
Optimal Vertex Cover for the Small-World Hanoi NetworksStefan Boetther∗Physis Department, Emory University, Atlanta, GA 30322; USAAlexander K. HartmannInstitut für Physik, Universität Oldenburg, D-26111 Oldenburg; Germany(Dated: Marh 31, 2011)The vertex-over problem on the Hanoi networks HN3 and HN5 is analyzed with an exat renor-malization group and parallel-tempering Monte Carlo simulations. The grand anonial partitionfuntion of the equivalent hard-ore repulsive lattie-gas problem is reast �rst as an Ising-like anon-ial partition funtion, whih allows for a losed set of renormalization group equations. The �owof these equations is analyzed for the limit of in�nite hemial potential, at whih the vertex-overproblem is attained. The relevant �xed point and its neighborhood are analyzed, and non-trivialresults are obtained both, for the overage as well as for the ground state entropy density, whihindiates a non-trivial struture of the solution spae. Using speial hierarhy-dependent operatorsin the renormalization group and Monte-Carlo simulations, strutural details of optimal on�gura-tions are revealed. These studies indiate that the optimal overages (or pakings) are not relatedby a simple symmetry. Using a lustering analysis of the solutions obtained in the Monte Carlosimulations, a omplex solution spae struture is revealed for eah system size. Nevertheless, in thethermodynami limit, the solution landsape is dominated by one huge set of very similar solutions.I. INTRODUCTIONWe study the vertex-over problem [1, 2℄ on the reently introdued set of Hanoi networks [3�5℄[42℄. An optimalvertex over attempts to �nd the smallest set of verties in a graph suh that every edge in the graph onnets toat least one vertex in that set. It is one of the lassial NP-hard ombinatorial optimization problems disussed inRef. [6℄. The problem is equivalent to a hard-ore lattie gas [7℄, were any pair of partiles must be separated by atleast an empty lattie site. The vertex-over problem has attrated reently a lot of attention in physis, beause onensembles of Erd®s-Rény random networks [8℄, phase transitions in the struture of the solution landsape were foundthat oinide with a polynomial-exponential hange of the running time of exat algorithms [1, 2℄.During the last deade, alternative ensembles of random networks have attrated the attention of physiist. Wellknown-examples are Watts-Strogatz small-world networks [9℄ and sale-free networks [10�13℄. These networks exhibitmore struture and desribe the behavior of real networks muh better [14℄. Also, physial systems whih live on thesemore omplex network/lattie strutures behave di�erently ompared to regular latties or purely random networks,e.g., the pure Ising model [15, 16℄.Hanoi networks mimi the behavior of small world systems without the usual disorder inherent in the onstrution ofsuh networks. Instead, they attain these properties in a reursive, hierarhial manner that lends itself to exat real-spae renormalization [17℄. These networks do not possess a sale-free degree distribution; they are, like the originalSmall Worlds, of regular degree or have an exponential degree distribution. These Hanoi networks have a more�physially� desirable geometry [18℄, with a mix of small-world links and a nearest-neighbor bakbone harateristiof lattie-based models [4℄.For the vertex-over problem onsidered here, or the equivalent hard-ore lattie gas, it is di�ult to �nd metristrutures with a non-trivial solution. For instane, hyper-ubi latties are bipartite graphs whih always havean obvious unique and trivial solution without any on�its. Of the planar latties, the triangular one is ertainto exhibit imperfet solutions (i.e., there will be edges requiring multiple overings for any solution), but any suhsolution is translationally invariant and an be easily enumerated, leading to a vanishing entropy density. Similarly,a fratal lattie like the Sierpinski gasket, say, only has trivial solutions of that sort. Both of these examples aredisussed in Fig. 1. In ontrast, we �nd an extensive ground-state entropy here, similar to the anti-ferromagnet ona triangular lattie [19℄. Yet, our ground states do not appear to be the result of any symmetry relation. Thus, thestudy of the vertex-over problem on the Hanoi networks a�ords simple, analytially tratable examples of overagesthat have nontrivial entropy densities. In fat, analytially we found merely an approximate algorithm to generate
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Figure 1: Vertex overing for a triangular lattie (left) and a Sierpinski gasket (right). In both ases, the optimal overage(large dots) is imperfet (i.e., some edges possess double overings). Yet, these solutions are either unique, as for the Sierpinskigasket, or possess a �nite symmetry, suh as the possible translations on the triangular lattie, both ases leading to a vanishingentropy density. For both latties it is easily seen that the asymptoti overage is 2

3
. In ase of the triangular lattie, the unitell (dashed red box) ontains two verties ompletely and shares eight verties half with other ells, i.e., it has e�etively

2 + 8

2
= 6 verties of whih 1 + 6

2
= 4 are overed. The unit ell in the Sierpinski gasket ontains 3 + 3

2
verties of whih thethree fully ontained ones must be overed.(and enumerate) the set of all solutions whose ardinality we an determine at any �nite system size by exatrenormalization.Using Branh-and-Bound algorithms, we enumerate exat solutions[2℄. But due to the exponentially growingrunning time of this exat algorithm, we are restrited to rather small system sizes. Hene, for most of our numerialstudies performed here, we use Monte Carlo simulations [20℄ to generate the solutions and lustering algorithms toeluidate their orrelations [21℄.Previous work [7℄ has foused on averaged properties on loally tree-like (mean-�eld) networks using the repliamethod, unearthing interesting phase transitions for the problem. Thus far, there are only few investigations intothe statistial mehanis of the vertex-over problem on more omplex networks. In a study of randomly onnetedtetrahedra [22℄, glassy behavior was observed. When introduing degree-orrelations, it was found that the vertex-over problems beomes numerially harder [23℄.This paper is organized as follows: we review in the next Setion the properties of the Hanoi networks, and inSe. III we brie�y reount the relevant theory for a thermodynami study of vertex over in terms of a hard-orelattie gas. In Se. IV, we develop the renormalization group treatment of the lattie gas, with most of the tehnialdetails deferred to an Appendix VII, and its appliation to the Hanoi networks HN3 and HN5. It follows a detailednumerial study of the problem in Se. V. We �nish with our onlusions and an outlook for future work in Se. VI.II. GEOMETRY OF THE HANOI NETWORKSEah of the Hanoi networks possesses a simple geometri bakbone, a one-dimensional line of sites 0 ≤ n < N =

2k + 1 sites [3, 4℄. Most importantly, all sites are onneted to their nearest neighbors, ensuring the existene of the
1d-bakbone. To generate the small-world hierarhy in these networks, onsider parameterizing any integer n (exeptfor zero) uniquely in terms of two other integers (i, j), i ≥ 1, via

n = 2i−1 (2j + 1) . (1)Here, i denotes the level in the hierarhy whereas j labels onseutive sites within eah hierarhy. For instane, i = 1refers to all odd integers, i = 2 to all integers one divisible by 2 (i. e., 2, 6, 10,...), and so on. In these networks,aside from the bakbone, eah site is also onneted with some of its neighbors within the hierarhy. For example, weobtain a 3-regular network HN3 (best done on a semi-in�nite line) by onneting �rst the bakbone, then 1 to 3, 5to 7, 9 to 11, et, for i = 1, next 2 to 6, 10 to 14, et, for i = 2, and 4 to 12, 20 to 28, et, for i = 3, and so on, as
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Figure 2: Depition of the 3-regular network HN3 on a semi-in�nite line. Note that HN3 is planar.depited in Fig. 2. Previously [3℄, it was found that the average hemial path between sites on HN3 sales as
dHN3 ∼

√
l (2)with the distane l along the bakbone.While HN3 is of a �xed, �nite degree, there exist generalizations of HN3 that lead to new, revealing insights intosmall-world phenomena [3, 4, 24℄. For instane, we an extend HN3 in the following manner to obtain a new networkof average degree 5, hene alled HN5. In addition to the edges in HN3, in HN5 we also onnet eah site in level i(i ≥ 2, i.e., all even sites), to (higher-level) sites that are 2i−1 sites away in both diretions. Note that Eq. (1) impliesthat the nearest neighbors of a site i within its hierarhy have a distane of 2 × 2i−1. The resulting HN5 networkremains planar but now sites have a hierarhy-dependent degree, as shown in Fig. 3. To obtain the average degree, weobserve that 1/2 of all sites have degree 3, 1/4 has degree 5, 1/8 has degree 7, and so on, leading to an exponentiallyfalling degree distribution of P {α = 2i + 1} ∝ 2−i. Then, the total number of edges L in a system of size N = 2k + 1as shown in Fig. 3 is

2L = 2 (2k + 1)+

k−1∑

i=1

(2i + 1) 2k−i = 5× 2k − 4, (3)where the expression outside the sum refers to the speial ase of those three verties at the highest levels, k − 1 and
k. Any other hoie of �boundary onditions� may vary the o�set in Eq. (3) but not the average degree, whih is

〈α〉 =
2L

N
∼ 5. (4)In HN5, the end-to-end distane is trivially 1, see Fig. 3. Therefore, we de�ne as the diameter the largest of theshortest paths possible between any two sites, whih are typially odd-index sites furthest away from long-distaneedges. For the N = 33 site network depited in Fig. 3, for instane, that diameter is 5, measured between site 3 and19 (starting with n = 0 as the left-most site), although there are many other suh pairs. It is easy to show reursivelythat this diameter grows as

dHN5 = 2 ⌊k/2⌋+ 1 ∼ log2 N. (5)Other variants of the Hanoi networks are oneivable. For instane, a non-planar version has been designed [25, 26℄,but that network happens to possess only a unique, alternating overing of 1
2 and is not onsidered here.III. VERTEX-COVER PROBLEM AS A HARD-CORE LATTICE GASVertex over is a well-known NP-hard ombinatorial problem [6, 27, 28℄ that onsists of �nding a minimal overingof the verties of a network in suh a way that eah edge is overed at least one. Formally, for a graph G = (V, E),V being the set of verties and E ⊂ V (2) being the set of edges, a vertex over V ′ is a subset of V with the propertythat for eah (undireted) edge {i, j} ∈ E either i ∈ V ′ or j ∈ V ′. A minimum vertex over Vmin is a vertex over ofminimum ardinality |Vmin|.
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Figure 3: Depition of the planar network HN5, onsisting of an HN3 ore (blak lines) with the addition of further long-rangeedges (shaded lines). Note that sites on the lowest level of the hierarhy have degree 3, then degree 5, 7, et, omprising afration of 1/2, 1/4, 1/8, et., of all sites, whih makes for an average degree 5 in this network. (There is no distintion madebetween blak and shaded lines in our studies here.)As has been shown in Ref. [7℄, it an be formulated alternatively as a hard-ore repulsive lattie gas problem. In thisformulation, the unovered verties of the overing problems orrespond to the atual gas partiles. These partileshave a hard-ore repulsion suh that they an not oupy neighboring lattie sites, i.e., they annot simultaneous viefor the same edge. Interpreting these partiles as the voids of the overing problem implies that no edge may be leftunovered on both ends. Aordingly, all properties of the minimum over problem derive from the ground state ofthe lattie gas at its highest paking.The grand anonial partition funtion for suh a lattie gas is generially given by
Ξ (µ) =

∑

x0={0,1}

. . .
∑

xN={0,1}

exp

{
µ

N∑

i=1

xi

} ∏

<i,j>

(1− xixj) , (6)where the produt extends over all edges of the graph and exerts the hard-ore repulsive onstraint. The hemialpotential µ is provided to regulate the density as gas partiles get paked into the system. Sine maximal density ofthe gas implies minimal overage of all edges, we are looking for the on�gurations in the limit µ→∞ of the gas.The quantities [7℄ we seek are the thermodynami limit (N →∞) of the oupation density for the lattie gas,
ν (µ) =

1

N

〈
N∑

i=1

xi

〉

µ

=
1

N

∂

∂µ
ln Ξ (µ) , (7)and the entropy density of suh on�gurations,

s (ν (µ)) =
1

N

(
1− µ

∂

∂µ

)
ln Ξ (µ) . (8)As has also been shown in Ref. [7℄, one an extrat the orresponding properties of the minimal vertex overage fromthese in the µ→∞ limit. For the overage density, this orresponds simply to the void density of the gas,

cmin = 1− lim
µ→∞

ν (µ) , (9)and the entropy density of optimal overages is simply equal to that for the lattie gas:
sV C (cmin) = s (ν = 1− cmin) . (10)Due to the hierarhial struture of the Hanoi networks, we will also introdue level-spei� hemial potentials µi,for example, to extrat information about the overage with respet to the level of the hierarhy (i.e., the range itssmall-world edge attain) that a vertex may reside in. The orresponding derivations are presented in the Appendix.Throughout, we will �nd it often onvenient to express the hemial potentials as an ativity variable,

mi = e−µi (1 ≤ i ≤ k) , (11)suh that µi →∞ orresponds to the somewhat more tratable limit mi → 0.



5IV. RG FOR THE HARD-CORE LATTICE GAS ON HANOI NETWORKSThe renormalization group (RG) as applied to the lattie gas problem develop here ontains a few novel features.Thus, we have to elaborate to a signi�ant extend on the proedure. Although the RG will ultimately heavily rely onproedures used for Ising spin models, initially we will have to rewrite the grand anonial partition funtion of thelattie gas in an appropriate form. To this end, the purpose of the �rst step of the RG � already eliminating half ofall sites � is to generate the initial onditions for the subsequent anonial partition funtion analysis, in whih theusual oupling variables depend in a ompliated way on the hemial potential µ instead of a temperature, and theapparent �spin� variables are in fat Boolean, xi ∈ {0, 1}.We have to rewrite the generi partition funtion in Eq. (6) for the speial ase of the Hanoi networks. To aessmore details of the solutions, we will take the opportunity to generalize to the ase of a hierarhy-spei� hemialpotential µi for 1 ≤ i ≤ k, where N = 2k +1 is the size of the system. (For the RG, it is natural to onsider the Hanoinetwork with an open boundary both at node 0 and at node 2k; for a system with periodi boundaries on a loop, bothof these nodes would beome idential and N = 2k would be the size of the system. Of ourse, either hoie resultsin idential thermodynami averages.)First, we rewrite the hard-ore repulsive fator in Eq. (6) as separate produts, one for the long-range edges andthe other for the bakbone edges,
∏

<i,j>

(1− xixj) =




K∏

i=1

2k+1−i∏

n=1

(
1− x2i−1(n−1)x2i−1n

)





k−1∏

i=1

2k−i−1∏

l=1

(
1− x2i−1(4l−3)x2i−1(4l−1)

)

 . (12)The ase K = 1 orresponds to HN3, with a simple, one-dimensional line of edges onneting all sites in the bakbonesequentially. In turn, for HN5 we set K = k, referring with eah i > 1 to the layers of those edges that onnet alongthe bakbone only every seond site, every fourth site, every eight site, et., as shown in Fig. 3. Note that in Eq. (12)we have used the deomposition of the sites in the network implied by the renumbering in Eq. (1).By the same token, we re-order the summation in Eq. (6) as

∑

x0

eµi(0)x0 . . .
∑

xN

eµi(N)xN =
∑

x0

m−x0

i(0) . . .
∑

xN

m−xN

i(N) , (13)
=

∑

x0,x
2k−1 ,x

2k

m
−x0−x

2k−1−x
2k

k




k−1∏

i=1

2k−i−1∏

l=1

∑

x2i−1(4l−3)

∑

x2i−1(4l−1)

m
−x2i−1(4l−3)−x2i−1(4l−1)

i


 ,where we have simpli�ed the notation on the sums to mean∑x =̂

∑
x∈{0,1}. Of ourse, Eq. (13) has to be understoodin an operator sense, i.e., the summations extend to all site-variables that math the indiated index. Here, we havealso allowed for a site-spei� hemial potential. It is our goal to extrat loal paking information, not for eahsite, but for all verties within a spei� hierarhy, where i(n) refers to the hemial potential in the i-th level thatthe vertex n is assoiated with aording to Eq. (1). Naturally, the sites at the highest level k of the hierarhy(x0, x2k−1 , x2k) require a speial onsideration.In this parameterization of the indies, the produts in Eq. (13) an be ombined with those of the seond fator inEq. (12). Both refer to the small world edges in all levels of the hierarhy and are naturally expressed in a hierarhy-onform manner. Hene, we �nd for the grand-anonial partition funtion de�ned in Eq. (6) on a Hanoi networkwith k levels in the hierarhy:

Ξ
(k)
K (m1, . . . , mk) =

∑

x0,x
2k−1 ,x

2k

m
−x0−x

2k−1−x
2k

k SK (m2, . . . , mk−1)
2k−2∏

j=1

Θ
(
m1, x2(2j−2), x2(2j−1), x2(2j)

)
, (14)where we have de�ned the operator for the weighted summation on HN3 and HN5, respetively,

SHN3 ≡
k−1∏

i=2

2k−i−1∏

l=1

∑

x2i−1(4l−3)

∑

x2i−1(4l−1)

m
−x2i−1(4l−3)−x2i−1(4l−1)

i

(
1− x2i−1(4l−3)x2i−1(4l−1)

)
,

SHN5 ≡
k−1∏

i=2

2k−i−1∏

l=1

∑

x2i−1(4l−3)

∑

x2i−1(4l−1)

m
−x2i−1(4l−3)−x2i−1(4l−1)

i

(
1− x2i−1(4l−3)x2i−1(4l−1)

)
×

(
1− x2i−1(4l−4)x2i−1(4l−3)

) (
1− x2i−1(4l−3)x2i−1(4l−2)

) (
1− x2i−1(4l−2)x2i−1(4l−1)

) (
1− x2i−1(4l−1)x2i−1(4l)

)
.



6Note that these operators only sum over all even-indexed variables (i.e., i ≥ 2). To obtain a renormalizable form forthe partition funtion it is neessary to trae over the lowest level i = 1 of the hierarhy, i.e., to eliminate all odd-indexvariables. For both, HN3 and HN5, this results in an idential struture, de�ned as
Θ
(
µ1, x2(2j−2), x2(2j−1), x2(2j)

)
=

∑

x4j−3

∑

x4j−1

m
−x4l−3−x4l−1

1 (1− x4j−3x4j−1) (15)
(1− x4j−4x4j−3) (1− x4j−3x4j−2) (1− x4j−2x4j−1) (1− x4j−1x4j) ,

= 1 + eµ1
(
1− x2(2j−1)

) (
2− x2(2j−2) − x2(2j)

)
.In Appendix VIIA, we show how to reast Θ in an Ising-like form with a su�ient number of renormalizable param-eters. We an simplify the grand partition funtion in Eq. (14) further by ombining the produts and writing

Ξ(k) (m1, . . . , mk) =
∑

x0,x
2k−1 ,x

2k

m
−x0−x

2k−1−x
2k

k




k−2∏

i=2

2k−i−2∏

l=1

∑

x2i(4l−3)

∑

x2i(4l−1)




2k−3∏

l=1

ζl
1

(
x4(2l−2), x4(2l−1), x4(2l)

)
,(16)where the expliit expression for ζl

1 is also derived in Appendix VIIA for both, HN3 and HN5, whih allows us todrop the subsript label. In either ase, the RG reursion equations now result from imposing the reursive relationbetween hierarhies,
ζl
i+1

(
x2i+1(2l−2), x2i+1(2l−1), x2i+1(2l)

) (17)
=

∑

x2i(4l−3)

∑

x2i(4l−1)

ζ2l−1
i

(
x2i(4l−4), x2i(4l−3), x2i(4l−2)

)
ζ2l
i

(
x2i(4l−2), x2i(4l−1), x2i(4l)

)
,that are derived in Appendix VIIA. There, Figs. 15-16 also provide a graphial representation of Eq. (17).A. Analysis of the RG ReursionsWe �nd that the RG reursions that follow from the previous disussion, and whih are given expliitly in Eqs. (52)for HN3 and in Eqs. (54) for HN5 for the hard-ore lattie gas model, only have two trivial �xed points. There is astable low-density one for all µ <∞, i.e., m > 0, and an unstable �xed point at full-paking for µ = ∞, i.e., m = 0.Note that in this part of the analysis we are onerned with global properties, and thus, ignore di�erenes betweenthe hierarhial level by setting mi ≡ m throughout.1. Analysis for HN3The limit m→ 0 of the reursions in Eqs. (52) for initial onditions given in Eqs. (50) in Appendix VIIA is di�ultto handle. Exept for κ1, all other parameters are either diverging or vanishing in Eqs. (18) for that limit. To ahievea learer piture, we evolve the reursions one and obtain

η2 ∼
24

5
, γ2 ∼

8

3
, C2 ∼

m2

8
, κ2 ∼

15

8
, λ2 ∼

25

24
, ∆2 ∼

4

25m
. (18)In fat, further revolutions in the reursions seems to preserve this piture: Ci sales with a rapidly growing power of

m, while all other parameters and ∆̄i = m∆i beome �nite for m = 0 at any order i. Thus, we replae ∆ by ∆̄ andsubsequently set m→ 0 in Eqs. (52) yielding
Ci+1 ∼

mγiC
2
i

2
, γi+1 ∼ γiηiκi, ηi+1 ∼

4κi

(1 + κi)
2 ,

κi+1 ∼ λi

(1 + κi)

κi

, λi+1 ∼
(1 + κi)

2

4κi

, ∆̄i+1 ∼
2κ2

i ∆̄i(
2 + γiκ2

i ∆̄i

)
(1 + κi)

2 . (19)At its ore, the two reursions for κ and λ have beome independent of all the others. The m = 0 �xed-point itself isthen dominated solely by the stationary solution of their reursions in Eqs. (19),
κ∗ =

1

2
2
3 − 1

, λ∗ =
1

2
2
3

(
2

2
3 − 1

) . (20)
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Figure 4: Plot of the value of κi after the i-th RG-step for m = 10−2, 10−4, 10−6, and 10−8 (left to right). At a lengthsale ξ (m) = 2i with i = −
3

4
log2 m, the behavior of κi rosses over from the value at the unstable m = 0 �xed point,

κ∗ = 1/
“

22/3
− 1

”

= 1.70 . . ., to the stable m = 1 (µ = 0) �xed point at whih κ∗ = 1.Ergo, one �nds a onstant solution for η∗ = 4κ∗/ (1 + κ∗)2 = 1/λ∗ and the reursion γi+1 ∼ γi (κ∗/λ∗) with thesolution γi ∼ γ02
2i
3 whih diverges for large i. The situation for ∆̄i is more subtle. Numeris learly indiates itsdeay, but this ould our onsistently in two ways. First, if it were to deay suh that γi∆̄i still inreases, thenEq. (19) suggests ∆̄i+1 ∝ 1/γi, but that would render γi∆̄i onstant: a ontradition. Alternatively, if both, ∆̄i and

γi∆̄i deay, then ∆̄i+1 ∼ ∆̄i [κ∗/ (1 + κ∗)]
2, yielding ∆̄i ∼ 2−

4i
3 in a onsistent manner. Numerial studies verify thatthe latter solution is indeed realized.From the terms dropped in the m→ 0 limit, we an extrat a ross-over sale as follows: Ahieving the limit m→ 0implied that the widely ourring term mγi in Eqs. (52) was onsidered small enough to be disarded with respet toterms of order unity. Hene, identifying ξ =

√
2i(m) as the orrelation length within the small-world metri suppliedby Eq. (2), using γi(m) ∼ 1/m yields 2i(m) ∼ m− 3

2 or
ξ ∼ e

3
4µ (21)as the diverging length below whih the systems orders for an orrespondingly diverging hemial potential, µ→∞.Indeed, say, for m = 10−4 we �nd numerially that the solution veers o� the unstable �xed point just below the

i = 10th iteration, and Fig. 4 demonstrates the orretness of Eq. (21) for any small m.2. Analysis for HN5The analysis for HN5 is surprisingly subtle. Although the �xed point analysis for HN3 above required the singularlimit m → 0 as part of the onsideration, after the appropriate resaling of the parameters with m, the subsequentapproah proeeds in a familiar fashion. HN5 obsures this approah with an additional layer of omplexity, resultingfrom strong alternating e�ets order-to-order in the RG, as the numeris reveals. Of ourse, the initial onditionshere are idential to those for HN3 in Eqs. (50), with the same pathologies in the m → 0 limit. But whereas thoseproblems were essentially ured for HN3 after one RG-step and resaling, see Eqs. (18), here we �nd
C2 ∼

m2

2
, γ2 ∼ 2, η2 ∼

8

9
, κ2 ∼

3

8m
, λ2 ∼

9

8
, ∆2 ∼

8

9
, (22)



8and
C3 ∼

m5

16
, γ3 ∼

16

9m
, η3 ∼ 16m, κ3 ∼

9

16
, λ3 ∼

1

16m
, ∆3 ∼ 16m, (23)et. This alternation between regular and singular behavior of eah of the parameters persists thereafter. Leaving thereursion for Ci aside for now, we notie that for even indies, γ2n, η2n, mκ2n, λ2n, and ∆2n remain �nite for m→ 0,but for odd indies, this is true for mγ2n−1, η2n−1/m, κ2n−1, mλ2n−1, and ∆2n−1/m. De�ning γ̄2n−1 = mγ2n−1,

η̄2n−1 = η2n−1/m, κ̄2n = mκ2n, λ̄2n−1 = mλ2n−1, and ∆̄2n−1 = ∆2n−1/m, it is useful to rewrite the reursions inEqs. (54) separately for even and odd index. In fat, the limit m→ 0 on its expliit appearane an now be taken toget
γ2n = η̄2n−1 (2 + γ̄2n−1) , γ̄2n−1 = η2(n−1)

(
2 + mγ2(n−1)

)
→ 2η2(n−1),

η2n = γ̄2n−1
2 + γ̄2n−1

(1 + γ̄2n−1)
2 , η̄2n−1 = γ2(n−1)

2 + mγ2(n−1)(
1 + mγ2(n−1)

)2 → 2γ2(n−1),

κ̄2n = λ̄2n−1
(1 + γ̄2n−1)

2

2 + γ̄2n−1
, κ2n−1 = λ2(n−1)

1 + mγ2(n−1)

2 + mγ2(n−1)
→ 1

2
λ2(n−1), (24)

λ2n =
(1 + γ̄2n−1)

2

γ̄2n−1 (2 + γ̄2n−1)
, λ̄2n−1 =

1 + mγ2(n−1)

γ2(n−1)

(
2 + mγ2(n−1)

) → 1

2γ2(n−1)
,

∆2n = γ̄2n−1
2 + γ̄2n−1

(1 + γ̄2n−1)
2 , ∆̄2n−1 = γ2(n−1)

2 + mγ2(n−1)(
1 + mγ2(n−1)

)2 → 2γ2(n−1).Note that for the limit m → 0 we only assumed that mγ2(n−1) ≪ 1 for n → ∞ on the right-hand set of theserelations, whih provides a orrelation length from the ross-over nco = n (m) at γ2nco
∼ 1/m. Inserting the right-setof equations on the left then yields

γ2n = 4γ2(n−1)

(
1 + η2(n−1)

)
, η2n = 4η2(n−1)

1 + η2(n−1)(
1 + 2η2(n−1)

)2 , (25)
κ̄2n =

1 + 2η2(n−1)

4γ2(n−1)

(
1 + η2(n−1)

) , λ2n =

(
1 + 2η2(n−1)

)2

4η2(n−1)

(
1 + η2(n−1)

) , ∆2n = 4η2(n−1)

1 + η2(n−1)(
1 + 2η2(n−1)

)2 .These interlaing reursions now have a simple �xed point, whih derives from the only non-trivial solution of theself-ontained η-equation:
η∗ =

√
3

2
. (26)From this follows the equally stationary value

∆∗ =
1

λ∗
=

4η∗ (1 + η∗)

(1 + 2η∗)
=

3 +
√

3

2
, (27)but we also �nd the asymptotially saling

γ2n ∼ γ0

[
2
(
2 +
√

3
)]n
∝ 1

κ̄2n

. (28)This provides the orrelation length estimate
ξ = 2nco ∼ exp

{
µ

log2

[
2
(
2 +
√

3
)]
}

. (29)B. Coverage and EntropyTo understand the most pertinent features of the problem, suh as the optimal paking (or overage) and its entropy,we have to onsider the asymptoti behavior of the renormalization group parameter Ci, related to the growth of



9the overall energy-sale, in Eq. (19) for the initial ondition in Eq. (18). Clearly, the partition funtion at any �nitesystem size is a polynomial in eµ, i.e., in powers of m−1. Both of these quantities, overage and entropy, derive fromthe most divergent power in m to be found in Ξ. To wit, we an write for m→ 0

Ξ(k) ∼
(
σm−α

)2k [
1 + am + bm2 + . . .

]
. (30)Then, it is ∂µ ln Ξ = −m∂m ln Ξ ∼ 2kα, and we �nd from Eqs. (7-8):

ν = α,

s = lnσ,for N →∞ at m = 0.Eq. (16) provides the grand anonial partition funtion Ξ(k) for 2k site-oupation variables in terms of an Ising-like anonial partition funtion Z(k−1) for only 2k−1 (Boolean) spin variables. While Ξ(k) only depends on thehierarhial hemial potentials mi, ostensibly Z(k−1) depends on a tuple ~A1 of renormalizable ouplings, see Eq. (55)in Appendix VIIA, in addition to any expliit dependene on mi. Of ourse, the ouplings themselves are merely afuntion of the hemial potentials, ~A1 = ~A1 (m1), through the RG initial onditions in Eq. (50). Step-by-step in theRG, the ouplings transform aording to Eq. (56) eah time the system size halves, whereas the partition funtionstays invariant. Hene, we an expand on Eq. (16) and write
Ξ(k) (m1, . . . , mk) = Z(k−1)

(
~A1 (m1) , m2, . . . , mk

)
,

= Z(k−2)
(

~A2 (m1, m2) , m3, . . . , mk

)
,

= . . . , (31)
= Z(1)

(
~Ak−1 (m1, . . . , mk−1) , mk

)
,where Z(1) is simply a rudimentary Hanoi network onsisting of just three verties.1. Results for HN3Speializing this disussion for HN3, we �nd for the rudimentary partition funtion Z(1) in this ase

Z(1) = C−1
k−1

∑

x0

∑

x
2k−1

∑

x
2k

m
−(x0+x

2k−1+x
2k)

k γ
− 1

2 [(x0+x
2k−1)+(x

2k−1+x
2k)]

k−1

η
− 1

2 (x0+x
2k)

k−1 κ
−(x0x

2k−1+x
2k−1x

2k)
k−1 λ

−x0x
2k

k−1 ∆
−x0x

2k−1x
2k

k−1 . (32)For a uniform hemial potential, mi ≡ m for all i, one �nds that for m → 0 the partition funtion is dominatedoverwhelmingly by the renormalized value of Ci, i.e.
ln Ξ(k) (µ) = lnZ(1)( ~Ak−1 (m) , m) ∼ − lnCk−1. (33)Rewriting the reursion for Ci in Eq. (19) in this form yields

lnCi+1 = 2 lnCi + ln
(mγi

2

)
∼ 2 lnCi +

2i

3
ln 2 + ln

(mγ0

2

)
, (34)whih is easily summed up to give

lnCk−1 = 2k−3 [lnC2 + ln (2mγ0)] . (35)With C2 ∼ m2, as listed in Eq. (18), we get
1

2k
ln Ξ(k) ∼ − 1

2k
lnCk−1 ∼ −

3

8
ln (m)− 1

8
ln (4γ0) , (36)and omparison with Eq. (30) produes an exat predition for the maximal paking fration of the lattie gas,

ν (µ→∞) =
3

8
, (37)
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Figure 5: Plot of the overage νV C (left) and its entropy density sV C (right) for the vertex-over problem on HN3 for the �rstfew system sizes N = 2k + 1 with k = 2, . . . , 5 (top to bottom at m = 1) as a funtion of m.Table I: Listing of the �rst few values of σ and sV C de�ned in Eqs. (30,10) for HN3 of size N = 2k. The sequene for the totalnumber of optimal on�gurations, σ2
k , soon develops non-trivial prime fators. The entropy density for the overage sV C onlyslowly onverges to its numerial limit.

k σ2
k

sCV = ln σ2 1 03 7 0.2432394 37 0.2256825 718 0.2055156 193284 0.1901867 8651040480 0.1787578 11491993035377280000 0.171438... ... ...
∞ 0.160426(1)i.e., for the minimal fration of verties needing over in HN3, it is

cmin =
5

8
. (38)Note that the m-dependene of C2 and of the reursion for Ci in Eqs. (19) are ruial for this result, whereas γi isindependent of m and, hene, beomes irrelevant here. In turn, unfortunately, the entropy density depends not onlyon the asymptoti form for γi but on the non-trivial integration onstant γ0, whih an not be determined from theasymptoti behavior of the RG-�ow; it is a global property of that �ow and ould depend on all its details. But theresult suggest, at least, that for HN3, unlike for some of the other latties mentioned in the introdution, the entropydensity does not vanish but attains a non-trivial value. In fat, using the reursions in Eqs. (52) for arbitrary m andtaking the m→ 0 limit only in the end, we an exatly determine the onstants σ de�ned in Eq. (30) for the �rst fewvalues of k, see Tab. I. In turn, �nite-size extrapolation from the numerial evolution of the RG-�ow up to k = 25levels (i.e., system size N = 225) for a �nite but small value of m = 10−40, we predit that sV C(cmin) = 0.160426(1).(Any variation of m over 10 deades does not a�et the extrapolation at this auray.) For smaller system sizes weplot the overage and the entropy density for the entire range of the hemial potential in Fig. 5. In Appendix VIIB,we will desribe how to evaluate derivatives of the partition funtion, suh as those leading to ν and s, within theRG-sheme. There, we also develop a method to probe the frational overage for eah level of the hierarhy; thoseresults are plotted in Fig. 6.In Appendix VIIC, we will derive a partial set of reursion to approximate the number of solutions given in Tab. I.Our failure to obtain a losed set of suh equations (and an asymptoti predition) indiates the non-trivial origin ofthe entropy density. Here, we just plot the exat solutions for k = 3 and 4 for illustration in Figs. 7 and 8. As thenumerial results in Se. V indiate, the optimal paking of the lattie gas at any �nite size N = 2k + 1 ontains forany k ≥ 3 exatly 3× 2k−3 + 1 partiles.
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Figure 6: Plot of the relative overage per level 2iνi on HN3 for various system sizes N = 2k + 1 with k = 7, 12, 17, 22, and26, plotted also on a relative level-sale i/k at m → 0. Asymptotially, in large systems, all verties in higher levels i appearto be just 50% paked (or overed), whih is minimally neessary to over the one small-world edge onneting suh verties.(Of ourse, eah level ontains half as many verties as any previous and thus ontributes ever less to the overall overage.)This paking may well be random as suh verties are far separated between the higher levels. A signi�antly lower paking(higher overage) is attained only at an ever small fration of the lowest levels to aount for the overall paking fration of 3

8(overage 5

8
).

Figure 7: Depition of perfet overings of HN3 for k = 3. Of all seven solutions, we omitted those three obtained by re�etionfrom these. Light-olored sites belong to the vertex over, dark-olored sites mark partiles with hard-ore repulsion thatprevents nearest-neighbor oupation.

Figure 8: Depition of perfet overings of HN3 for k = 4. Of all 37 solutions, we omitted those 17 obtained by re�etion fromthese. Light-olored sites belong to the vertex over, dark-olored sites mark partiles with hard-ore repulsion that preventsnearest-neighbor oupation.
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Figure 9: Plot of the overage νV C (left) and its entropy density sV C for the vertex-over problem on HN5 for the �rst fewsystem sizes N = 2k + 1 with k = 2, . . . , 5 (with alternating behavior) as a funtion of m. Eah entropy drops notieably inthe m → 0 limit. 2. Results for HN5For HN5, we �nd that the rudimentary partition funtion Z(1) is like that for HN3 in Eq. (39), exept for additionalrepulsive terms:
Z(1) = C−1

k−1

∑

x0

∑

x
2k−1

∑

x
2k

m
−(x0+x

2k−1+x
2k)

k γ
− 1

2 [(x0+x
2k−1)+(x

2k−1+x
2k)]

k−1

η
− 1

2 (x0+x
2k)

k−1 κ
−(x0x

2k−1+x
2k−1x

2k)
k−1 λ

−x0x
2k

k−1 ∆
−x0x

2k−1x
2k

k−1 (39)
(1− x0x2k−1) (1− x2k−1x2k) (1− x0x2k) .Hene, Eq. (33) again applies, putting the fous on the analysis of the reursion for Ci, whih in its even and oddversion reads

C2n =
γ̄2n−1

2 + γ̄2n−1
C2

2n−1, C2n−1 =
mγ2(n−1)

2 + mγ2(n−1)
C2

2(n−1). (40)With the results from Se. IVA2 at hand, when put together in the limit m→ 0, both reursions ombine into
C2n ∼ mC4

2(n−1) {Aγ2n} . (41)The term in parentheses, even though it grows exponentially with n, an be ignored beause it does not depend on
m. It is again easy to sum up the logarithm of this equation (for odd values of k, in this ase) to get

1

2k
lnCk−1 ∼

1

8
lnC2 +

1

12
lnm ∼ 1

3
lnm, (42)with C2 ∼ m2 from Eqs. (22). As for Eq. (36), this implies for the maximal paking fration of hard-ore gas partiles,

ν (µ→∞) =
1

3
, (43)i.e., for the minimal fration of verties needing over in HN5, it is

cmin =
2

3
. (44)In parallel to Se. IVA1, we an only obtain the onstants σ de�ned in Eq. (30) for the �rst few values of k, seeTab. II. By the same proedure as for HN3 above, we predit here that sV C(cmin) = 0.11983(1). For smaller systemsizes we plot the overage and the entropy density for the entire range of the hemial potential in Fig. 9. Fig. 10illustrates the strong alternating behavior between suessive levels, here in form of their relative overage.
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Figure 10: Plot of the relative overage per level 2iνi on HN5 for various system sizes N = 2k +1 with k = 7, 12, 17, 22, and 26,plotted also on a relative level-sale i/k at m → 0. In an alternating fashion levels attain an interlaed higher or lower relativepaking (lower or higher overage), whih varies very little between the levels and seems to onverge to nontrivial values. Notiethat the apparent losing of the gap at the highest levels results from the numerial evaluation of the RG reursions at verysmall but still �nite hemial ativity (here, m = 10−9) .Table II: Listing of the �rst few values of σ and sV C de�ned in Eqs. (30,10) for HN5 of size N = 2k. The sequene for σ2
ksoon develops non-trivial prime fators. The entropy density for the overage sV C alternates and only slowly onverges to itsnumerially determined limit.

k σ2k

sV C = ln σ2 2 0.1732873 7 0.2432394 6 0.1119855 159 0.2204796 1350 0.1126237 21268575 0.131818... ... ...
∞ 0.11983(1)V. MONTE CARLO SIMULATIONSWe performed Monte Carlo simulations of the lattie gas by using the grand anonial ensemble in Eq. (6). Toahieve a fast onvergene of the Markov hains, we used the Metropolis-Coupled Markov-Chain Monte Carlo (MC)3approah [29℄, also termed later Parallel Tempering [30℄ in the physis ommunity. The idea of (MC)3 is to performMonte Carlo simulations for n independent replias studied at di�erent values of the hemial potential µ = µ1, . . . , µnwith µ1 = 0 < µ2 < . . . < µn. One allows that the replias are exhanged via two-replia Metropolis steps, suh thatan overall detailed balane is ahieved. Details of the Monte Carlo moves are give in previous works, e.g. Ref. [31℄.The parameters for the simulations performed for this work are shown in Tab. III.

N n µmax tMCS17 5 6 2 × 10433 5 6 2 × 10465 8 6 4 × 104129 10 7 1 × 105257 17 8 1 × 105513 21 8 2 × 1051025 33 10 1 × 1062049 53 30 2 × 107Table III: Parameters of the (MC)3 simulations: N : system size, n: number of di�erent values of the hemial potential µ,
µmax: maximum value of µ, tMCS: total number of Monte Carlo sweeps, where in eah sweep eah variable is on average allowedto �ip one and n − 1 times a replia exhange is attempted.



14A. Monte Carlo Simulation ResultsFor omparison with the analyti alulations, we start showing the numerial results for the density of partiles.In Fig. 11, the resulting largest density ν, measured at the highest value of the hemial potential µ, is shown as afuntion of system size N for HN3 and HN5, respetively. To extrapolate to in�nite system size, we have �tted [32℄the data to power laws of the form
ν(N) = ν∞ + b ·N−c . (45)
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Figure 11: Highest density ν of the lattie gas on Hanoi networks found in Monte Carlo simulation as a funtion of system size
N . Main plot: HN3, inset: HN5. The solid lines represent �ts to powers laws aording to Eq. (45), see Tab. IV. The dasheshorizontal line in the inset marks the value 1/3.The resulting values are displayed in Tab. IV. Note that for HN5, we �tted only even powers k, sine odd powersresult in highest densities of ν = 1

3 exatly. The resulting values ν∞ agree preisely with the analytial results
3
8 (HN3) and 1

3 (HN5), respetively. Also the oe�ients desribing the �nite-size orretions seem to be rationalnumbers b = 5
8 , c = −1 (HN3) and b = 1

3 , c = −1 (HN5). They an be understood in the following way, e.g., for HN3:The number of nodes is N = 2k +1, i.e, exatly one more than a power of two. The number of oupied nodes for thehighest density is exatly 3
8 of the 2k nodes plus one extra node, i.e., Nν(N) = 3

8 2k +1 = 3
8 (2k +1)+ 5

8 whih resultsin ν(N) = 3
8 + 5

8 N−1. In a similar way, the saling for the HN5 graphs an be explained, where N is not divisible bythree.
ν∞ b cHN3 0.3750000(2) 0.62500(2) -1.00000(1)HN5 (k even) 0.333333(7) 0.3333(1) -1.0000(1)Table IV: Result of power law �ts to the ν(N) data show in Fig. 11 aording to Eq. (45). Note that for HN5, only the datafor even powers k where used.Next, we want to go beyond the analytial alulations by studying the properties of the solution landsape via



15sampling on�gurations of highest density. Hene, one must ensure that on�gurations exhibiting the same statistialweight in Eq. (6) are sampled with the same probability or frequeny. For many systems exhibiting omplex solutionlandsapes, this is quite an e�ort [33�36℄.To ahieve unbiased sampling here, we stored always a on�guration of highest density of a replia visiting thehighest value µmax of the hemial potential, whenever that replia previously had visited the value µ = 0 in the(MC)3 sheme. One says, the replia has �performed a round trip�. This means, before a replia is stored next time,it must again di�use to µ = 0 and bak to the highest value of µ [37℄. Typial round-trip times range from around20 for N = 17 to around 20000 for N = 2049. To test whether this proedure yields unbiased sampling, we studiedsmall systems of size N = 33, where all solutions an be enumerated in priniple. For both systems, HN3 and HN5,we sampled 106 on�gurations of highest density and ounted how often eah on�guration was found. The resultinghistograms appear very �at, see in Fig. 12. Hene the sampling seems to work very well, at least for Hanoi graphs.
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Figure 12: Histogram how often eah on�guration of highest density was sampled during the (MC)3 simulation of a N = 33node graph for HN3 (main plot) and for HN5 (inset). The total number of sampled on�gurations was 106 in both ases.Next, we study the on�guration-landsape of the hard-ore lattie gas at the highest density. For this purposewe took, for eah value N of the system size, a set of K = 200 randomly sampled on�gurations of highest density.We applied a lustering algorithm to eah set, to generate a hierarhial tree (�dendrogram�) representation suh that�similar� on�gurations are grouped loser to eah other than less similar on�gurations. As measure of similaritybetween two on�gurations {x(α)
i }, {x(β)

i }, we simply use the normalized Hamming distane
d({x(α)

i }, {x
(β)
i }) =

1

N

∑

i

δ
x
(α)
i ,x

(β)
i

. (46)We applied the lustering algorithm of Ward [21℄, whih was applied to the analysis of phase-spae strutures alreadybefore [31, 36, 38℄, see Ref. [38℄ for details. The resulting dendrograms are shown in Fig. 13. The on�gurations areloated at the leafs of the dendrogram, at the top of eah dendrogram. Arranging the on�gurations from left to right asthey appear in a dendrogram, a ertain order of the on�gurations is given. Note that the order is not unique, sine forany node of the tree, the two subtrees an be exhanged without hanging the lustering. Nevertheless, exhanging twosubtrees has no e�et on the �nal results. Note that any set of vetors an be lustered and represented hierarhiallyin this way, also a set of random 0/1 vetors.
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HN5, N=2049HN5, N=33

Figure 13: Distane-distane matries for sets of K = 200 randomly sampled highest-density on�gurations. The olumns androws are labeled by on�gurations, the order of the on�gurations in the rows and olumns is the same and was obtained viaa lustering approah (see text). The lustering struture is visible by the trees (�dendrograms�) whih are shown below thematries. The entries of eah matrix are normalized hamming distanes between di�erent on�gurations, shown in gray sale(blak: distane 0, white: distane 1).Whether this hierarhial lustering represents the original landsape struture well, an be investigated in thefollowing way: One draws the matrix of Hamming distanes by using the order of the on�gurations to order therows and olumns of the matrix. If, e.g., on takes a set of suitable large random 0/1 vetors, the resulting matrieswould appear basially grey, showing that the order imposed by the lustering is arti�ial in this ase. In Fig. 13 theHamming-distane matries are shown for a ouple of sample systems. For both ases, HN3 and HN5, at small systemsizes, a omplex blok-diagonal strutures is visible, suh that eah visible blok exhibits a similar substruture. This



17gives the impression of a omplex hierarhial organization of the on�guration spae. Nevertheless, when going tolarger system sizes, the matries exhibit muh less ontrast, whih strongly indiates that for N → ∞ the solutionlandsape will be similar to a set of random vetors, i.e., without any omplex organization.This result is supported when omputing the opheneti orrelations, whih measure the orrelation between theHamming distanes d and the distanes dc along the dendrogram
K ≡ [d · dc]− [d][dc] , (47)where [. . .] is the average over pairs of on�gurations. Note that dc is the sum of the Hamming distanes along a pathin the tree onneting a pair on�gurations, respetively.
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Figure 14: The opheneti orrelations in Eq. (47) as a funtion of system size for HN3 (main plot) and HN5 (inset). The solidline displays the funtion K(N) = 3.25N−0.68 .The resulting opheneti orrelation K as a funtion of system size is displayed in Fig. 14. For both ases, HN3and HN5, K dereases strongly as funtion of system size, taking the di�erene between even and odd powers k forHN5 into aount. For HN3, the data is ompatible with a power law K(N) = 3.25N−0.68. Hene, in the limit ofin�nite system sizes, the hierarhial struture imposed by the lustering is not orrelated to the atual Hammingdistanes. This shows that the landsape of highest-density on�gurations appears to be simple for both HN3 andHN5, in strong ontrast to the vertex-over/lattie gas problem on random graphs [31℄.VI. CONCLUSIONSWe have sueeded in obtaining the optimal vertex overage or paking fration for the Hanoi networks HN3 andHN5 using the renormalization group. Our Monte Carlo simulations allowed us to on�rm those results and extendsthem to any �nite size. We an also obtain the entropy to arbitrary auray, and show that it is extensive and likelynon-trivial in the sense that there is no simple generator to provide or related the set of all optimal on�gurations,a remarkable result for suh a simple, planar network. Even more remarkable, for eah given size, the set of allpossible solutions has a omplex hierarhial struture, as visible from lustering the states and onsidering distane-distane matries. Nevertheless, analyzing the opheneti orrelations shows that in the thermodynami limit, a setof random-vetor-like solutions dominates entropially and makes the solution landsape thermodynamially simple.



18While there are no phase transitions in this problem, the Hanoi networks would allow to study analytially aninteresting perolation transition when onsidering an interpolation between their one-dimensional bakbone alone (asimple bipartite lattie with just two perfet solutions of 1/2 overage) and the full network (with an extensive set offrustrated optimal solutions of overage 5/8 for HN3 or 2/3 for HN5) by adding the small-world edges with a probability
p. As a novel tehnial feat, we derive the renormalization group equations for hierarhy-dependent observables toobtain, for instane, the overage provided by eah level of the hierarhy in the network. Here, these observablesmerely reveal that higher levels of the hierarhy beome very uniform (even if alternating) in overage, while most ofthe interesting struture resides with the majority of variables at a few lowest levels, in aordane with the numerialstudy of the ultrametri relation between solutions. But similar tehniques might be useful to provide insights intothe �pathy� nature of ordering on whole lasses of hierarhial networks in other problems [12, 25, 26, 39, 40℄.AknowledgmentsSB gratefully aknowledges support from the NSF under grant DMR-0812204 and from the Fulbright Kommissionfor a researh grant to visit Oldenburg University, where he is deeply indebted to the Computational TheoretialPhysis group for their kind hospitality. AKH enjoyed disussions with Thomas Neuhaus. The simulations wereperformed on the GOLEM luster of the University of Oldenburg.VII. APPENDIXA. Determining the RG-Reursion EquationsIn the derivation of the reursive form of the partition funtion in Se. IV, we pik up from Eq. (15) to transform
Θ into the Ising-like form

Θ (µ1, x, y, z) = 1 + eµ1 (1− y) (2− x− z) .

= exp

{
2I +

1

2
G [(x + y) + (y + z)] +

1

2
H (x + z) + K (xy + yz) + Lxz + Dxyz

}

= C−2
1 γ

− 1
2 [(x+y)+(y+z)]

1 η
− 1

2 (x+z)
1 κ

−(xy+yz)
1 λ−xz

1 ∆−xyz
1 , (48)where we have de�ned the onvenient �ativity� parameters

C = e−I , γ = e−G, η = e−H ,

κ = e−K , λ = e−L, ∆ = e−D. (49)Eq. (48) mathes Eq. (15) for the hoie of
C1 =

m1

2 + m1
, γ1 =

2 + m1

m1
, η1 =

m1 (2 + m1)

(1 + m1)
2 ,

κ1 =
1 + m1

2 + m1
, λ1 =

(1 + m1)
2

m1 (2 + m1)
, ∆1 =

m1 (2 + m1)

(1 + m1)
2 , (50)(with m1 = e−µ1), whih serves as the initial onditions for the renormalization group �ow, both, for HN3 and HN5.In terms of these renormalization group parameters one an then show for HN3 that the �setional� partitionfuntions ζ have to be written as

ζl
i (x, y, z) =

∑

a

∑

b

C−2
i m−a−b

i+1 γ
− 1

2 [(x+a)+(a+y)+(y+b)+(b+z)]
i η

− 1
2 [(x+y)+(y+z)]

i

κ
−(xa+ay+yb+bz)
i λ

−(xy+yz)
i ∆

−(xay+ybz)
i (1− ab) , (51)

= C−1
i+1γ

− 1
2 [(x+y)+(y+z)]

i+1 η
− 1

2 (x+z)
i+1 κ

−(xy+yz)
i+1 λ−xz

i+1 ∆−xyz
i+1 ,where we have depited the traing operation graphially in Fig. 15. This operation requires for HN3 to express the
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Figure 15: Depition of the graph-lets assoiated with the setional partition funtion ζl

i in Eq. (51) during one RG step onHN3. The step onsists of traing out odd-labeled variables xn±1 (taking aount of the hard-ore onstraint relevant at thislevel) in the top artoon and expressing the renormalized ouplings (γ′, η′, κ′, λ′, ∆′) , in the bottom artoon in terms of theold ouplings (γ, η, κ, λ, ∆). To save spae, the one-point ouplings (�bond magnetizations� [41℄) γ and η have been omitted.These artoons summarize the alulation indiated by Eqs. (51-52).renormalized quantities at i + 1 in terms of those at i with the RG reursions
Ci+1 =

mi+1γiC
2
i

2 + mi+1γi

, γi+1 = γiηiκi

2 + mi+1γi

2 + mi+1γiκi

,

ηi+1 = κi

(2 + mi+1γi) (2 + mi+1γiκi)

(1 + κi + mi+1γiκi)
2 , κi+1 = λi∆i

(2 + mi+1γiκi) (1 + κi + mi+1γiκi)

(2 + mi+1γi) (1 + κi∆i + mi+1γiκ2
i ∆i)

, (52)
λi+1 =

(1 + κi + mi+1γiκi)
2

κi (2 + mi+1γi) (2 + mi+1γiκi)
, ∆i+1 =

(2 + mi+1γi)
(
1 + κi∆i + mi+1γiκ

2
i ∆i

)2

∆i (2 + mi+1γiκ2
i ∆i) (1 + κi + mi+1γiκi)

2 .For HN5, we obtain orrespondingly:
ζl
i (x, y, z) =

∑

a

∑

b

C−2
i m−a−b

i+1 γ
− 1

2 [(x+a)+(a+y)+(y+b)+(b+z)]
i η

− 1
2 [(x+y)+(y+z)]

i (53)
κ
−(xa+ay+yb+bz)
i λ

−(xy+yz)
i ∆

−(xay+ybz)
i (1− ab) (1− xa) (1− ay) (1− yb) (1− bz) ,

= C−1
i+1γ

− 1
2 [(x+y)+(y+z)]

i+1 η
− 1

2 (x+z)
i+1 κ

−(xy+yz)
i+1 λ−xz

i+1 ∆−xyz
i+1 ,a proedure that is graphially depited in Fig. 16. Those extra repulsion terms in HN5 then lead to dramatiallysimpler RG-reursions than Eq. (52):

Ci+1 =
mi+1γiC

2
i

2 + mi+1γi

, γi+1 = ηi

2 + mi+1γi

m
, ηi+1 =

mi+1γi (2 + mi+1γi)

(1 + mi+1γi)
2 , (54)

κi+1 = λi

(1 + mi+1γiκi)

(2 + mi+1γi)
, λi+1 =

(1 + mi+1γi)
2

mi+1γi (2 + mi+1γi)
, ∆i+1 =

mi+1γi (2 + mi+1γi)

(1 + mi+1γi)
2 .For the disussion in Appendix VIIB, it is useful to de�ned the �vetor� of renormalizable parameters,

~Ai (m1, . . . , mi) = (Ci, γi, ηi, κi, λi, ∆i) , (55)whih at eah level of the RG i depends impliitly through the renormalized parameters on the �rst i values of thehemial potentials, as in Eq. (18) for the initial ase i = 1, for example. In the analysis, we will symbolially refer tothese renormalization group equations formally as a (non-linear) operator,
~Ai+1 (m1, . . . , mi+1) = ~Rmi+1

[
~Ai (m1, . . . , mi)

]
, (56)highlighting the fat that the RG-transforms depend expliitly on the parameters mi+1.
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Figure 16: Depition of the (exat) RG step on HN5. This step is identical to that for HN3 in Fig. 15 aside from the additionalhard-ore repulsive terms between xn±2 and xn (top) that is relevant for the urrent RG-step, and between xn−2 and xn+2(bottom) whih ontributes at the next level of the RG.B. Hierarhial OupationFor later use, we follow onvention in de�ning the Jaobian matrix derived from a formal derivation of the renor-malization group equations as de�ned in Eqs. (55,56),
←→
W
(

~Ai

)
=

∂ ~Ai+1

∂ ~Ai

=
∂ ~Rµi+1

(
~Ai

)

∂ ~Ai

=
∂ (Ci+1, γi+1, ηi+1, κi+1, λi+1, ∆i+1)

∂ (Ci, γi, ηi, κi, λi, ∆i)
. (57)Using the fundamental statement for the grand partition funtion Ξ(k) of the unrenormalized system (or the freeenergy f (k) = 2−k ln Ξ(k), instead) in terms of the renormalized partition funtions Z(i<k) in Eq. (31), we an �nd forthe spei� oupation in the i-th level of the hierarhy

νi (~µ) =
1

2k

〈
2k−i∑

j=1

x2i(2j−1)

〉
=

∂f (k)

∂µi

= −2−kmi

d

dmi

ln Ξ(k), (58)impliitly de�ning the hierarhy-spei� hemial potential mi = eµi in form of the vetor
~m = (m1, m2, . . . , mk) . (59)Applying suh a derivative to the sequene in Eq. (31), we obtain for 1 ≤ i < k

d

dmi

ln Ξ(k) (m1, m2, . . . , mk) =
d

dmi

lnZ(1)
[
~Ak−1 (m1, . . . , mk−1) , mk

]
,

=
∂ lnZ(1)

[
~Ak−1, mk

]

∂ ~Ak−1

◦ d ~Ak−1

dmi

. (60)We an understand the progression of derivatives in Eq. (60) from the result in Eq. (56),
d ~Al

dmi

=
d

dmi

~Rml

[
~Al−1 (m1, . . . , ml−1)

]
, (61)

=





∂ ~Rmi

∂mi

[
~Ai−1 (m1, . . . , mi−1)

]
, i = l,

←→
W
(

~Al−1

)
◦ d ~Al−1(m1,...,ml−1)

dmi
, i < l,

0, i > l,using from Eq. (57) the matrix
←→
W
(

~Al

)
=

∂ ~Rml+1

∂ ~A

[
~Al (m1, . . . , ml)

]
. (62)Note that the distintion between the impliit and expliit derivative in Eq. (61) results from the expliit ourreneof mi, just that one in the i-th RG step in the reursions, and that afterwards the parameters being renormalized



21depend impliitly on mi. Thus, appliation of the relation in Eq. (61), repeatedly for all l > i and one �nally for
l = i, yields

d

dmi

ln Ξ(k) (m1, . . . , mk) (63)
=

∂ lnZ(1)

∂ ~A

(
~Ak−1, mk

)
◦←→W

(
~Ak−2

)
◦←→W

(
~Ak−3

)
◦ . . . ◦←→W

(
~Ai

)
◦ ∂ ~Rm

∂m

[
~Ai−1 (m1, . . . , mi−1)

]
.Now it is easy to set all hemial ativities equal, mi = m f. a. 1 ≤ i ≤ k, irrespetive of whih hierarhy was targeted,to get

d

dmi

ln Ξ(k) (m1, . . . , mk)

∣∣∣∣
mi≡m

(64)
=





∂ ln Z(1)

∂ ~A

(
~Ak−1, m

)
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(
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)
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(
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)
◦ . . . ◦←→W

(
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)
◦ ∂ ~Rm

∂m

(
~Ai−1

)
, 1 ≤ i < k,

∂ ln Z(1)

∂m

(
~Ak−1, m

)
, i = k.We an relate this proedure bak to that for the total oupation de�ned in Eq. (7) using a uniform m. To thisend, we de�ne an extended vetor of parameters with expliit m-dependene
~A′

i =
(

~Ai, m
)

= (Ci, γi, ηi, κi, λi, ∆i, m) . (65)Then,
d

dm
~A′

i =

(
d

dm
~Ai,

dm
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)
, (66)

=
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∂m

(
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)
, 1

)
,
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(
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)
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~A′

i−1,with the new, extended Jaobian matrix
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)
=

[
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∂m
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∂m

]
=
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W
(

~Ai−1

)
, ∂ ~Rm

∂m

(
~Ai−1

)

0, 1

]
. (67)Aording to Eqs. (7,58) it is ν =

∑k
i=1 νi, so

d
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ln Ξ(k) (m) (68)

=
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d
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◦
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◦
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. . .
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◦
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W
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)
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∂m

(
~A0

)
+
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∂m

(
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+
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∂m

(
~A2
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. . .

]
+
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∂m

(
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,

=
∂ lnZ(1)

∂m

(
~A′

k−1

)
+

∂ lnZ(1)

∂ ~A

(
~A′

k−1

)
◦
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W ′
(
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)
◦
←→
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(
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◦ . . . ◦

←→
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(
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)
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0

∂m
,where the last line follows from Eqs. (66-67). [Note that ∂ ~A′

0

∂m
= (0, 1).℄



22Table V: Distint lasses (see text) of solutions for HN3 for eah system size N = 2k + 1. For eah k, the total ount adds upto the number of solutions given in Tab. I
k (011) (110) (101) (111)3 1 1 3 24 3 3 10 215 30 30 138 5206 4140 4140 22440 162564C. Counting Optimal PakingsIn this setion, we will attempt to determine a set of reursions to ount the number of optimal pakings in HN3.In the end, we merely sueed in providing a rigorous lower bound on the entropy density. This exerise is interestingin its own right as it highlights the surprising omplexity in the struture of vertex overs or partile pakings on thisnetwork. The key ingredients to provide suh an approah originates with the depitions of the solutions for k = 3and 4 in Figs. 7-8, and with the observation, in Se. V, that at eah �nite system size N = 2k +1, exatly 3×2k−3 +1partiles an be maximally paked into the network. Let us imagine we would try to assemble the k = 4 solutionsfrom those of size k = 3: We would have to join any two solutions at one end-point and add a long link between theirrespetive mid-points; the merging-point beomes the new mid-point and the respetive open end-points remain justthat. In the proess (k − 1)→ k, we have to remove a single partile overall, as

2
[
3× 2(k−1)−3 + 1

]
− 1 = 3× 2k−3 + 1. (69)In this onstrution, it appears that only the state of mid- and end-points is relevant, whih we an denote as(

n0nN
2
nN

) with ni ∈ {0, 1}, depending on whether that site is (1) or is not (0) oupied by a partile. For instane,the four solutions in Fig. 7 would be labeled (110) , (111) , (101) , (101), from left to right, then top to bottom, to whihwe would have to add the re�etion (011). In fat, a glane at Fig. 8 suggests these are the only four possibilitiesrealized. We have diretly enumerated these lasses in Tab. V.To onstrut solutions of size k from those at size k − 1, we onsider all 16 pairings of these lasses, whih wesymbolize by
̂(

n0nN
4
nN

2

)(
nN

2
n 3N

2
nN

)
k−1
→
(
n0nN

2
nN

)
k
, (70)where the over-braket orresponds to the extra long-range edge added to onnet the two former mid-points, pro-hibiting them to be simultaneously oupied. With that, we �nd these rules:1. Merging two end-points into a new mid-point is possible(a) at no ost, when both are empty, i.e., ̂(xx0)(0xx)k−1 → (x0x)k, making a new mid-point that is empty, or(b) at the expense of one partile otherwise, i.e., ̂(xx0)(1xx)k−1, ̂(xx1)(0xx)k−1, or ̂(xx1)(1xx)k−1 →

(x1x)k.[43℄2. Linking the two mid-points with an edge is possible(a) at no ost, when at least one of the two mid-points is empty, or(b) at the expense of one partile, either from the left or right mid-point, if both mid-points are oupied.The merger an only proeed when exatly one partile gets expanded, due to Eq. (69). Hene, the ombinations1(a)2(b) and 1(b)2(a) are allowed. The 8 permissible mergers that are left exatly map these four lasses intothemselves:
[1.] ̂(011)(101)k−1 → (011)k [3.] ̂(101)(011)k−1 → (101)k [6.] ̂(101)(101)k−1 → (111)k

[2.] ̂(101)(110)k−1 → (110)k [4.] ̂(110)(101)k−1 → (101)k [7.] ̂(101)(111)k−1 → (111)k

[5.] ̂(110)(011)k−1 → (101)k [8.] ̂(111)(101)k−1 → (111)k (71)



23It seems straightforward now to dedue the reursions for the number of on�gurations in eah lass, from one size tothe next. We de�ne the ardinality for eah set as xk ≡ |(011)k| ≡ |(110)k|, yk ≡ |(101)k|, and zk ≡ |(111)k| to obtainfrom the rules in Eq. (71):
xk = xk−1yk−1, (72)
yk = 2fk−1xk−1yk−1 + 2gk−1x

2
k−1,

zk = y2
k−1 + 2yk−1zk−1,with the initial onditions provided by Tab. V: x3 = 1, y3 = 3, z3 = 2. The reursions for xk and zk are exat,as is illustrated evolving Tab. V from one row to the next. The reursion for yk, though, an only provide a lowerbound on its growth. The fators of two in front of both terms arises from Eq. (71), as map [3.] and [4.] provide twoontributions to the �rst while map [5.], in applying rule 2(b), gives us two ways of removing a partile in the seondterm. The �fudge fators� fk, gk arise beause in eah of these ases (and only these!) the partile removal eliminatesonstraints on other partiles in the respetive sub-graph, opening the door for an undetermined number of furtherombinations from less-than-optimally paked sub-graphs. All we know is that these fators are larger than unity,but they ould vary with k to an unbounded size. For further analysis, we assume that they an be approximated,at least, by onstants, f and g. Then, we divide the seond by the �rst reursion in Eq. (72) to �nd yk/xk ∼ λfor k → ∞, with λ ≡ f +

√
f2 + 2g ≥ 1 +

√
3. It is then easy to obtain asymptotially yk ∼ λxk ∼ (λx3)

2k−3 and
zk ∼ 2k−3 (λx3)

2k−3

(1 + z3/y3). The total number of optimal pakings is then Ωk ≥ 2xk +yk +zk ∼ zk, whih reduesto the entropy density
sk ∼

ln Ωk

2k
≥ 1

8
ln (λx3) ≥

ln
(
1 +
√

3
)

8
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