Practical guide to computer simulations

(World Scientific 2009, ISBN 978-981-283-415-7)
by Alexander K. Hartmann
University of Oldenburg
Misprints, corrections and extensions March 28, 2011
I am grateful to the following persons for communicating mistakes, making useful suggestions and providing extensions of the book: Nikolai Gagunashvili, Oliver Melchert, Marc Mézard, Christoph Norrenbrock, Tom Seren, Verena Sterr.

- Preface, page ix, line 7
it served as seed for the this book \rightarrow
it served as a seed for this book
- page 3, line 4 from bottom
full stop after performed by the linker
- page 12 , section head 1.1 .2

Artithmetic \rightarrow Arithmetic

- page 13 , line 6
reminder \rightarrow remainder
- page 13 , line 18
in () brackets left of a constant, variable or expression in brackets, e.g., in \rightarrow
in () brackets left of a constant, variable or expression, e.g., in
- page 13, line 22
addressB will point 4 bytes ahead of addressA
\rightarrow
addressB will point 4 bytes behind addressA
- page 15 , third table
$\mathrm{a} \mid \mathrm{b} \rightarrow \mathrm{a}{ }^{\wedge} \mathrm{b}$
last paragraph: there seem to be two too large spaces (after shift and before seq)
- page 16 , mathtest.c, line 9
should read
printf("\%f \%f \%f \%f n_{n} ", pow(M_E, 1.5), $\left.\exp (1.5), \log (1.0), \log \left(M _E\right)\right)$;
- page 17 , footnote
full stop is missing
- page 19 , line 12
counter $==$ n_max \rightarrow counter $!=$ n_max
($!=x$ should be in the same typeface as counter and $n _m a x$)
- page 23: line 9
one could write counter + 1;
\rightarrow
one could write counter +1 .
- page 27 , line 2 from bottom
no full stop after via
- page 32, line 8 from bottom
prupose \rightarrow purpose
- page 37 , line 10

In this case, where the function prototype is contained in a header file, the function prototype must be preceded by the key word, external...
\rightarrow
In this case, where the function is not contained in the header file, the function prototype should be preceded by the key word external,...

- page 44 , line 12
variable1 \rightarrow number1
- page 78 , exercise (4)
via the rectangle rule \rightarrow via the trapezoid rule
- page 217 , in lin_eq.c
\#include <gsl/gsl_linalg.h>
is missing
- page 231, in Def. 7.9
$p_{X}(x)=\ldots(1-p)^{(n-k)} \rightarrow p_{X}(x)=\ldots(1-p)^{(n-x)}$
- page 232, below Eq. (7.27)
$\sum_{i} \frac{\mu^{x}}{x!} \rightarrow \sum_{k} \frac{\mu^{k}}{k!}$
- page 234, Eq. (7.33)
$\int_{\infty}^{-\infty}(x-\mathrm{E}[X])^{2} p_{X}(x) \quad \rightarrow \quad \int_{-\infty}^{\infty} d x(x-\mathrm{E}[X])^{2} p_{X}(x)$
- page 234, Def. 7.34
$F\left(x_{\text {med }}\right) \quad \rightarrow \quad F_{X}\left(x_{\text {med }}\right)$
- page 234, Def. 7.15, Eq. (7.35)
should read

$$
p_{X}(x)= \begin{cases}0 & x<a \\ \frac{1}{b-a} & a \leq x<b \\ 0 & x \geq b\end{cases}
$$

- page 236, Def. 7.17, Eq. (7.39)

$$
\begin{gathered}
p_{X}(x)=\frac{1}{\mu} \exp (-x / \mu) \\
p_{X}(x)= \begin{cases}0 & x<0 \\
\frac{1}{\mu} \exp (-x / \mu) & x \geq 0\end{cases}
\end{gathered}
$$

- page 237, Def. 7.19
with real-valued parameters $\lambda>0, x_{0}$
\rightarrow with real-valued parameter $\lambda>0$
- page 238
add after
$X=\lim _{n \rightarrow \infty} \max \left\{X^{(1)}, X^{(2)}, \ldots, X^{(n)}\right\}$
The Gumbel distribution arises by normalizing X to variance 1 and having the maximum probability at $x=0$.
correspondingly, in the next sentence:
such that they have zero mean \rightarrow such that the maximum is at $x=0$
- page 245 , line 8
$(a=, c=11) \quad \rightarrow \quad(a=25214903917, c=11)$
- page 245 , line 3 of Sec. 7.2.2
$p_{X}\left(x_{i}\right) \rightarrow p_{i}=p_{X}\left(x_{i}\right)$
- page 245 , line 7 of Sec. 7.2.2
such that the sum $s_{j} \equiv \sum_{i=1}^{j} p_{X}\left(x_{i}\right)$ of the probabilities is larger than u, but $s_{j-1} \equiv \sum_{i=1}^{j-1} p_{X}(i)<u$.
\rightarrow
such that for the sum $s_{j} \equiv \sum_{i=1}^{j} p_{i}$ of the probabilities the condition $s_{j}-1<u \leq s_{j}$ holds.
add after this:

For example, consider a discrete random variable with $p_{1}=1 / 8, p_{2}=1 / 4$, $p_{3}=1 / 2$ and $p_{4}=1 / 8$. Using this approach, e.g, if the random number is contained in the interval $] 1 / 8,3 / 8]$, the second outcome will be selected, see Fig.

$\mathrm{P}_{\text {i }}$	1/8	1/4		1/2	1/8
$\sum_{i} \mathrm{P}_{\mathrm{i}}$	$0 \quad 1$		3/8		7/8

Fig. X: A discrete distribution with four outcomes with probabilities $p_{1}=1 / 8, p_{2}=1 / 4, p_{3}=1 / 2$ and $p_{4}=1 / 8$. The probabilities are represented in the interval $[0,1]$ by sub intervals which have lengths equal to the probabilities, respectively. This allows to draw random numbers according the distribution.

- page 255 , in Def. 7.23
$u=u_{\alpha}\left(x_{0}, x_{1}, \ldots, x_{n-1}\right) \quad \rightarrow \quad u_{\alpha}=u_{\alpha}\left(x_{0}, x_{1}, \ldots, x_{n-1}\right)$
- page 257, line 4 (in calculation $1-\alpha=$)
$P\left(-\bar{X}-z \sigma_{\bar{X}} \leq-\mu \leq-\bar{X} z \sigma_{\bar{X}}\right)$
$\vec{P}\left(-\bar{X}-z \sigma_{\bar{X}} \leq-\mu \leq-\bar{X}+z \sigma_{\bar{X}}\right)$
- page 258 , last paragraph of 7.3.2
$y_{i}=\left(x_{i}-\bar{x}\right) \quad \rightarrow \quad y_{i}=\left(x_{i}-\bar{x}\right)^{2}$
- page 262 , second item
over some some distance \rightarrow over some distance
- page 264, Eq. (7.66)
should read

$$
\begin{equation*}
F_{H^{*}}\left(h_{u}\right)=F_{H^{*}}\left(h_{l}\right)=1-\alpha / 2 . \tag{1}
\end{equation*}
$$

- page 265 , line 7

After the sentence ending in $\quad \alpha=0.32$ uncertainty add
The quantity corresponding to the standard error bar is $\sqrt{\operatorname{Var}[H]}$.

- page 267 , line 11
knwoledge \rightarrow knowledge
- page 286 , line 8 from bottom
whetheror \rightarrow whether or
- page 293, paragraph after Eq. (7.69)
add to the end of the paragraph:
In case the two sample sizes are different, e.g, n and \hat{n}, respectively, Eq. (7.69) must be changed to [1]

$$
\chi^{2}=\frac{1}{n \hat{n}} \sum_{k}^{\prime} \frac{\left(\hat{n} h_{k}-n \hat{h}_{k}\right)^{2}}{h_{k}+\hat{h}_{k}}
$$

- page 297, lines from bottom
for eaxample \rightarrow for example
- page 316, line 6 of the comment box for rand_discrete()
/** PARAMETERS: (*) = return-paramter **/
\rightarrow
/** PARAMETERS: (*) = return-parameter **/
(also in the corresponding boxes for init_poisson(), rand_fisher_tippett(), variance() and bootstrap_ci() on pages 316-318)
- page 318, end of exercise (3), line below formula for s^{2}
rounding erros \rightarrow rounding errors
- page 319, 1st line
cc -o bt bootstrap_test.c bootstrap_ci.c mean.c -lm -DSOLUTION
\rightarrow
cc -o bt bootstrap_test.c bootstrap_ci.c mean.c variance.c -lm -DSOLUTION
- page 320, exercise (6), 1st line after function prototype

Hints: Use the functio \rightarrow Hints: Use the function

References

[1] N.D. Gagunashvili, Chi-Square Tests for Comparing Weighted Histograms, Nucl. Instrum. Meth. A 614, 287-296 (2010)

