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1 Abstract

The significance of alignment scores of optimally aligned DNA sequences can be esti-
mated through the score distribution of pairs of random sequences. It is necessary to
obtain statistics for the relevant high-scoring tail of the distribution. For local align-
ments of iid drawn sequences it has already been shown that the often assumed Gumbel
distribution does not hold in the distribution tail, but has to be corrected by a Gaussian
factor. Real DNA sequences were observed to show long-range correlations within se-
quences, which is not correctly modeled by iid random sequences. In this publication the
large deviation method that was used in previous studies is applied to local and global
alignment of such sequences with long-range correlations. We study the distributions
over the full range of the support and obtained probabilities as low as 10−55. We show
that again a correction to the Gumbel distribution is necessary and study the depen-
dence of the parameters on the correlation strength. For global alignments the Gamma
distribution, which was found heuristically to be a good fit in earlier simple sampling
studies, is found to be a poor fit.
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2 Introduction

To analyze DNA or amino acid sequences by comparison of new sequences to sets of
known ones, one uses sequence alignment, where a vast number of bioinformatics tools
exist (Durbin et al., 1998). The alignment of any set of sequences yields an alignment

score S. To allow conclusions on the significance of the alignment one considers ensem-
bles of randomly drawn sequences, used as null models, and calculates the probability
P (S′ ≥ S) to find a score S′ equal to or better than the one observed. This probability
is usually called p-value. Therefore, these p-values can be calculated from an according
score distribution P (S). p-values are widely used, e.g., to estimate the significance of
alignments in major public databases like PDB (Berman et al., 2000) or UniProt (The
UniProt Consortium, 2017). It is essential to have a good statistical basis to assess the
significance of sequence similarity found with alignment algorithms.

The probability distribution for alignment scores of randomly drawn sequences is
known analytically only for the theoretical case of gapless local alignments of infinitely
long sequences (Karlin et al., 1990). Here a Gumbel distribution was found. Large
deviation studies on gapped alignments of iid sequences of finite size have shown that,
while this distributions fits data well for the high probability region of score distributions,
corrections are necessary (Fieth and Hartmann, 2016; Hartmann, 2002; Wolfsheimer
et al., 2007) to describe the tails, where the probabilities are very small like 10−50.
This region is relevant for biological applications, because nature is shaped by evolution,
therefore relevant structures would emerge in random sequence models only with such
extremely small probabilities.

For the case of iid sequences, the letters for a sequence are drawn randomly inde-
pendently and identically (from the DNA alphabet Σ = {G, T, A, C}. Natural DNA
sequences often show long-range correlations (Li and Kaneko, 1992) as measured by the
correlation function

C(r) =
∑

n∈Σ

[P (xi = xi+r = n) − P (n)2] (1)

for distance r. To use such sequences within computer simulations one can use, e.g., the
CorGen algorithm (Messer and Arndt, 2006), which generates sequences with C(r) ∝
r−α with a decay parameter α. Stronger correlations or lower α values lead to larger
scores, shifting the score distribution to higher probabilities.

Messer et al. (2007) analyzed the score distributions of correlated DNA in the high
probability region. Nevertheless, to our knowledge, there is no publication which studies
the score distributions in the biologically relevant small-probability tail, which cannot
be reached by standard sampling.

The aim of this paper is to show results for the application of large deviation studies
to the alignment of DNA sequences with correlations. Distributions will be shown to
probabilities as low as P (S) ≈ 10−55 whereas previous studies without the large deviation
approach were only able to cover the distribution down to P (S) ≈ 10−7(Messer et al.,
2007). We will show that, again, a Gaussian correction to the Gumbel distribution
improves the fit of the function to the whole distribution in case of local alignments. We
will further show that the increase of Gumbel tail parameter λ increases with the decay
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exponent α, while the correction parameter λ2 does not show such a clear dependence.
Finally we will present the case of global alignment as well for which the in previous
studies heuristically found Gamma distribution is shown to be a poor fit (Pang et al.,
2005), especially for the alignment of sequences with strong correlation.
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3 Methods

3.1 Sequence alignment and score distributions

Pairs of sequences are aligned with the Needleman-Wunsch (Needleman and Wunsch,
1970) (for global alignments) and the Smith-Waterman (Smith and Waterman, 1981)
(for local alignments) algorithms. Pairs of letters (a, b) are scored according to

s(a, b) =

{

+1, a = b

−3, a 6= b.
(2)

This means, matching letters increase the score by 1, mismatches decrease it by 3. Gaps
are penalized with affine gap costs using γi = 5 as gap initiation penalty and γe = 2
as gap extension penalty. s(a, b), γi and γe are chosen in accordance with Messer et al.
(2007).

Score distributions for the gapless local alignment of infinitely long sequences have
been analytically found to follow a Gumbel distribution (Karlin et al., 1990). Transferred
to pairwise alignment of two sequences of identical length L the distribution is assumed
to follow

P (S) = λ exp
(

−λ(S − S0) − e−λ(S−S0)
)

(3)

with constant λ. Numerical studies have found this to be a good estimate for the
high-probability region (Altschul and Gish, 1996). However, such studies with a simple
sampling approach can only sample sequences to cover probabilities higher than P (S) ≥
10−10. Numerical large deviation analyses of score distributions yielded a deviation from
the Gumbel distribution in the low-probability tail (Wolfsheimer et al., 2007; Fieth and
Hartmann, 2016). An adjusted form for the distribution can be given by

P (S) = PGumbel e
−λ2(S−S0)2

= λ exp
(

−λ(S − S0) − e−λ(S−S0) − λ2(S − S0)
2
)

, (4)

with a new parameter λ2 which indicates the strength of a Gaussian correction.
For global alignment, numerical studies of the high-probability region have yielded the

Gamma distribution as a heuristic estimate for the score distribution (Pang et al., 2005)

Pgamma(S) =

{

λγ(S−µ)γ−1e−λ(S−µ)

Γ(γ) S > µ

0 S ≤ µ,
(5)

with the Gamma function Γ(x), and constants λ, γ, µ. Large deviation studies yielded
again a deviation for lower probabilities (Fieth and Hartmann, 2016)

Pgc(S) =

{

λγ(S−µ)γ−1e−λ(S−µ)

Γ(γ) eλ2S2
S > µ

0 S ≤ µ,
(6)

with another Gaussian correction indicated by parameter λ2.
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3.2 Large Deviation approach

To obtain the score distributions in the region of low probabilities, the approach for
sequence alignment as introduced by AKH in Hartmann (2002) was used. The basic
principle is to use the Metropolis algorithm (Metropolis et al., 1953) to sample a Markov
Chain of sequence pairs with a bias parameter T . In a Markov Chain parametrized by
a “time” t, the system state Ct (here: the sequence pair) is slightly changed to trial
state C′, its new score C′(S) is calculated and a new step accepted with probability
P (Ct+1 = C′) = min [1, exp(∆S/T )] with ∆S = S(C′)−S(Ct). In case of non-acceptance,
the current state is kept, i.e. Ct+1 = Ct. This procedure yields when sampling the steady
state of the Markov chain a biased score distribution

PT (S) =
exp (S/T )

ZT

P (S) (7)

with the partition function ZT for parameter T as normalization. Note that the unbiased
distribution then corresponds to the case T = ∞ and we can estimate ZT=∞ = 1.

For details see Hartmann (2002). Here we just briefly note that the unbiased distri-
bution can be obtained by successively rescaling the biased distributions by the factor
exp(S/T ) and estimating the partition function ZT comparing overlapping data points
with the unbiased distribution. The simulations have to be done for an appropriate
range of scaling parameters T , so that rescaled distributions have enough overlap to
estimate the respective ZT . Algorithm performance can then be improved by sampling
several Markov chains with different parameters Ti in parallel and systematically switch-
ing parameters Ti, Ti+1(Geyer, 1991; Hukushima and Nemoto, 1996; Marinari and Parisi,
1992).

3.3 CorGen

The CorGen algorithm as presented by Messer and Arndt (2006) generates sequences
with C(r) ∝ r−α. An iid sequence x of length N0 is generated initially. A letter xk in the
sequence is chosen at random and either mutated with probability Pmut or duplicated,
i.e. introduced at position k + 1 after shifting all letters from position k + 1 on by one,
increasing the sequence length. It is α = 2Pmut/(1−Pmut). Letters are drawn to ensure
a GC-content of g = 0.5, the initial sequence length is chosen as N0 = 6. In practice, α
has to be chosen according to the typical correlation decay observed in assessed genomes.
Therefore it will be varied in this study.

Slightly changing a sequence set can be achieved by randomly changing a single letter
for iid sequences without correlation. Here, however, we have to maintain the correlation
in the sequences. To achieve this we use the fact that sequences are generated by
pseudo random numbers. A particular set of sequences showing long-range correlation
with CorGen can be replicated by feeding the algorithm the exact same pseudo random
numbers as in the first run. However, as the decision for or against mutation changes
the number of random numbers needed per generation step, one manipulation of the
vector could radically change the generation process. This is not desired in a Markov
chain simulation, because small changes in a state should yield also only small changes
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in the results. To avoid resulting large “chaotic” changes, three random vectors are used,
one to decide to mutate or duplicate, one to decide which element of the sequence this
decision is applied to and a third vector that, in case of mutation, chooses the replacing
letter from the alphabet. Whilst the i-th element of the first two vectors is used in the
i-th step of the sequence generation, the k-th element of the third vector decides the
k-th mutation (k ≤ i) that occurs during the generation process.
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4 Results

4.1 Local alignment

Using the large deviation approach, distributions could be obtained down to the maxi-
mum possible score (S = N for sequences of length N). Figure 1 shows the distribution
as obtained for N = 100 and α = 2.0. A fit of the Gumbel distribution to the high-
probability region p(S) ≥ 10−10 was attempted. This corresponds roughly to the region
obtainable by simple sampling in feasible computation time. For this region only, the fit
performs relatively well (χ2/ndf = 17.6), but we see that it deviates significantly from
the obtained distribution in the tail. Fitting the pure Gumbel distribution to the whole
obtained distribution fails (χ2/ndf = 830). Using the Gumbel distribution with Gaus-
sian correction (4) for the whole distributions performs better in contrast (χ2/ndf = 50).
The χ2 value indicates that this heuristically found correction is still not ideal, but it
significantly improves the fit. Anyway, the numerical data display the true distribution,
even if the correct function to fit is unknown to us.
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Figure 1: The score distribution from the rare-event simulations for local alignment of
sequences of length N = 100 and correlation parameter α = 2.0. Shown are
the fits of the Gumbel distribution to the whole data set as well as the Gumbel
distribution restricted to the score range [Sl = 5, Su = 31], corresponding to
high probabilities P (S) ≥ 10−10. In comparison the Gumbel distribution with
Gaussian correction is shown, which fits the data better. The inset shows the
high probability region, for which the Gumbel distribution with restricted fit
and with Gaussian correction show good results.
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Figure 2: The score distributions for alignments of sequences of different lengths with a
fixed correlation parameter of α = 1.5. The curvature, fitted by the Gaussian
correction parameter λ2 decreases with increasing sequence length N . The
inset shows the parameter λ, indicating little to no influence of the parameter
on curve differences.

Figure 2 shows distributions for fixed correlation (α = 1.5) and varying sequence
lengths. The Gumbel distribution with Gaussian correction was fitted to all distribu-
tions. The curvature appears to be increasing with decreasing sequence length. The
parameter λ seems to have no conclusive dependence on the sequence length as sug-
gested by the inset of figure 2 which is concordant with the mutual λ for all values of N
observed in Messer et al. (2007). But the parameter λ2, indicating the Gaussian correc-
tion, increases with 1/N as seen in the inset of figure 3, suggesting it is responsible for
describing the increasing curvature with decreasing sequence length. Figure 3 shows the
distributions rescaled (Newberg, 2008) by the maximum-possible score Smax = N . The
distributions coincide for the low-probability region, but deter in the high-probability
region.

Note that, we also performed a heuristic rescaling (not shown here) as in Messer et al.
(2007). The rescaling yields coinciding distributions in the high-probability region, which
show that our results are compatible with the past work. Nevertheless, this rescaling
yields a strong deviation in the previously unobserved low-probability region.

For the dependence of the distributions on the correlation we varied parameter α.
Figure 4 shows different distributions obtained for N = 100. Again the Gumbel dis-
tribution with Gaussian correction was fitted to the data. As a general trend, the fit
performed worse for distributions of higher correlated sequences, as suggested by the
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Figure 3: The rescaled score distributions for alignments of sequences of different lengths
with a fixed correlation parameter of α = 1.5. The distributions coincide better
for lower probabilities. The inset shows the Gaussian correction parameter λ2

over the inverse sequence length 1/N .
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Figure 4: Score distribution for a single sequence length (N = 100) and varied values
of α. Lines show fits of the Gumbel distribution with Gaussian correction.
The inset shows χ2/ndf over α, the solid line is to guide the eye, the dotted
line indicates the value for a randomly sampled sequence without correlation
(i.e. α = ∞). For increasing correlation the fit of the Gumbel function with
Gaussian correction performs increasingly worse.

χ2 values shown in the inset of figure 4. The parameter λ increases with increasing α
and approaches the asymptotic iid case as seen in figure 5. In contrast the Gaussian
correction shows no clear trend in its α-dependence. Anyway, the visual inspection of
Figure 4 and the comparable large values of λ2 show that the deviations from the Gumbel
distributions are highly significant for small values of α, i.e. strong correlations.

4.2 Global alignment

The same approach was used to to obtain the score distributions for global alignment of
sequences exhibiting correlation. The distribution for the case N = 100 and α = 2.0 is
shown in figure 6. The whole distribution could be obtained. The Gamma distribution
with and without correction was fitted to the data. The plot indicates that neither of the
functions fits the data well (χ2 = 224 and χ2 = 292). In case of iid sequences both fits
perform even worse which is in contrast to former findings in which at least the Gamma
distribution with Gaussian correction showed good results (Fieth and Hartmann, 2016).
However, in the previous study only part of the distribution was obtained and, indeed,
fitting only to a more restricted range improves χ2 values. Also the previous study
dealt with amino acid sequences, not with DNA sequences which might be another
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Figure 5: Fit parameter λ over correlation parameter α. The dashed line indicates the
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increasing α or decreasing correlation. The inset show the Gaussian correction
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12



10-45

10-40

10-35

10-30

10-25

10-20

10-15

10-10

10-5

100

-300 -200 -100  0  100  200  300

GLOBAL

P
(S

)

S

Fit: Gamma+Gauss
Fit: Gamma

N=100, α=2.0

10-5

10-4

10-3

10-2

10-1

100

-200 -180 -160 -140 -120 -100 -80

Figure 6: The distribution for global alignment scores as obtained for N = 100 and
α = 2.0. The Gamma function does not match the data well over the whole
distribution range. Neither does the Gamma function with Gaussian correc-
tion, which was shown to be an in improvement to the sole Gamma function
for amino acid sequence alignments in a previous work (Fieth and Hartmann,
2016).

contributing factor. Overall, our results show that the Gamma distribution – with or
without corrections – seems not to be a good choice to describe the data. Note that only
because we were able to obtain the score distribution over many decades in probability
allowed us to reach this conclusion.

Figure 7 shows the distributions obtained for different values of α. It also shows
attempts to fit the Gamma distribution (without correction) to the data. The smaller
the decay parameter α, the more plateau-like the distribution gets. For α = 0.5 a fit
of the Gamma distribution was not possible at all. It performed best for intermediate
values (χ2 = 292 for α = 2.0) and worse again for less correlated sequences (χ2 = 8781
for iid).
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Figure 7: Score distribution for global alignment of sequences of length N = 100 and
varying α. With increasing correlation, plateaus emerge in the score distribu-
tions. The Gamma function performs increasingly worse.
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5 Conclusion

With the large-deviation approach we could obtain score distributions of local and global
alignment of correlated sequences down to probabilities as low as p(S) ≈ 10−55. As in
previous studies it could be shown that the Gumbel distribution is not a good estimator
for local alignments, but can be improved on by a heuristically found Gaussian correction.
The strength of this correction depends on the sequence length N , but not very strongly
on the decay parameter α. The correlation has a stronger influence on the parameter λ.
The fits perform worse for sequences with higher correlation, i.e. lower decay parameter
α.

Distributions for global alignment showed that the previously heuristically found
Gamma distribution with and without correlation is not a good model of the data. Fur-
ther work would be necessary to find an alternative distribution to describe the whole
numerically found distribution. This is especially true for sequences with low decay pa-
rameters that get increasingly plateau-like. As here, only by accessing the distributions
over a large range in probability, e.g., by applying similar large-deviations approaches,
a final conclusion about the nature of the distribution can be obtained. As long as this
is not the case, the numerically obtained data can serve as a good source to obtain
high-precision p-values.
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