walk with jump rate

d) =d}, =D/




(4]

Next sub-volume method: Data structures

3 +— 2 &
W
i nl n2 n3 n4 nS5 nb #A #B #C ri[s1] si[s!] mitsi [s?] Q
1] 2 1 3 1 5 | 1 2 0 2.2 10 122 5
21 2 1 4 2 6 2 9 1 3 4.2 1.3 155 Z
314 3 3 1 i 3 5 0 2 23 54 T Z
414 3 4 2 8 4 ) 1 1 1.4 6.4 7.8 1
516 5 I B 5 1 4 0 2 0.4 4.3 4.7 6
61 6 5 @ & 6 Z 7 1 3 0.5 10.3 10.8 9
718 7 7 5 i 3 8 2 4 1.0 13.5 14.3 4
8l 8 7 8 6 8 4 2 0 2 2.3 5.4 107 3
Connectivity matrix Configuration Rate matrix Q-array

Qno: 1
SV: 4
time: 10.2s

Qn:o: 2
SV: 3
time: 11.2s

Qno: 3
SV: 8
time: 10.3s

Qno: 4
SV: 7
time:12.2s

Qn:o: 5
SV: 1
time:13.3s

Qn:o: 6
SvV: 5
time: 10.5s

Qnio: 7
SV: 2
time: 11.3s

Qn:o: 8
SV: 6
time: 13.0s

Event Queue

Position in

Queue (Q)

0O~ Ul = WIN —

Subvolume (SV)

7i (s)

N U — ~1 00 W K~

10.2
11.2
10.3
12.2
13.3
10.5
11.3
13.0




Algorithm: Next sub-volume method

Initialization

1.
2.

Generate a connectivity matrix (see Fig.1, legend)

Distribute the initial numbers of molecules between the subvolumes and store them in the
configuration matrix (see Fig.1, legend).

Calculate the sum, 1

a

R
= Zcr,g . of intensities (a;,) for chemical reactions (j ) in the
J=l

subvolume a and store it in the rate matrix (Fig. 1, legend). The reaction intensities are
calculated by using the volume A of the SV and the number of molecules in the SV to obtain

the current concentrations.
M

Calculate the sum, s, = th‘j,\’;’ , of diffusion intensities (de;’) in the subvolume o and
j=1 )

store it in the rate matrix. The parameter d; =D;/ /* is the rate constant for jumps between

neighboring subvolumes for species j, as defined above. X/ is the number of molecules of

species j in subvolume o and M is the number of different molecular species in the system.
Calculate the sum, r,, + 5., for cach subvolume and generate a random number, rand,
uniformly distributed in [0,1]. This number samples the time for the first reaction-diffusion
event in each subvolume as t, =—In(rand)/( r, + s,).

Store the ¢, in the event queue array, in such a way that all branches of the event queue are
sorted with increasing event time. (Fig. 1, legend)

lterations
The next reaction-diffusion event will occur at time ¢;_ in the subvolume, o=A, that is at the
top of the event queuwe. The event will be a chemical reaction if a newly generated
rand<r;/(r, +s;), and otherwise a jump out from the volume by diffusion.

Chemical reaction event (rand< r;/(r; +s;))

7.

9.

10.

a.

Rescale rand to [0,1], by dividing it with r;, and use the updated rand to sample
which chemical reaction, 7, that has occurred in subvolume A according to the
probability P(i)=a/r.

Update the elements in the configuration matrix that belong to the subvolume where
the chemical event occurred.

Recalculate the sum, »; +s;. in this subvolume and generate a new rand in [0,1] to
obtain the time of the next reaction-diffusion event in this subvolume

(7% =t,=In(rand)[(r, +s,) .

Reorder the branch of the event queue with subvolume A according to the value of

next

;" (see below).

Diffusion event (rand> r;/(r; +5;)).

a.

d.

Rescale rand from paragraph 7. above according to (rand- r;)/(1- r;) and use the
rescaled rand to sample which species, i, that diffused out from the subvolume
according to the probability distribution (i) = a’ij /s, .

The neighboring subvolume, v, to which the diffusion event is targeted is sampled by
randomly choosing one of the six columns in the connectivity matrix.

Update the states of these S¥s by removing a molecule of species 7 from SV A and
adding it to SV y. Recalculate the sums, r; + s; and r, + s,, for the SV and its
neighbor where events have occurred. Generate two new random numbers, randl
and rand2, and sample the times when the next reaction or diffusion events occurs in

the subvolumes, £;* =7, —In(rand1)/(r, +s,) and £; =, ~In (rfmd2)/(ry +5, )
FA)L’,\I []ﬂd ,lf(‘,\.’

Reorder the event queune according to the values of 7} .

(see below).

Return to 7 for the next iteration.

Again: Event driven algorithm (now with diffusion events)!

[EIf, Ehrenberg — Syst. Biol. 2004]



Example: Min-system in Eschericha-Coli

A 5

0y
T

(1) MinDA? —«MinD,,, k,=0.0125pm™'s”
(2) MinDAY +MinD,,, —=—2MinD,,,, k,=9-10°M"s”
(3) MinE +MinD,,,, —=—MinDE Ko =5.56-10'M"'s"
(4) MinDE—*—MinD2>" +MinE k,=0.7s"

(5) MinDA> =", MinDAT" KAoP-ATP =0 55!

Sofware package for simulations of
Mesoscopic Reaction-Diffusion Systems — MESO-RD:
http://mesord.sourceforge.net

[Fange, EIf — PL0oS 2006]



Reaction-diffusion systems in continuous space:
Green‘s Function Reaction Dynamics

For low concentrations particles diffuse far before reacting:
= Choose maximum time At ., such that
each particle can interact with at most one other particle within this time

Armax,?l — H\/6D?Ztmax,z'




Green‘s function reaction dynamics

1 particle:
ty).

o\ (x,1|ro.t0) = DV2p,(r,1
1

fy) =

p(r,t 3/76Xp|:— L ]
[47D(1 - 1,)]7* 4D(1 - 1)

2 particles (with interaction force F(r)):

2 2
IP(Xa, g, [T 50, posTo) = [ DoV + DV — DBV - F(r)
+ DBV, - F(r)]
Separation in two independent processes: X Pa(r4,1p,1|T 40, ¥ o, 1)

R= \:DB/DArA + \'JDA/DBI'B,

o) = (Dy+ Dp) Vg X py(R.1

l‘=l‘B—l‘A, fp7 (R TO)
interparticle
distance

to) =(Dy+ D)V, - (V.= F(r))

rp?(

X pg(r,to|r,l‘0), r| = O




Green's function reaction dynamics

Free diffusion of coordinate R:
exp[— |R = Ry|*/4(Dy + Dp)(t — 1,)]
[4m(Dy + Dp)(t - fo)]y2

pl;(R,f

Ry, 1) =

Inter-particle coordinate r: Reaction (with rate k,) taken into account as
absorbing boundary condition at distance o

ps(r, To|l'oafo) = d(r —ryp),

pi(|r| — oo, 1|r,15) =0,

N ’
— j(o,trg,ty) = 4770*D(,— — F(r))pz(r,I‘\ro,ro)|,[.zcr

ar

= k(.,]75(|r| = 0,1 l‘o,fo),

j = outward radial flux of p, through contact surface area 4nc?
(via reactions)



Core algorithm for GFRD:

For F=0: p, analytical solution,
For F#0: numerical solution

Survival probability:

Sa(f|l‘0,fo) = dl‘pg(r,f

|r|>0'

o, fo)

Probability per unit time that
particle pair reacts at time:

(?Sa(ﬂr()atO)
ot

qa(f|r03 [0)

Dissociation: C — A+B:

Probability per unit time that
next reaction occurs at time t;

qa(t|to)dt = kg expl— k,(t - to)]dt

(1) If the system is in the dissociated state A+ B, then draw
a next association time r according to g,(t|ry.1,)

(a) If (1—1y) = At then the two particles will not re-
act within the time step; new positions for A and B
at time fy+Atr,., are obtained from pl;(R,ro
+A‘fmax‘R0’rO) | and 1)5(r7t0+A1111§1x|r0vf0)

(b) If (r—ty) <At then the next reaction will occur
within the time step; a new position for particle C at
time ¢ is obtained from pX(R.f|Ry.1,)

(2) If the system is in the associated state C, then draw a
next dissociation time from ¢ ,(t|t,)

(a) If (t1—1y) = At then particle C will not have de-
cayed by f,+Afr,. a new position for particle
C, rc, at time ty+At,,, is obtained from p;(rc,1,
+A{mux‘rC07tO) _ M

(b) If (r—1y) <At the next reaction will occur within
the maximum time step; the particles A and B are
placed at time ¢ adjacent to each other at positions
around r as obtained from p(rq,f|rqg, 1)

[van Zon, ten Wolde — J. Chem. Phys. 2005]



First passage time kinetic Monte Carlo
, Diffusion without all the hops*

* protection zone (p.z.): domain around a particle with no other particles
» particles are freely diffusing within p.z.

« draw p.z. around each particle

« sample first passage time when a particle reaches the p.z. boundary

* propagate particle to boundary of p.z.

» update p.z.

[Oppelstrup et al — Phys. Rev. Lett. 2006]



First passage time kinetic Monte Carlo algorithm

(1) Set the global time clock to zero. Construct nonover-
lapping protective domains around all walkers—use indi-
vidual protection for single walkers and group protection for
close pairs, as seems most efficient.

(2) Sample an exit time for each domain (in the case of
protected pairs this can mean a scheduled collision). Put the
sampled event times in an event queue (e.g., implemented as
a heap), so that the shortest time can be efficiently found.

(3) Find the shortest exit time and identify the corre-
sponding walker and domain. Sample the exit position for
the selected walker. If the new position corresponds to a
collision, take appropriate action.

(4) Check if any of the existing protective domains are
close to the new position of the particle. If necessary to make
more space available for protection of the propagated par-
ticle, use no-passage propagators to sample new locations for
the particles in the neighboring domains.

(5) Construct new protective domains for all particles that
changed their positions in steps (3) or (4).

(6) Sample new event times for the particle(s) protected in
step (5), as in step (2).

(7) Insert the new event time(s) into the event queue. Go
to step (3).



Example: Sampling of first passage times in 1d

 New boundary conditions:
- reflecting on the left: 3P($g|$0ato) om0 =0 |
- =

Y

- absorbing on the right: P (L, t|xg,tg) = 0 0 L 7
=>P(z,t|xo,%0) is not normed fort > ty
- The probability for not having left the interval: TV (¢|zq, tg) = fOL dx P(x,t|zg,to)

* The probability density (in time) OW (t|xo,to)
for leaving the interval: p(tlxo,to) = — ot

=> times for leaving the interval are sampled by applying the Inversion methodon 1 — W .

0.025

p(t2,0)

10000 samples
100000 samples =

1000000 samples

Histograms (At = 0.5 ) of
sampled relative frequencies
for leaving at time t, with
L=10; #5=2, D=1

Example:

Prob. dens/rel. freq.

0 50 100 150 200




Example: Two reacting particles in the interval

| | | | -
| I I I T
0 I T2 L
| ——— - 7\ g J
A AND A,

« |f the particles vanish (reaction) at contact, the common probability density for the red
and the green particle obeys:

OP(x1,x9,t|x19,220,t0) __ 8° 9>
atlo 0 Dl 8:?812 —|— DZW P($1,$2,t|$10,x207t0)

with the initial condition P(xzy, s, to|z10, X290, t0) = (1 — T19) - 6(22 — X20)

This two dimensional diffusion problem must be solved in the gray triangle domain:

:[;21\

L

There is no analytic
. solution available for the
probability density.

T20 T

& _ '
7 reflecting Strategy: Solve the

absorbing problem in sequence of
of easier problems.




Let's keep things simple Dy = Dy = D

* |tis always possible to sample whether the green or the red particle reaches the middle
position 1/2(z2 — ;) combined with a corresponding arrival time.

1) Split the system to two different first passage problems to the middle

| [ ] L l @ |
| i 4 : -
; . F.3 ' T T . . : ; =S
0 Iy r2 L f t i > + b A :E L >
[E—— 15 - —— 0 :El :L‘l + A]o ; 1:2 . 2,-: 2
Ay Aro Ay =

2) Solve them in the way it is shown before and look for the smallest arrival time.
For example, the arrival time T’y of the red particle is smaller than the arrival time T2 0f
the green one.

3) Update the system “Gillespie-like” :

-The time is incremented by T,

-The red particle is moved to the middle

- For the green particle a new position in its subinterval is sampled with the
Greens function method under the condition of not having left the subinterval.

- | | t+ = Tl | "‘/\¢ .f\ |

o § ey ——— >y

0 = | ry L 0 T2 L o
A Aq2 Ay IAY A2 Ar




In our 2d picture, this is equivalent to the first passage problem to the absorbing boundaries
of an interior rectangle:

)

—— reflecting
absorbing

1
2 — §A12




» This strategy can be continued arbitrary often, the particles will come arbitrary close
to each other, but they will never meet.

Two possibilites to overcome this problem:

a) Stop, if a very small threshold-value is reached
Apart from the fact, that it is “only” an approximation, there is a second disadvantage.
If the particle-particle-distance is very small, the time incrementations per step will
also become very small.

b) Changing basis: u=x; +x2 v =21 — Z2

L

—— reflecting
absorbing

P
?

L o L

(2)

If situation (1) happens, the particles meet and the algorithm stops.
In the case of situation (2), we go on with a new step, either in the old or the new

basis (depending on the ration between particle distance and the minimum
particle-wall distance).

’ (1)



Example 2d: Two reacting particles in a box

 |f the dimension is higher than 1, a minimum distance ( (the sum of the

particle radii) is needed

 The same strategy as before can also be used in a higher dimension:

/

‘1‘_\‘{:3

N




Demonstration of FPTMC in 2d:
Many reacting particles in arectangle

Green particles on the left, red particles on the right, G+R—B

t=4.616008




Demonstration of FPTMC in 2d:
Many reacting particles in an ellipse




RD dynamics with spatially varying reaction rate

Consider diffusion with spatially varying annihilation rate k(r,t):

OP(r,t|ro, to)
ot

= DAP(r,tlrg.tg) — k (r,t) P(xr.t|rg, to)| Ondomain G
with absorbing bc

Algorithm first passage times:

Illpllt: ro, to, tmax, km(t)

Output: r,{ K.,(t) = maximum of k(r,t)
b+ to t o = Maximum time
r<—rTro
repeat
to + random number according to p,,(-|t) Pm = PDF of first annihilation times
tp + random number according to pf’ (-|r.t) in domain G for homogeneous
if (tmax < min(t,,t;)) then o
r + random position according to pi?(-]tmax. r.t) annihilation rate km
f <_ flna:(
else _ . .
if (t, < 1) then pp, = PDF of first passage times
r + random position according to p,];)(-|fa. r,t) to domain boundary oG
else
r + random position at the boundary 0G .
according to p? (-[ty,r, 1) p, = PDF of positions after free
end if diffusion from t to t, within G
t + min(ta,ts)
end if o
until E(,’jf,f’;ii > ran|0, 1]) or (ta > tp) or (t = r)) ps = PDF of positions on boundary 0G
return (r,¢) after free diffusion fromtto t,

[Schwarz, Rieger — J. Comp. Phys. in press (2012)]



Example: Rectangle with oscillating annihilation zone

w0 1 =
1 £ 0.9
5 —reflecting l.% 3?
Y X@s ——absorbing 2 0.6
L. 5 05
| 18 : £ 04
S 0.3
‘ 3 . 2 S
kr.t) = {310 D) 1 (@ =l =2l"), lIr—zll<e oo
| . - PR =
0 llr —z|| > ¢ = 0.1F [ 2 S —
= U610 20 30 40 50 60 70 80 90 100

t

Pz:y(t = 20)

S
\\\.“‘
\'\\\\
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