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A percolation model inspired by crossword puzzle games is introduced. A game proceeds by solving words,
which are segments of sites in a two-dimensional lattice. As test case, the iid variant allows for independently
occupying sites with letters, only the percolation criterion depends on the existence of solved words. For the
game variant, inspired by real crossword puzzles, it becomes more likely to solve crossing words which share
sites with the already solved words. In this way avalanches of solved words may occur. Both model variants
exhibit a percolation transition as function of the a-priori site or word solving probability, respectively. The
iid variant is in the universality class of standard two-dimensional percolation. The game variant exhibits a
non-universal critical exponent ν of the correlation length. The actual value of ν depends on the function which
controls how much solved words accelerate the solved of crossing words.

INTRODUCTION

When a statistical physicist looks at a partial solved cross-
word puzzle, she or he sees immediately a percolation prob-
lem: Is there a spanning path consisting of fully solved words?
Cross word puzzles have been investigated in the mathemati-
cal literature so far with respect to their graph network struc-
ture [1, 2].

Percolation problems [3–6] are investigating the conditions
for the existence of system-wide connect components, allow-
ing for the transport of matter, information or currents. Per-
colation is ubiquitous in all fields of sciences like physics,
mathematics, computer science, social sciences or biology
[5, 7]. Typically, there are one or more external parameters,
like the density of relevant objects in the system, which con-
trol whether the system is in the percolating phase or in the
non-percolating phase. The transition between the two phases
occurs often as a second-order phase transition, described by
critical exponents, e.g., the critical exponents ν for the corre-
lation length. Interestingly, the percolation transition is highly
universal, i.e. for different systems of the same dimensional-
ity, the critical exponents are the same, independent of the
physical details, in particular ν = 4/3 in two dimensions.

This is also true not only for different lattice structures, but
also when changing the geometric properties of the system’s
constituents. In particular the percolation transition for inde-
pendently placed dimers [8, 9], string-like objects as rods and
k-mers [10–13] or in general objects with varying aspect-ratio
[14] is described by the standard critical exponents.

One variant of the present model, as introduced below,
includes a dynamic process which resembles the spread
of diseases on networks. For these disease models also
percolation-like phase transitions between local and global
spread of diseases have been observed. Still, for the ubiq-
uitous susceptible-infected-recovered (SIR) model on two-
dimensional lattices, the observed transition exhibits a criti-
cal exponent ν which is compatible with the standard value
ν = 4/3 [15].

Most of the standard percolation problems studied in sta-
tistical mechanics consist of disorder without correlations, al-
though several studies with imposed correlations exist, in par-

ticular with power-law correlations [16, 17]. Here indeed a
non-universality can arise. For long-range power-law corre-
lated order C(r) ∼ r−a and very long-range correlations with
a < 3/2, the exponent ν is expected to depend on a [16]. But
for values a > 3/2 the standard 2d value ν = 4/3 for the
critical exponent of the percolation length is obtained [17].

The crossword puzzle percolation problem studied here is
based on a notion of occupancy, which is based on linear seg-
ments of sites, i.e., words. This linear property is similar to
the percolation problem for rods, which, as mentioned, on its
own does not lead to a change of the value of ν. In addition,
for the present crossword model correlations arise naturally,
because words, where some letters are already known through
other solved words, are easier to solve. As it is shown below,
the crossword puzzle percolation belongs to a different uni-
versality class as compared to standard percolation, and the
value critical exponent ν depends on how much one benefits
from the partial knowledge of as word.

Note that recently, a model for crossword puzzle was in-
troduced [1], by using quenched normal-distributed difficul-
ties for the words. The difficulty is the fraction of letters of
a word which have to be known in order to solve the word.
The normal distribution allows for negative difficulties, i.e.,
words which are always known, and for large positive diffi-
culties such that these words cannot be solved. The solution
of the words with negative difficulties lead to other words with
positive difficulties to be solved as well, i.e., creates a dynamic
solution process. The mean and variance of the difficulty dis-
tribution determine whether most words can be solved or not.
In the study [1] for some parameter values a bimodal distri-
bution for the amount of solved words was observed, which
speaks in favor of a first-order phase transition. But no sys-
tematic study with respect to averaging the grid structure, or
the values of the parameters of the Gaussian distribution or
grid sizes was performed. Thus, in particular the question
about the universality could not be addressed.

In the present paper a model is studied which is based on
similar concepts as Ref. [1], but exhibits higher similarity with
respect to the control parameter as standard statistical physics
percolation models. Namely, here the a-priori probability of
occupying sites or solving words, depending on the model
variant, is varied. Also, the present model exhibits a param-
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eter which controls how much one benefits from the partial
knowledge of words. Furthermore, the present work contains
a comprehensive simulation [18] study including finite-size
scaling analyses [19] which allows one to determine critical
exponents like ν, showing the non-universality of the model.

The paper is organized as follows: First the model is intro-
duced, for two different variants. Next the algorithm to de-
termine clusters, based on standard depth-first search, is out-
lined. In the main section, the results for the two variants are
shown. Finally, a discussion is given.

MODEL

The model used here, namely the game variant, see below,
is based on the principle that solving a word makes solving
other words wore likely [1]. For a higher flexibility of the
present model, a word-solution probability function is used
instead of fixed probabilities. Still, since solving a word is a
stochastic event, some words with the same probability might
be solved while others might not. The relevant word solution
probability is set at a given initial probability, which is the
main control parameter. Hence it states the a-priori global
fraction of solved words. Thus, the model is more in the
spirit of a standard percolation probability and correspond-
ingly leads to a second-order phase transition.

More formally, a realization of the problem is given by vari-
ables s(x) ∈ {−1, 0, 1} for sites x on a d-dimensional lattice
of site Ld. The three different values correspond to black,
empty and occupied sites, respectively. With respect to a real
crossword puzzle, an occupied site contains a letter. Black
sites cannot contain letters. Sites which are not black are also
called white. Here, the simple quadratic, i.e., 2d, case with
periodic boundary conditions in all directions is considered, a
generalization to other dimensions d is straightforward.

Realizations are generated as follows: First, each site is set
to black with probability pb. All other sites are white, i.e.,
empty or occupied with a letter. Two examples are shown
in Fig. 1. The black sites partition the system into words,
i.e. segments of horizontal or vertical white sites bounded
by black sites. Note that the black sites are assigned indepen-
dently of each other, such that short words like of length one
might occur, in contrast to typical real-world crossword puz-
zles. Also very long words might occur: For the special case
that a row or column does not contain any black site, the full
row or column is a single word of length L, but this occurs
only for very small values of pb and L. Technically, for all
simulations, the words of a given realization are determined
after the black sites have been assigned.

In order to assign the white sites, to be occupied or empty,
two variants are considered, the iid and the game variant. For
the iid case, each white site is assigned the state occupied in-
dependently with the identical probability p. With probability
1 − p the site is empty. The occupation rule of this variant is
similar to standard percolation and is used for comparison.

The game variant mimics the way a human would try to
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FIG. 1. Sample realizations for L = 20, pb = 0.2. Black sites are
black, empty sites white, occupied sites contain symbols and letters.
Any segment of sites bordered by black sites is a word. The let-
ters A,B,. . . denote the clusters formed by solved words, while the @
symbol denotes occupied sites which do not belong to solved words.
In the left an iid sample is shown for p = 0.5. In the right an game
sample is shown for pw = 0.053, ω = 1.

solve a crossword puzzle. The a-priori probability pw de-
scribes the probability to solve a word, i.e., occupy all sites
of a word, if no letters are present so far. Furthermore, if
some words are solved, corresponding to partial knowledge
of “neighbouring” words which share a letter with the solved
word, this will increase the probability that a neighboring
word can be solved as well. This is here modeled by the word-
solution probability

pcw(x) = pw + (1− pw)x
ω , (1)

where x ∈ [0, 1] is the fraction of already known letters, i.e.,
occupied sites, of a word. Note that pcw(1) = 1 which is con-
sistent. The benefit exponent ω, describes how much knowing
some letters helps in solving a word. For ω → ∞, one does
not benefit much, since pcw(x) ≈ pw for almost all x ∈ [0, 1].
For values ω < 1 the benefit grows in particular quickly.

To generate a realization of disorder for the game variant,
one draws for each word w a fixed random number r(w).
Then, one iterates over all words and solves a word, i.e. oc-
cupies all its sites x, if r(w) < pcw(x(w)) where x(w) is the
current occupation fraction of word w, which is initially zero
for all words. Occupying the letters for a word leads to an in-
crease of x(w′) for words w′ which share sites with w. This
makes it more likely that w′ can be solved as well. The pro-
cess is iterated again over all words, until no more additional
words are solved.

Hence, in the game variant crossword model, a word
has two states, solved, i.e., all sites are occupied, and un-
solved, i.e., not all sites are occupied. The state solved of a
word increases the probability of neighbors to be solved, i.e.,
avalanches of solved words occur dynamically. This resem-
bles the spread of diseases, where infected sites with some
likelihood infect their neighbors. A two state model for in-
fectious diseases is the susceptible-infected (SI) model [20].
However, for the standard version of the SI model, in the limit
of infinite time, all nodes of a given system become infected.
In contrast, for the present model not all words will be solved,
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typically. Thus, the three-state SIR model [21] shares a higher
similarity with the present model, since, depending on the in-
fection parameters, only a certain fraction of nodes will expe-
rience an infection followed by a recovery. Anyway, in detail
the present model is very different from the SIR model and
exhibits also very different results.

ALGORITHM

To analyze a given realization, let it be the iid or the game
variant, the following procedure is applied: First, all solved
words are determined, i.e., those words where all its sites are
occupied. Now, two words are called connected if they are
both solved and if they share one site. In particular, they run
perpendicular to each other on the grid, crossing at the shared
site. Thus, two word which run parallel next to each other
are not connected. Now, clusters of words are determined by
a standard depth-first search [22] as the transitive closure of
connected words. The size s of a cluster is the number of
occupied sites. A realization is considered spanning if there is
a cluster which exhibits at least one occupied site in each row
or in each column, i.e. it connects the any row (column) with
any other row (column).

RESULTS

Simulations were performed for several system sizes be-
tween L = 20 and L = 1000, for the iid and the game vari-
ant. For each realization, determined also by the parameters
pb, p or ω, pw, an average over a number of realizations was
taken, between 104 for system sizes L ≤ 200 and 2× 103 for
L = 1000.

First, results for the iid case are presented. The probability
Pspan of a spanning cluster is shown in Fig. 2 as function of
the site-occupation probability p, for the case of a fraction
pb = 0.2 of black sites. A clear increase of Pspan near p =
0.73 is visible, where the curves of different sizes cross. This
is a clear indication for a percolation phase transition.

A simple quantitative finite-size analysis of the phase tran-
sition is possible by considering the variance of the span-
ning probability which is simply given by Var(Pspan) =
Pspan(1 − Pspan), which is shown in Fig. 3 as an example
for size L = 100. An estimate of the finite-size transition
point is given by the maximum pmax of the variance, where
the sample-to-sample fluctuations are largest. Note that this
also corresponds to Pspan = 1/2. The values of pmax were
estimated by fitting Gaussians near the peak.

To extrapolate to the infinite system size, the peak positions
are fitted to the standard finite-size scaling form, well known
for standard percolation [5, 23] and other phase transitions
[19]

pmax(L) = pc + aL−1/ν , (2)
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FIG. 2. Spanning probability Pspan as function of the iid site occu-
pation probability p for a fraction pb = 0.2 of black sites.
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FIG. 3. Variance of the spanning probability Pspan as function of the
iid site occupation probability p for pb = 0.2, L = 100. Near the
peak variance, a Gaussian is fitted to obtain the peak position pmax.
The dependence of pmax as function of system size L is shown in the
inset and allows for an extrapolation to L → ∞ by using Eq. (2).

where pc is the critical point and ν the critical exponent which
describes the divergence of the correlation length. For pb =
0.2 the fit for L > 140 results in a value of ν = 1.31(4)
which is compatible with the exponent ν = 4/3 for standard
2d percolation. The resulting critical value is pc = 0.7313(1).

The behavior of the critical point pc as a function of the
fraction of black sites is shown in Fig. 4. For the border case
of no black sites pb=0, all words are occupying a full row or
column respectively. Here the system behaves essentially one-
dimensional. Therefore, all sites of a row or column have to
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FIG. 4. Phase diagram if the iid case, i.e., critical threshold pc, to-
gether with prel = pc/(1 − pb), as function of the fraction pb of
black sites.

be occupied for a solved word, i.e., p = 1. This is shown in
the upper left corner of Fig. 4.

On the other hand, when the fraction 1 − pb of white sites
reaches the percolation threshold p

(d=2)
c ≈ 0.59274621 [23]

of standard percolation, all white sites have to be occupied
for a spanning path, i.e., p = pc. For pb ≥ 1 − p

(d=2)
c the

system cannot percolate for any value of p. Note that p is
measured as fraction of all lattice sites. One can also mea-
sure the fraction of occupied sites among the white sites, i.e.,
the relative fraction of occupied sites. The corresponding crit-
ical fraction is prel = pc/(1 − pb) which is also shown in
Fig. 4. Interestingly, since trivially prel(pb = 0) = 1 and
prel(pb = 1 − p

(d=2)
c ) = 1, the behavior of prel(pb) is non-

monotonous and exhibits a minimum. According to the figure
this is located near pb ≈ 0.15.

Next, the results for game variant are shown, restricted to
the case pb = 0.2. First, the correlations of the disorder cor-
relations are quantified via analyzing the density-density cor-
relation function

C(r) =
[s(x)s(x+ r)]0/1 − [s(x)]20/1

[s(x)2]0/1 − [s(x)]20/1
(3)

where r = |r| amd r is for simplicity along the x direction.
The average [. . .]0/1 is over the disorder realizations and over
white sites only because the location of black sites is not cor-
related anyway. Note that [s(x)2]0/1 = [s(x)]0/1 is just the
resulting density of occupied sites among the white sites.

In Fig. 5 the correlations are shown near the critical points
as determined below, together with fits to sums of two expo-
nentials e−r/λ1 + e−r/λ2 with λ1 > λ2. For all values of
ω, clear exponential decreases are visible. The dominating
length scales λ1 as obtain from the fit are for ω ∈ [0.8, 2]
small, i.e. λ1 ≤ 7. For ω = 0.6 a much longer scale

λ1 = 137(4) is obtained. Note that for the latter case be-
low pc = 0 is estimated, so the simulations were performed
at the values pw = 0.00004 close to pc. For larger distances
r, depending on ω, the correlations fluctuate around zero due
to the finite statistics. Thus, the correlations are exponentially
decreasing, i.e., short-ranged, and one could expect that, in
particular for ω ≥ 0.8, they have no influence on larger length
scales such that the critical behavior of standard percolation is
obtained.
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FIG. 5. Density-density correlations of the game realizations for the
considered values of ω for the critical value pw = pc, respectively
The lines show fits to a sums of two exponentials.

But this is actually not the case. The spanning probability
Pspan as function of the word probability pw looks qualita-
tively similar to the iid case, thus it is not shown here. Al-
though for each realization avalanches of solved words occur,
the function Pspan(pw) looks very smooth, no indication of
a first-order step-like behavior is visible. One can again fit
Gaussians near the peaks of the variance Var(Pspan) to obtain
finite-size critical points pmax(L). Fitting to Eq. (2) yields
extrapolated critical points pc and critical exponents ν of the
correlation length. In Fig. 6 the results for pmax(L) − pc are
shown as function of L. For L ≥ 100 clear power laws are
visible, but with different exponents −1/ν as compared to
the standard percolation value −3/4. For ω ≥ 0.8 here al-
ways larger critical exponents ν are found, see Tab. I. This
shows that the crossword percolation is in a different univer-
sality class than standard percolation. Note that with increas-
ing value of ω, the critical exponent ν moves towards the stan-
dard value. This makes sense, because the benefit becomes
smaller and smaller when ω increases, such that the percola-
tion problem of independent rods should be obtained, which
is known to be in the standard universality class [10–13] also
for polydisperse systems [14].

The table shows that the critical point pc decreases, as the
benefit exponent ω decreases, since the growing benefit means
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ω 0.6 0.8 1.0 1.5 2.0
pc 0 0.037(5) 0.0948(2) 0.204(1) 0.264(1)
ν 0.56(3) 3.0(10) 1.96(2) 1.78(9) 1.65(11)
β – 0.05(2) 0.09(2) 0.20(2) 0.19(2)
τ – 2.06(5) 2.05(5) 2.07(5) 2.05(5)

TABLE I. Values of the critical point pc and the critical exponents ν
for the game crossword percolation, for various values of the benefit
exponent ω.

that less words have to be solved without the help of some
letters. Interestingly, for a small values of ω = 0.6, a critical
value which is compatible with pc = 0 is obtained. Thus, the
benefit from solving words partially is so large that an infinite
small a-prior solution probability is sufficient to solve a full
puzzle. Also, an even more non-standard value of the critical
exponent ν is found. In particular the L → ∞ approach to
the critical point is now, not from below but from above (not
shown). This is natural, because no probabilities p < pc = 0
exist, in contrast to larger values of ω or the iid case, where
the L → ∞ approach is from below as visible in Figs. 3 and
6.
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FIG. 6. Approach of the finite-size critical points pmax for the game
variant to the one extrapolated by Eq. (2), for various values of ω.
The slope in the log-log plot corresponds to the critical exponent
−1/ν and shows the non-universality of the model.

To gain further insight, the order parameter, i.e., the aver-
age size smax of the larges component as function of pw was
studied. For all values of ω, a smooth behavior was found,
see Fig. 7 for the case ω = 1. At the corresponding criti-
cal points, power laws ∼ L−β/ν were observed, except for
ω = 0.6 where it is not possible to generate data at the critical
point pc = 0. In all cases, values of β as reported in Tab. I are
rather small, such that the differences to the standard value
β = 5/36 ≈ 0.139 are not too large. Still, for values ω < 1
the value of β appears to be significantly smaller than the stan-

dard value. Since the scaling of the absolute cluster sizes also
defines via Ldsmax ∼ Ldf the fractal dimension df , this leads
to the hyper-scaling relation β/ν = (d − df), i.e., the fractal
dimension df ≤ d is close to 2, in particular for small values
of ω, which means that the clusters are almost space filling.
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the word probability pw for the ω = 1 game case, for several system
sizes L. The inset shows the behavior at the critical point pw = pc as
function of system size L together with a fit to a power law ∼ L−β/ν .

Furthermore the distributions of sizes for the non-
percolating clusters at the corresponding critical points were
studied, i.e., the probabilities P (s) that a cluster has size s.
For ω = 0.6, the critical estimated point is pc = 0, so it is
not possible to obtain P (s) at the critical point. For ω ≥ 0.8,
mainly a power-law behaviors P (s) ∼ s−τ were observed,
each with an exponential cut off due to the finite system sizes.
Two sample results, for the iid case and for ω = 1 of the game
case are shown in Fig.8. Fits to

P (s) = Zss
−τe−s/ls (4)

with suitable length scale ls and normalization Zs were per-
formed. Since the data does not exhibit perfect power laws
over larger ranges of the size, the result for τ depends a bit
on the fitting range. Thus, no very precise results for the ex-
ponent τ could be obtained, but they are all scattered near the
standard value τ = 187/91 ≈ 2.05 as quoted in Tab. I. This
holds also for the iid case. From the standard hyper scaling
relation τ = d/df + 1 this is compatible with the observed
high similarity of df to the standard value.

DISCUSSION

In the present work, crossword-puzzle percolation is intro-
duced, where letters or words are occupied with independent
or neighbor-dependent probabilities. In the model, letters cor-
respond to sites and words to segments of sites, bordered by



6

10
-18

10
-16

10
-14

10
-12

10
-10

10
-8

10
-6

10
-4

10
-2

10
0

10
2

10
0

10
1

10
2

10
3

10
4

10
5

10
6

P
(s

)

s

pb=0.2

ω=1.0, pw=0.095
iid pb=0.731

s
−τ

 e
-s/ls

FIG. 8. Distribution of the sizes of the non-percolating clusters at the
critical points for the iid case and for the w = 1 game case along
with a fit to Eq. (4) for the ω = 1 case.

black sites. The model comprises properties of several other
non-standard percolation models: Like in rod percolation, the
percolation objects are linear segments. Like in bootstrap per-
colation or in models of infectious diseases, the occupation
of the sites, here words, influences neighboring sites. Like
for long-range correlated disorder, the resulting critical expo-
nents differ from the exponents of standard percolation. Note
that other models like bootstrap, rod-like or disease percola-
tion on two-dimensional lattices behave like standard perco-
lation. Still, the density-density correlations of the model are
only short range. Thus, it appears that crossword-puzzle per-
colation comprises a new type of universal behavior. One
possible explanation for the non-universality could be that
the word-solving probabilities, although not long-range cor-
related, change during the solving process, i.e., solving some
word leads to an acceleration or improvement of solving other
words. These dynamically created correlations bear some
similarity with directed percolation [24], which is a model
for non-equilibrium dynamic processes. An indeed, directed
percolation is characterized by different values of the critical
exponents as compared to standard percolation.

Also, it is remarkable that for very small values of the ben-
efit exponents, the numerical results indicate that the percola-
tion transition appears at infinitely small strength of the dis-
order. This is also a feature which is not present in standard
percolation.

For further studies it would be certainly of interest to look in
more detail into the model, e.g. by studying fractal properties
of clusters, the backbone and other characteristic quantities.
Certainly, one should also consider higher dimensions in order
to see whether the non-universality occurs there as well. Also,
one could determine the upper critical dimension, which could
be the same as for standard percolation, or not.

Also the process of generating a word realization could

be studied: Since solving a word leads to an increase of the
probability of solving neighboring words, this leads to fur-
ther iterations, i.e., avalanches of solving words. Some test
runs revealed that these avalanches seem to be largest right
at the critical point, leading to longer running times there.
This phenomenon could be similar to critical slowing down
as observed for Monte Carlo simulations of various models
like Ising models [25–27], or related to avalanches in systems
exhibiting self-organized criticality [28, 29].

Furthermore, so far it is not clear why the model does
not belong to the universality class of standard percolation
although the density-density correlations are short range.
Therefore, it would be very interesting to consider an analyti-
cal calculation for this model.
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