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Abstract

Score-based pairwise alignments are widely used in bioinformatics
in particular with molecular database search tools, such as the BLAST
family. Due to sophisticated heuristics, such algorithms are usually
fast but the underlying scoring model unfortunately lacks a statistical
description of the reliability of the reported alignments. In particular,
close to gaps, in low-score or low-complexity regions, a huge number of
alternative alignments arise which results in a decrease of the certainty
of the alignment.

ppALIGN is a software package that uses hidden Markov Model
techniques to compute position-wise reliability of score-based pairwise
alignments of DNA or protein sequences. The design of the model
allows for a direct connection between the scoring function and the
parameters of the probabilistic model. For this reason it is suitable to
analyze the outcomes of popular score based aligners and search tools
without having to choose a complicated set of parameters. By con-
trast, our program only requires the classical score parameters (the
scoring function and gap costs). The package comes along with a
library written in C++, a standalone program for user defined align-
ments (ppALIGN) and another program (ppBLAST) which can process
a complete result set of BLAST. The main algorithms essentially ex-
hibit a linear time complexity (in the alignment lengths), and they
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are hence suitable for on-line computations. We have also included
alternative decoding algorithms to provide alternative alignments.

ppALIGN is a fast program/library that helps detect and quantify
questionable regions in pairwise alignments. Due to its structure, the
input/output interface it can to be connected to other post-processing
tools. Empirically, we illustrate its usefulness in terms of correctly pre-
dicted reliable regions for sequences generated using the ROSE model
for sequence evolution, and identify sensor-specific regions in the den-
itrifying betaproteobacterium Aromatoleum aromaticum EbN1.

1 Introduction

Many search tools for large molecular databases, such as the BLAST family
[Altschul, Gish, Miller, Myers, and Lipman (1990)], are fast search heuristics
which rely on score-based alignments. Usually, for a given query, a list of
alignments are reported in decreasing order of significance, essentially in
linear time.

Since score-based aligners produce the alignments that maximize the
score, they do not compute alternative optimum or suboptimum alignments
and hence fail to provide a statistical analysis of the accuracy of the produced
alignment. To address this problem, various probabilistic alignment meth-
ods, such as pair hidden Markov Models (HMMs) or the finite-temperature
alignment (FTA), were developed in the last decade [Durbin, Eddy, Krogh,
and Mitchison (1998)]. They provide a statistical description of the set of all
the alignments for a given pair of sequences including alternative meaningful
alignments that may be hidden behind the optimum. For instance, in the
framework of the probabilistic alignment, we can assess numerically the con-
fidence for each aligned pair of letters and gaps. This allows us to identify
questionable regions in the alignment.

FTA was introduced in 1995, [Miyazawa (1995), Zhang and Marr (1995),
Kschischo and Lässig (2000)] and attributes weights of an exponential (or
Boltzmann) distribution to given alignments. It can directly be applied to
any classical scoring function with one additional parameter, the temperature
T (contrast parameter). Using the canonical value T = 1, and a normalized
scoring function, FTA it approximates more complex probabilistic models.

On the other hand, standard pair HMMs [Durbin et al. (1998)] provide a
stronger probabilistic description because each parameter can be explained



as a transition, or an emission probability. However, the typical model layout
is usually much larger than score-based alignments and it is hard to find a
one-to-one relationship between both approaches. Usually, it is possible to
derive a scoring function from pair HMMs, but the reverse is not always
possible [Durbin et al. (1998), Arribas-Gil, Gassiat, and Matias (2006)].

With standard pair HMMs (ex: [Durbin et al. (1998)]), the length of the
sequences is not explicitly modeled. But it is possible to derive pair HMMs
with a reduced set of parameters thanks to a conditioning on the sequence
lengths. Yu and Hwa [Yu and Hwa (2001)] is an example of this type of
HMM.

Lunter et. al. [Lunter, Rocco, Mimouni, Heger, Caldeira, and Hein (2008)]
illustrated the usefulness of probabilistic alignments by detecting regions
of low confidence. Many competitive alignments decrease the accuracy of
the maximum score alignment, especially close to gaps (i.e., insertions or
deletions). These biases have been identified as “gap wander” [Holmes and
Durbin (1998)], “gap attraction”, and “gap annihilation” [Lunter (2007b)].
Gap wander describes the effect of an inferred gap position which differs from
the “true alignment” by a few pairs. Gap attraction occurs when two close
gaps merge into a single gap in the inferred alignment, and the third effect
is a cancellation of an insertion and a deletion.

In this work, we introduce ppALIGN, which uses either the FTA or a pair
HMM to compute posterior probabilities. To the best of our knowledge,
ppALIGN is the first approach and the only practical tool which can directly
compute posterior probabilities and alternative alignments from alignments
obtained with standard score-based methods such as BLAST. This is done
consistently, hence the posterior probabilities are based on the same scoring
scheme as the original BLAST calculations. For the FTA, the temperature
can be tuned as an additional parameter, but it is always possible to use
the canonical value T = 1 in order to be close to a full probabilistic model.
Our pair HMM is close to the model of Yu and Hwa [Yu and Hwa (2001)], in
particular it has the same number of free parameters as the score-based align-
ment. Nevertheless, Yu and Hwa did not calculate posterior probabilities,
neither did they provide a numerical tool to analyze actual alignments.

Note that there are indeed some tools which are related to ppALIGN and
that compute posterior probabilities as well, such as StatAlign [Novák,
Miklós, Lynsgoe, and Hein (2008)], BAli-Phy [Suchard and Redelings (2006)]
or HMMoC [Lunter (2007a)]. However our approach goes further than previous
ones in many ways. For example, the StatAlign tool does not take align-



ments as input but isolated sequences, hence it is not suitable for the post-
processing of BLAST and similar outputs. Furthermore, its insertion/deletion
model is based on the TFK92 model [Thorne, Kishino, and Felsenstein
(1992)], which can only handle the standard affine gap costs approximately.
BAli-Phys on the other hand allows for alignments as input, but does not
directly support score-based alignment analysis making it inconsistent when
applied to standard alignment output. Finally HMMoC, offers sampling and
calculation of posterior probabilities for arbitrarily defined HMMs, but is
not specifically adapted to generate or analyze alignments and requires a
complete specification/programming with the XML language.

Hence, in contrast to other software packages, ppALIGN offers a direct and
effortless analysis of alignment outputs using standard score-based methods.
Of course, our program can be run locally, but in contrast with all the pro-
grams mentioned above, it can also be used online via a user-friendly web
access, which makes it particularly convenient for practitioners. The soft-
ware presented here can process either a single alignment or the entire out-
put of BLAST. Furthermore it includes an interface to integrate new features
such as alternative posterior decoding algorithms as proposed by [Miyazawa
(1995), Holmes and Durbin (1998), Durbin et al. (1998), Lunter et al. (2008)].

We start Section 2 with some reminders on both score-based and prob-
abilistic alignments, and we introduce our notations. In Section 3, we in-
troduce the score-based equivalent pair HMM which we have developed. In
Section 4 we discuss the practical implementation of ppALIGN. Then finally
in Section 5 we present and discuss three illustrations of the usefulness of
our software. Two of these illustrations are simulation studies, while the last
one is done on real data. Relevant mathematical details can be found in the
appendix.

2 Reminders on pairwise alignment

2.1 Score-based alignment

Let aℓ
1 = a1 . . . aℓ ∈ Σℓ and bm1 = b1 . . . bm ∈ Σm denote a pair of sequences

over the finite alphabet Σ (either nucleotides or amino acids). An alignment
πt

1 = π1 . . . πt of aℓ
1 and bm1 is a sequence of edit operations with πk ∈ {P, A, B}

such that, with F (P) = (1, 1), F (A) = (1, 0), F (B) = (0, 1),
∑t

k=1 F (πk) =
(ℓ,m). The operation P is referred to as pair, the operation A as insertion in



sequence aℓ
1 and the operation B as insertion1 in sequence bm1 . If we define

(i(k), j(k)) =
∑k

k′=1 F (πk′), we note that ai(k) and bj(k) give the last pair of
letters in the alignment position k. If πk = P those letters are paired. A
more formal definition is given in Appendix A.1.

Score-based methods determine the optimal global alignment π̂ by max-
imizing an objective function s, π̂ = argmaxπ s(π; aℓ

1, b
m
1 ). The local version

Local [Smith and Waterman (1981)] being π̂ = argmaxi1≤i2,j1≤j2 s(π; ai2
i1
, bj2j1).

Let S(a, b) denote the classical scoring function which assigns an integer
number, S : Σ × Σ → Z to each pair of letters. Given the penalty d for
a gap open, and a penalty e for a gap extension2, the objective function
for Needleman-Wunsch global alignments [Needleman and Wunsch (1970)] is
classically defined by

s(πt
1; a

ℓ
1, b

m
1 ) =

∑

k,πk=P

S(ai(k), bj(k)) +
t

∑

k=1

s̃πk−1πk
, (1)

where s̃PP = s̃AP = s̃BP = 0, s̃PA = s̃PB = s̃BA = −d − e, s̃AB = −∞, and
s̃AA = −e = s̃BB = −e. By convention, note that we set π0 = P without loss
of generality.

2.2 Probabilistic alignmment

Probabilistic alignment methods go beyond the optimum and consider the
set of possible alignments weighted with the so-called posterior distribution

P
(

Π = π
∣

∣aℓ
1, b

m
1

)

. (2)

In cases where the optimal alignment agrees undoubtedly with the true (un-
known) alignment, virtually all weight is put on the optimal alignment. When
less similar sequences are compared to each other there might be regions of
low confidence where letters might be aligned incorrectly or gaps misplaced.
The posterior distribution Eq. 2 is appropriate to quantify the degree of
confidence for a given alignment.

ppALIGN uses pair-HMM techniques to marginalize the posterior distribu-
tion of Eq. 2 and determine column-wise posterior probabilities [Durbin et al.

1or conversely, A as deletion in sequence bm
1

, and B as deletion in sequence aℓ
1
, for this

reason we call such events indel.
2A gap of length γ is penalized with −d− eγ.



(1998)]. Let us assume that the optimal alignment relates position ai in the
first sequence with position bj in the second sequence, or, according to our
alignment definition, πk = P and (i(k), j(k)) = (i, j). The confidence that
this pair is aligned correctly can be assessed by the marginal posterior prob-
ability for this event P P

i,j = P
(

π : ai and bj aligned
∣

∣aℓ
1, b

m
1

)

. Concerning the
gaps we follow the definition of Lunter et al. (2008) and define the probabil-
ity P A

i = P
(

π : ai gapped
∣

∣aℓ
1, b

m
1

)

that the position i in a the sequence a is
related to a gap in the sequence b and the same applies to gaps in the other
sequence with: P B

j = P
(

π : bj gapped
∣

∣aℓ
1, b

m
1

)

.
In the case of the local alignment, two points can be questioned. First,

how sure we can we be that the starting and ending of the aligned part are cor-
rect? Secondly, how accurate is the alignment itself? To address the second
question we simply turn to the global alignment problem assuming that the
starting and ending are correct. Concerning the confidence of the boundaries
of the local alignment, ppALIGN computes the marginal probabilities P start

i,j =

P
(

π starts in ai and bj
∣

∣aℓ
1, b

m
1

)

and P end
i,j = P

(

π ends in ai and bj
∣

∣aℓ
1, b

m
1

)

.
The probabilities P P

i,j, P
A

i , P B

j , P start
i,j , and P end

i,j can be efficiently computed
by forward and backward algorithms [Rabiner (1989), Durbin et al. (1998)]
for a pair HMM. See Appendix A.2 and A.3 for more details.

3 The score-based equivalent pair HMM

In the context of the alignment, the pair HMM is a generative model assum-
ing: 1) that the unobserved alignment π is generated according to a Markov
chain with transition τ ; 2) that State P emits a pair (a, b) of symbols with
the probability p(a, b), State A a pair (a,−) with the probability q(a), and
State B a pair (−, b) with the probability q(b).

The layout of the pair HMM is adjusted such that a direct connection
to the corresponding score-based alignment method can be made. This is
possible, if the gap costs are not too small. When S(a, b) is derived from a

likelihood ratio S(a, b) = λ log p(a,b)
q(a)q(b)

(like the BLOSUM and PAM families)
with the pair probabilities p, the background probabilities q, and the scale
λ the pair emission probabilities of the HMM is simply set to p(a, b) =
exp (S(a, b)/λ) q(a)q(b).

If we denote by α = d + e the total gap-opening cost and by β = e the
gap-extension cost we can express the transition matrix τ over {P, A, B} (in



this order) as:

τ =





1− 2ν νA 2ν − νA

(1− 2ν)ηA ε 0
(1− 2ν)ηB 1− ε− (1− 2ν)ηB ε





where (ν, νA, ηA, ηB, ε) is the unique solution of the following system of five
equations:νAηA = (2ν−νA)νB = exp(−α/λ), ε = exp(−β/λ), (1−2ν)ηA+ε =
0, and 1− ε = (1− 2ν + ε)ηB. See Appendix A.4 for more details.

However, for simple scoring functions we often only know S(a, b). In this
case ppALIGN estimates q(a) from the input sequences and determine λ by
the unique root of the equation

∑

a,b

exp (S(a, b)/λ) q(a)q(b) = 1.

Beside the pair HMM, we implemented the FTA model [Miyazawa (1995),
Zhang and Marr (1995), Kschischo and Lässig (2000)] for which alignments
are weighted with an exponential distribution

P
(

π
∣

∣aℓ
1, b

m
1

)

∝ exp

[

s(π; aℓ
1, b

m
1 )

λT

]

.

The free parameter T is termed as the temperature (a contrast parameter).
For T = 1 the FTA model approximates the pair HMM. In the supplementary
material we confirm that the differences between our pair HMM, the FTA
and the HMM by Yu and Hwa [Yu and Hwa (2001)] are only marginal. In the
limit T → 0 essentially only optimal alignments have a positive probability,
whereas for T →∞ all alignments have equal weight. The FTA model allows
us to explore the alignment space more generally. For example, if a certain
region in an alignment persists even for a larger temperature, we have a more
conservative evidence.

4 Implementation

The layout of the software and the data flow are illustrated in Figure 1. The
user provides a set of alignments either in FASTA format, or in the form of an
entire BLAST output (in XML format) which is processed by the core library.
The default output is again XML. Alternatively, one may choose a plain text
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Figure 1: Layout of the software and data flow. The user may provide an
alignment (local or global) in FASTA format or a structured BLAST output
(XML format). The ppALIGN computes the posterior probabilities of the
alignment and generates an XML stream as default output. Alternatively the
user may choose a human-readable HTML or text output. Built-in and dy-
namically loadable modules perform further computations such as decoding
of alternative alignments. They extend the XML stream of the core library
and may specify certain formating rules for the output filters.

or an HTML output filter which format the output into a human-readable
form.

In a UNIX environment, ppALIGN is typically called:

> ppalign -i alignment.fasta -o alignment.html -f html

The program reads an alignment in FASTA format (the option -i) and pro-
duces an HTML page (the option -o). Different output formats may be
chosen with the option -f.

The main algorithm determines for each aligned column the marginal
posterior probabilities as described above. In order to provide possible alter-
native alignments we implemented two additional modules in the core library
of ppALIGN,

• a sampler that draws alignment from the posterior distribution [Durbin
et al. (1998), Mückstein, Hofacker, and Stadler (2002)];

• a decoder which maximizes the posterior probability [Durbin et al.
(1998), Holmes and Durbin (1998)].

The resulting alignments of both decoding methods are compared with
the user supplied alignment and the regions that do not agree are pointed



out. The alignment is partitioned in different segments where the alterna-
tive alignments are consistent with the user supplied alignment (referred to as
non-ambiguous in what follows) and the segments where at least one alterna-
tive alignment is not consistent with the reference (referred to as ambiguous

segments).3 In the ambiguous segments, the user may switch between dif-
ferent alternative alignments and may therefore obtain further information
about the structure of the weighted alignment space. In particular, the loca-
tions of the ambiguous segments are particularly suitable to detect regions
of uncertainty, as we show in our “result” section.

Knowing the optimal alignment (or a nearly optimal alignment) reduce
the quadratic time complexity of the algorithms can be reduced to a com-
putation time which is essentially proportional to the length of the optimal
alignment. This becomes possible because the further away from the op-
timal alignment the pir probabilities P P

i,j are, the more negligible they are.
By default, ppALIGN uses a heuristic where the forward and backward sums
are only computed on a strip around the optimum (see Figure 2). The size
of the strip is determined by successively increasing the offset between the
alignment and the boundary of the computed area. The size is assumed to
be sufficient when the relative change of the forward sum P(aℓ

1, b
m
1 ) between

the last two iterations are sufficiently small (say ∼ 10−8). Note that the
strip method might not work when the algorithmic parameters are chosen
in the so-called linear regime [Arratia and Waterman (1994), Kschischo and
Lässig (2000), Wolfsheimer, Melchert, and Hartmann (2009)] which is easily
signaled by a weak convergence in the procedure to estimate the strip size.
This leads to a strip in the order of the quadratic search space. However,
we advise not to choose the parameter in this regime because suboptimal
alignments are usually given too much weight. It should also be noted that
in general, the strip approach can fail in the presence of large duplicated
segments of the sequence. However, since we start from the result of a local
alignment algorithm that precisely takes care of such situations, the problem
vanishes. In all cases, if the needed workspace exceeds the provided memory,
the algorithms rely on Newberg’s checkpoint method [Newberg (2008)].

During the computation, built-in or plug-in modules can handle interme-
diate results of the computation to provide additional information or alterna-
tive alignments. The module concept is designed such that further decoding

3In principle, if the posterior probability is not exactly P = 1, sampling a huge number
of sequences will generate only ambiguous segments.
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Figure 2: Restriction of the search space around the optimal alignment leads
to linear complexity.

algorithms or other computations based on intermediate dynamic program-
ming results can be added without changing the core library. Developers
need not consider the model details (pair HMM or FTA) or think about the
estimation of the strip size.

5 Results and discussion

5.1 Simulation: global alignment

To evaluate the ability of ppALIGN to identify uncertain regions of global
alignments, we have performed computer simulations [Hartmann (2009)].
Using the ROSE model of random sequence evolution [Stoye, Evers, and Meyer
(1998)], we have generated protein sequences according to a evolutionary tree
given by a complete binary tree with three levels, hence exhibiting a total of
23 = 8 leaves. At the root we always started with a sequence of 86 residue-
long human insulin. Each branch of the tree, corresponding to a descendant
was PAM D in length, which means that we performed D times mutations



according the 1-PAM matrix [Dayhoff, Schwartz, and Orcutt (1979)] (ROSE
default), and D times insertions and deletions with the probability pins =
pdel = 0.003. These rates are about 10 times larger than the default value of
ROSE, hence resulting in a larger number of gaps. The alignment problem is
more difficult in this case and therefore more interesting for the purpose of
quantifying its reliability. We performed simulations for D = 10, 20, and 40.
As for the length distributions of insertions and deletions, we also took the
ROSE default: lengths between one and six appear with probability 0.1, while
lengths between 7 and 14 appear with probability 0.05. The ROSE output is,
in our case, the generated sequences located at the leaves of the tree together
with a full multiple alignment showing the true evolutionary history of the
eight sequences.

In Figure 3, the alignment between two sample sequences is examined.
We can observe that the optimum alignment (Figure 3b) is consistent with
the true evolutionary alignment (Figure 3a) in most places. Note that most
regions where all the alignments are the same have been omitted in order
to improve readability. Typically, the posterior probabilities, obtained using
the HMM in this case, are small where the optimum alignment is not con-
sistent with the evolutionary true alignment, i.e., it is not correct.4 Since
the optimum alignment is the alignment with the maximum probability, the
posterior probabilities are typically somewhat larger compared to the true
alignment. Beside the optimal alignment, ppALIGN also displays alterna-
tive alignments, the maximum posterior alignment and 2 out of 10 sampled
alignments, are shown in Figure 3c-e. As described above, we may regard
the ambiguous segments as less reliable. For sampled alignments the user
may choose the number of samples. One may expect longer and more am-
biguous segments with an increasing number of samples. To our observation
this is virtually only the case up to a value of about 10. Above this value it
becomes more and more unlikely that a new sample should explore alterna-
tives in the non-ambiguous regions (because of the large posterior probability
there). For example, if we consider the true alignment and the first sample
we will detect two small ambiguous segments. Including the second sample,
these two segments merge into a larger one which is already the one displayed
in Figure 3 apart from three positions. Without considering the maximum

4A pair of letters is correct, if two letter at the same positions are paired in the true
alignment. A gapped letter is considered correct, if in the true alignment it is gapped as
well, irrespective of the position of the gap [Lunter et al. (2008)].
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Figure 3: Part of the alignment of a pair of sequences generated with ROSE

(see text for details). The posterior probabilities are based on BLOSUM62

with gap open penalty of d = 11 and extension penalty of e = 1. (a) The
correct alignment according to the evolutionary tree simulated with ROSE

(b) Optimal alignment (c) Maximum posterior alignment. (d)-(e) sampled
alignments (2 out of 10 samples).



posterior alignment the actual size of the ambiguous segment in Figure 3 is
achieved within the first 10 samples. When we draw 100 samples the critical
segment is increased by four positions and for 1000 samples by three further
columns. In other words, ambiguous segments only grow very slowly with
the number of samples and in our experience about 10 samples are sufficient
to obtain meaningful results.

Thus, in principle, the posterior probabilities can be used to identify
the regions of low and high confidence. To assess this quantitatively, we
simulated 1000 independent evolutions sequences for values of D = 10, 20, 40.
Then we ran ppALIGN each time for all 7× 8/2 pairs of leave sequences and
compared the results to the true alignments. In the inset of Figure 4, we
show the average fraction of correctly aligned positions as a function of the
(binned) posterior probabilities P ∈ {P P

i,j, P
A

i , P
B

j }, the different probabilities
not being distinguished here. The relationship is nearly linear. This shows
that the posterior probabilities computed by ppALIGN (without knowing the
evolutionary true alignment) are well correlated with the probability that the
optimum alignment is correct.

On average, the optimum alignment was correct for 95.8% of all alignment
positions for D = 10 (86.5% for D = 20 and 54% for D = 40). In the non-
ambiguous regions, which are considered reliable, the alignment for D = 10
was on average correct for 99.8% of all positions (99.1% for D = 20 and 95%
for D = 40). In the ambiguous regions, which are considered unreliable, on
average 84.2% were correct (70.8% for D = 20 and 45% for D = 40).

Furthermore, we performed a Receiver Operating Characteristic (ROC)
curve: If one accepts all alignment positions where the posterior probability
P is larger than some threshold pthres how large will be the true positive rate

(the fraction of correct alignment positions, where p > pthres), and the false

negative rate (the fraction of incorrect alignment positions where p > pthres).
Clearly, for pthres → 0 both rates converge to 1, while for pthres → 1, both
rates will approach zero. The behavior for intermediate values, for different
values of D, is shown in the main plot of Figure 4. The curves run close
to (0, 1) if D is not too large, which means that using ppALIGN and this
simple threshold-based criterion, correctly aligned regions can be identified
in a reliable fashion. It must be noted that for closely related sequences (a
small D) the alignment problem is easy and the distance between the curves
and the point (0, 1) in the ROC space becomes smaller. In this case, the
optimal threshold value is also larger.

This experiment shows that the choice of pthres is critical and strongly
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Figure 4: Main figure: ROC for sets of sequences obtained from the ROSE

simulations (see text). Alignment positions of the optimum alignments where
the posterior probability P calculated by ppALIGN is larger than a threshold
pthres are considered as being correct. In comparison with the evolutionary
true alignments, given by ROSE, we infer the true positive rate as a func-
tion of false positive rate, while varying pthres for three different evolutionary
distances D. Sample threshold values leading to data points close to the
upper left corner (0, 1) are indicated together with little arrows. Inset: frac-
tion of the correct alignment positions as a function of the binned posterior
probabilities calculated by ppALIGN for these positions.

depends on the evolutionary distance between the considered sequences. As
a rule-of-thumb, we suggest using a conservative threshold (ex: pthres = 0.9)
for closely related sequences, and a more relaxed threshold (ex: pthres = 0.5)
for more distant sequences.

Note that due to the layout of the evolutionary tree we have used, the
PAM distances between the leaves varies from 2D to 6D, the average distance
being 37D/7. We have verified (not shown here) that the results remain in
principle the same, when we use simpler trees, where all pairs of sequences
have the same distance (D = 30, 60, 120 in this case).



5.2 Simulation: local alignment

Next, we turn to the question of the uncertainty of the correct starting
and ending of local alignments. From Jaroszewski et. al. [Jaroszewski, Li,
and Godzik (2002)] we know that the optimal local sequence alignment can
strongly differ from the structural alignment (for example obtained with the
combinatorial expansion method [Shindyalov and Bourne (1998)]). For exam-
ple, when we compare dihydrodipicolinate reductase (DIH) from Escherichia

coli with malate dehydrogenase (BDM) from Thermus thermophilus (PDB:
1DIH:A and 1BDM:A), the optimal sequence alignment (with the standard
set of parameters as above) starts at i1 = 4 and j1 = 3 and ends at i2 = 23
and j2 = 22. In contrast, the structural alignment ranges from i1 = 4 and
j1 = 3 to i2 = 156 and j2 = 210. If we consider the structural alignment as
the golden standard, we can infer that the optimal sequence alignment pro-
duces the correct starting point, but largely failes to find the correct ending
of the alignment.

To illustrate how ppALIGN may detect such inconsistencies we consider
the starting and ending probabilities for local alignments, P start

i,j and P end
i,j ,

computed by our software. These two-dimensional distributions close to the
points of the optimum are shown in Figures 5 (c) and (f). As expected, the
maximum of the starting point in Figure 5 (c) is much sharper than the one
for the ending point of the alignment in Figure 5(f).

However, such two-dimensional plots are interesting when we want to
find the correct pair of starting or ending positions but they are harder to
interpret than an one-dimensional representations. Therefore ppALIGN can
additionally provide marginalized representations displaying the probabilities
that the alignment starts / ends at certain positions i or j in the input se-
quences. For example, the probability that an alignment starts at position i
in the first sequence aℓ

1 is given by P start,A
i =

∑

j P
start
i,j . To illustrate the relia-

bility of the correct starting / ending position one can determine a confidence
interval in the sequences around the position of the optimum with more than
x% probability. This is simply done from the starting position with the
highest possible posterior probability by extending to the adjacent position
(left or right) and systematically adding the highest posterior probability.
The resulting confidence interval is hence not necessary symmetrical.

This is illustrated in Figures 5 (a) and (b) for the starting point and in
Figures 5 (d) and (e) for the ending point. We learn that the 90% confidence
intervals for the starting point are even smaller than the 50% intervals for
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Figure 5: The posterior probabilities for starts (a)-(c) and ends (d)-(f) of local
alignments. (a) and (b) show the 90% confidence interval for a start in the
query protein 1DIH and the subject protein 1BDM. These are the subsequences
around the optimal start point, whose posterior start/end probabilities sum
up to at least 90%. The two-dimensional start and end distributions are
shown in (c) and (f). (d) and (e) are the 50% confidence intervals for ends
of local alignments.

the ending point. The 90% intervals which are not shown here range from
i = 1 to i = 122 and from j = 1 to j = 121. This can be interpreted
as strong evidence that the end of the alignment is incorrectly predicted.
This observation which has been made on the sequence alignment alone is
consistent with the structural alignment.



5.3 Application: genes for aromate sensing

Finally, we use ppALIGN to find regions in predicted sensor proteins which
are suspected to be responsible for sensing aromatic compounds. For that
purpose, we study the denitrifying betaproteobacterium Aromatoleum aro-

maticum EbN1 which has the unique catabolic feature of degrading toluene
and ethylbenzene under anoxic conditions [Rabus and Widdel (1995)]. De-
spite the chemical similarity of these alkylbenzenes, strain EbN1 uses two fun-
damentally different reaction sequences for their conversion to the common
intermediate benzoyl-CoA. For example, while toluene is activated by radical
addition to fumarate yielding benzylsuccinate as the first intermediate, ethyl-
benzene is hydroxylated (H2O-dependent) at the methylene carbon forming
(S)-1-phenylethanol [Rabus and Heider (1998)]. Coding genes for degrada-
tion enzymes and substrate-sensing two-component regulatory systems are
subsequently identified via proteomic-directed whole-genome-sequencing of
strain EbN1, see Figure 6. The determined ethylbenzene-related gene clus-
ter contains two operon-like structures proposed to be sequentially regulated
by the ethylbenzene-responsive Tcs2/Tcr2 and the acetophenone-responsive
Tcs1/Tcr1 systems [Rabus, Kube, Beck, Widdel, and Reinhardt (2002)].
The toluene-related gene cluster is also composed of two operon-like struc-
tures, which are however suggested to be coordinately regulated by the
toluene-responsive TdiSR system [Kube, Heider, Hufnagel, Kühner, Beck,
Reinhardt, and Rabus (2004)]. A related two-component regulatory sys-
tem has previously been proved to control gene expression of aerobic toluene
degradation in Pseudomonas putida [Lau, Wang, Patel, Labbé, Bergeron,
Brousseau, Konishi, and Rawlings (1997)]. The sensor domains of the sensory
systems contain so-called PAS-domains, generally assumed to sense environ-
mental stimuli [Taylor and Zhulin (1999)]. Notably, each of the two proposed
alkylbenzene-responsive sensors (Tcs2 and TdiS) contains two PAS-domains
displaying different degrees of similarity between the two sensors: 42% iden-
tity for the first and 16% identity for the second PAS domain. These identity
differences could be key to the sensory distinction between structurally sim-
ilar ethylbenzene and toluene [Kube et al. (2004)].

To test whether a bioinformatic approach can help in seeking candidates
regions, which are responsible for this sensory distinction, we perform a
ClustalW [Higgins and Sharp (1988), Larkin et al. (2007)] alignment of the
genes which code the corresponding substrate-sensing system. The resulting
alignment is contained in the supplementary material in the FASTA format.



Figure 6: Sensory discrimination between toluene and ethylbenzene, and
regulatory circuits for alkylbenzene-specific gene expression in Aromatoleum

aromaticum EbN1. Designations of two-component regulatory systems:
TdiSR, toluene-responsive; Tcs2/Tcr2, ethylbenzene-responsive; Tcs1/Tcr1,
acetophenone-responsive. Gene designations: bssABC, benzylsuccinate syn-
thase; bbsA-H, β-oxidation of benzylsuccinate to benzoyl-CoA; ebdABC,
ethylbenzene dehydrogenase; ped, 1-phenylethanol dehydrogenase; apc1-5,
acetophenone carboxylase; bal, benzoylacetate CoA-ligase. Modified from
[Kühner et al. (2005)].

From the alignment alone, which contains only a few very similar regions,
it would be very difficult to infer the regions of interest. We calculated the
posterior probabilities using ppALIGN. The result is shown in Figure 7. Some
regions of the alignment exhibit a particular low posterior probability, indi-



cating a high variability of high-scoring alignment. Since the two different
organisms sense different alkylbenzenes, it is very likely that the genes exhibit
a strong variability at the positions where the sensing of different alkylbenzes
is coded.

The second PAS domain is located precisely in one of the lowest confidence
region which is consistent with its low conservation (identity 16%) among the
different species. The first PAS domain is not located in a low confidence
region but close to the second lowest confidence one which is consistent with
its higher conservation level (identity 42%). In both cases, the low confidence
regions of the alignment suggest a high variability among the species and
could therefore prove to be a useful targeted region for further biological
investigations such as knock out experiments.

This shows again that regions which displays low posterior probabilities
are good candidates when seeking for organism-specific subsequences. This
makes it possible to reduce the effort invested while using biochemical meth-
ods to locate such regions, since the search space is greatly reduced.

6 Conclusion and future prospects

The package ppALIGN (including stand-alone command-line programs and a
C++ library) provides efficient algorithms that compute the posterior prob-
abilities for score-based alignment. The stand-alone program ppALIGN al-
lows the user to provide a single alignment and the set of parameters, while
ppBLAST directly uses the structured output of BLAST (XML-format). Both
programs compute the posterior probabilities for each alignment, and siplay
the results either in a structured XML format, a plain text, or a more vi-
sual HTML page. The flexible library can be extended to new decoding
algorithms and other ways of marginalization of the posterior distribution.

From a mathematical point of view, we provide several advances with
this paper: 1) a new pair HMM parametrization which is consistent with
arbitrary score-based parameters; 2) a comparison of this pair HMM to close
models such as the FTA model [Miyazawa (1995), Zhang and Marr (1995),
Kschischo and Lässig (2000)] and the model of Yu and Hwa [Yu and Hwa
(2001)]; 3) detailed formulas and algorithms to compute classical posterior
distributions (P P

i,j, P
A

i , and P B

j ), as well as more original ones (P start
i,j and

P end
i,j ).

Using two practical examples, analyzing sequences generated with the
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Figure 7: Posterior probabilities for the ClustalW alignment of EbN1:Tcs2
(ethylbenzene-responsive) and EbN1:Tdis (toluene-responsive). The horizon-
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alkylbenze is most likely coded.

ROSE package and analyzing the ClustalW alignment of two sequences of the
denitrifying betaproteobacterium Aromatoleum aromaticum EbN1, we have
shown that regions of interest can definitely be located by our approach.

We are currently working on a module that performs a more flexible
marginalization on the basis of user supplied pattern in the spirit of the work
of Aston and Martin [Aston and Martin (2007)]. We are also interested in
several natural extensions of the method in order to deal with profile related
alignments (profile-sequence, profile-profile), multiple alignments, or position
specific scoring functions.



Appendix

In the first supplementary document we describe in detail the mathematical
background of ppALIGN. We describe the pair HMM, the finite-temperature
approach and their connection to score based alignments.

Furthermore a ClustalW output (FASTA format) for the alignment of two
sequences of the denitrifying bacterium, strain EbN1 is given. The alignment
can directly be pasted into the ppALIGN web page to calculate the posterior
probabilities, as shown in Fig. 7.

A Theoretical background of ppALIGN

In this appendix we go into the mathematical details of the ppALIGN soft-
ware. We first explain the pair-HMM we are using in Section A.1 and the
corresponding algorithms in Section A.2. In Section A.4 we compare the
classical score based alignment with the pair HMM.

A.1 Pair hidden Markov Model

Score-based methods determine the optimal global alignment π̂ by maximiz-
ing an objective function s, π̂ = argmaxπ s(π; aℓ

1, b
m
1 ). The local version Local

[Smith and Waterman (1981)] being π̂ = argmaxi1≤i2,j1≤j2 s(π; ai2
i1
, bj2j1).

We define global and local alignment on sequences over finite alphabets
as follows:

Definition 1. Let aℓ
1 = a1 . . . aℓ ∈ Σℓ and bm1 = b1 . . . bm ∈ Σm denote a pair

of sequences.

(i) A global alignment π of al
1 and bm1 is a sequence of edit operations

πt
1 = π1 . . . πt with πk ∈ {P, A, B} (k = 1, 2 . . . t) such that, with F (P) =

(1, 1), F (A) = (1, 0), F (B) = (0, 1),

t
∑

k=1

F (πk) = (ℓ,m). (3)

where the operation P is referred to as pair, the operation A as insertion
in sequence aℓ

1 and the operation B as insertion5 in sequence bm1 .

5or conversely, A as deletion in sequence bm
1

, and B as deletion in sequence aℓ
1
, for this

reason we call such events indel.



(ii) Let 1 ≤ i1 ≤ i2 ≤ ℓ and 1 ≤ j1 ≤ j2 ≤ m. A local alignment

(πt
1, i1, i2, j1, j2) of aℓ

1 and bm1 is a global alignment of the pair of subse-
quences ai2

i1
and bj2j1 with π1 = P and πt = P.

We shall use the notation i(t) = (1, 0) ·
∑t

k=1 F (πk) and j(t) = (0, 1) ·
∑t

k=1 F (πk), where “·” denotes the inner product (r, s) · (t, u) = rt + su.
These quantities give the position in the sequences after t positions in the
alignment.

Examples. Let a7
1 = GGTACCG, b61 = GCCTGG and consider the global align-

ment π8
1 = PPAAPBPP of a7

1 and b61. It is represented as

G G T A C − C G

G C − − C T G G

1 2 3 4 5 6 7 8

The consistency relation (3) ensures that (i(8), j(8)) = (1, 1)+(1, 1)+(1, 0)+
(1, 0) + (1, 1) + (0, 1) + (1, 1) + (1, 1) = (7, 6). After, for instance, 6 positions

in the alignment, we have seen the subsequences a
i(6)
1 = a5

1 = GGTAC and

b
j(6)
1 = b41 = GCCT.

On the same sequences, the local alignment (π4
1 = PAPP, i1 = 2, i2 =

5, j1 = 1, j2 = 3) is represented as

2 G T A C 5
1 G − C C 3

1 2 3 4

For local alignment, the consistency relation (3) must be fulfilled on the
aligned part, i.e.

∑t
k=1 F (πk) = (i2 − i1 + 1, j2 − j1 + 1) = (1, 1) + (1, 0) +

(1, 1) + (1, 1) = (4, 3).

Model layout. In general, a HMM consists of a Markovian process describ-
ing a sequences of unobserved states and a sequence of outcomes conditioned
on the states (Rabiner, 1989). When modeling alignments as a pair-HMM,
the sequences aℓ

1 and bm1 refer to the outcomes and the alignment πt
1 to the

sequence of unobserved states. Both objects are considered to be random. In
the posterior analysis of alignments we are particularly interested in events
of the unobserved states conditioned by the outcomes, i.e. events of the type
Πt

1 = πt
1|A

ℓ
1 = aℓ

1, B
m
1 = bm1 .
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Figure 8: Setup of the pair HMM for global alignment. A pair of correlated
sequences and an alignment is generated by a Markov process on the graph.
For each transition the counter of the alignment t is advanced by 1, whereas
the sequence position counters (i, j) are advanced by ∆.

In the classical methodology (Durbin et al., 1998) the lengths of the se-
quences are modeled by a geometric distribution. This requires an additional
parameter and therefore it is not easy to uniquely determine the HMM pa-
rameters from a given classical scoring function. It is however possible to
formulate a generative process such that the alignment length t is fixed and
the sequence lengths ℓ and m remain random but restricted according to the
condition in Equation (3). However, posterior probabilities are conditioned
to fixed sequences aℓ

1 and bm1 . Therefore we need to fix the lengths ℓ and
m rather than t. Yu and Hwa (2001) solved this problem by a probabilistic
model which gives alignments normalized weights constrained by a probabil-
ity conservation condition. This leads to an approximative mapping from a
classical scoring function to the probabilistic model. However, the interpreta-
tion of the model parameters as HMM transition and emission probabilities is
quite difficult in this framework. For this reason we implemented a slightly
different model which is described below. We have numerically confirmed
that the results for both models are compatible and differences are only



marginal (not shown here).
A random alignment Πt

1 of the length t is described by a Markov process
with the transition matrix

τx,y
.
= P (Πt+1 = y|Πt = x) (4)

where
∑

y τx,y = 1 for all x ∈ {P, A, B} and the starting distribution

µ(x) = P(Π1 = x)

with
∑

x µ(x) = 1. In order to reduce the number of free parameters we use
µ(x) = τPx for x ∈ {P, A, B}. The emission probabilities which connect the
outcomes to the hidden variables are defined as conditional probabilities

p(a, b)
.
= P

(

Ai(t) = a,Bj(t) = b |Πt = P
)

(5)

q(a)
.
= P

(

Ai(t) = a |Πt = A
)

= P
(

Bj(t) = a |Πt = B
)

, (6)

where

• p : Σ × Σ → R denotes the probability of building pairs with the
normalization condition

∑

a,b∈Σ p(a, b) = 1, and

• q : Σ→ R is referred as background frequencies,
∑

a∈Σ q(a) = 1.

To describe the algorithms in the next section in a way which is closely
related to HMMs of a single sequence we unify the emission probabilities in
Equations (5) and (6) as

px(a, b)
.
=











p(a, b) if x = P

q(a) if x = A

q(b) if x = B.

(7)

Note that pA(a, b) does not depend on b, and, likewise, pB(a, b) is independent
of a.

Having specified the parameter set Θ = {µ, τ, p, q}, the generative process
of the pair-HMM is described by the following algorithm (see Figure 8).

1. Choose x with probability µ(x) and set (i, j) ← F (x), π1 ← x, and,
t ← 1. If x = P, set a1 = a and b1 = b with the probability p(a, b). If
x = A, set a1 = a with the probability q(a). If x = B, set b1 = b with
the probability q(b).



2. Repeat the following step until i(t) = ℓ or j(t) = m:

• Advance the time step t ← t + 1. Set πt ← y chosen with the
probability τxy.

• Set (i, j)← (i, j) + F (πt)

• If πt = P set (ai, bj) ← (a, b) ∈ Σ2 chosen with the probability
p(a, b).

• If πt = A set ai ← a ∈ Σ chosen with the probability q(a).

• If πt = B set bj ← b ∈ Σ chosen with the probability q(b).

• Set x← y.

3. If i(t) = ℓ and j(t) = m, return the tuple (aℓ
1, b

m
1 , π

t
1). Otherwise reset

aℓ
1, b

m
1 , and, πt

1 and start again with step (1).

Note that in Step 1 of the algorithm, we systematically have π1 ← P with
a local alignment.

In the following we shall denote the probabilities of events without the
restart condition (3) as Pfree. Without the subscript “free” we implicitly refer
to the model with the restart condition.

A.2 Forward and backward recursions

The probability that the model without the restart condition (3) should

generate after t time steps the tuple a
i(t)
1 , b

j(t)
1 and pt

1 is given by

Pfree

(

A
i(t)
1 = a

i(t)
1 , B

j(t)
1 = b

j(t)
1 ,Πt

1 = πt
1

)

(8)

= µ(π1) pπ1

(

ai(1), bj(1)
)

t
∏

k=2

τπk−1,πk
pπk

(

ai(k), bj(k)

)

, (9)

where we have used the compact notation defined in Equation (7). The (joint)
probability that the pair HMM including the restart condition generates the
tuple aℓ

1, b
m
1 , π

t
1 can be written as the following fraction

Pglobal

(

Aℓ
1 = aℓ

1, B
m
1 = bm1 ,Π

t
1 = πt

1

)

(10)

=
Pfree

(

Aℓ
1 = aℓ

1, B
m
1 = bm1 ,Π

t
1 = πt

1

)

Z(ℓ,m)

=
µ(π1) pπ1

(

ai(1), bj(1)
)
∏t

k=2 τπk−1,πk
pπk

(

ai(k), bj(k)

)

Z(ℓ,m)

. (11)



The normalization factor

Z(ℓ,m)
.
= Pfree (∃t : i(t) = ℓ, j(t) = m) (12)

in Equation (10) can be interpreted as the probability that the generative
process ends at i(t) = ℓ and j(t) = m in the first trial. This is a consistency
condition: whatever the length t of the alignment, it uses exactly ℓ letters
from sequence A and m letters from sequence B. This ensures that

∑

aℓ
1

∑

bm
1

∑

πt
1
:i(t)=ℓ,j(t)=m

Pglobal

(

Aℓ
1 = aℓ

1, B
m
1 = bm1 ,Π

t
1 = πt

1

)

= 1.

In the framework of local alignment, parts of the sequences which are
not aligned are generated independently from each other according to the
background model of i.i.d. sequence described by the probabilities q. The
joint probability that (aℓ

1, b
m
1 , π, i1, i2, j1, j2) is generated by the local version

of the pair HMM is given by

Plocal

(

Aℓ
1 = aℓ

1, B
m
1 = bm1 , Πt

1 = πt
1

)

=

i1−1
∏

i=1

q(ai)

j1−1
∏

j=1

q(bj)× P
bound
global

(

Ai2
i1

= ai2
i1
, Bj2

j1
= bj2j2 , Πt

1 = πt
1

)

×

l
∏

i=i2+1

q(ai)
m
∏

j=j2+1

q(bj),

From now on, δlocal = 1 will be used in formulas related to local alignment,
and δlocal = 0 in formulas related to global alignment.

A.3 Computation of the marginal probabilities

In the following we describe the methods to compute the marginal probabil-
ities P P

i,j, P
A

i , P B

j , and, P
start/end
i,j defined in the main text. In Theorem 2 we

introduce the related forward and backward quantities and the marginaliza-
tion is shown in Theorem 4. Since general results have been known for some
time (Baum, Petrie, Soules, and Weiss, 1970, Rabiner, 1989, Durbin et al.,
1998), we skip the corresponding proofs.

Theorem 2 (Baum et al. (1970)). Let C
(i2,j2)
(i1,j1) denote the event Ai2

i1
=

ai2
i1
, Bj2

j1
= bj2j1 . Furthermore, let Pfree(A) denote the probability of the event



A under the pair-HMM without restart (without step (4) in the generative
process) and P(A) denote the probability of A according to the model with
restart.

(i) The forward probabilities defined as

φy(i, j)
.
= P

(

C
(i,j)
(1,1), ∃k : i(k) = i, j(k) = j, Πk = y

)

(13)

can be computed by the recurrence relation

φy(i, j) = py(ai, bj)
∑

x

τxy · φx ((i, j)− F (y)) +

py(ai, bj) δ
local

Iy=P q(a
i−1
1 ) q(bj−1

1 ) (14)

(ii) The backward probabilities defined as

βx(i, j)
.
= P

(

C
(l,m)
(i+1,j+1) | ∃k : i(k) = i, j(k) = j, Πk = x

)

(15)

can be computed by the recurrence relation

βx(i, j) =
∑

y

τxy · py(ai+1, bj+1) · βy ((i, j) + F (y)) + (16)

δlocal
Ix=P q(a

ℓ
i+1) q(b

m
j+1) (17)

Decomposing the events C
(i2,j2)
(i1,j1) and applying Bayes’ theorem yields the

following lemma.

Lemma 3. In the case of global alignment and for a given pair of sequences
aℓ

1 and bm1 we have

(i)

P

(

C
(ℓ,m)
(1,1) , ∃k : (i(k), j(k)) = (i, j),Πk = x

)

=
φx(i, j)βx(i, j)

Z(ℓ,m)

(18)

(ii)

P

(

C
(ℓ,m)
(1,1) , ∃k : (i(k), j(k)) = (i, j),Πk+1 = y,Πk = x

)

=
φx(i, j)τxyβy ((i, j) + F (y)) py(ai+1, bj+1)

Z(ℓ,m)

, (19)



where Z(ℓ,m) is defined in Equation (12).

Note that we have Z(ℓ,m) =
∑

x βx(0, 0) =
∑

x φx(ℓ,m) .

Theorem 4 (Marginal probabilities). For global alignment the following
marginal probabilities are given in terms of φ and β.

Px(i, j)
.
= P

(

∃k : (i(k), j(k)) = (i, j), Πk = x
∣

∣

∣ C
(ℓ,m)
(1,1)

)

=
φx(i, j) βx(i, j)
∑

y φy(ℓ,m)
(20)

Tx,y(i, j)
.
= P

(

∃k : (i(k), j(k) = (i, j)) , Πk+1 = y
∣

∣

∣ Πk = x, C
(l,m)
(1,1)

)

= py(ai+1, bj+1) τx,y
βy((i, j) + F (y))

βx(i, j)
(21)

Proof. If we note that P(Cℓ,m
(1,1)) =

∑

y φy(ℓ,m) δlocal = 0, Equations (20) and

(21) follow directly Equations (18) and (19).

Theorem 4 provides the theoretical basis for ppALIGN. Eq. 20 is used to
compute the posterior probability for paired letters and gaps for a given
alignment. The probability that the positions i in aℓ

1 and j in bm1 are paired
is given by PP(i, j). Since we are not interested in which particular position
j is in the second sequence a is gapped with letter at position i in the first
sequence appears, we define the gap probability by marginalization over all
possible positions j,

P A

i =
∑

j

PA(i, j) and P B

j =
∑

i

PB(i, j)

For the model of local alignment ppALIGN determines posterior probabil-

ities for the start (i1, j1) and end (i2, j2) positions, P
start/end
i,j . Those proba-

bilities are determined from the forward and backward probabilities and the
q describing the padding states before and after the alignment,

P start
i1,j1

=
1

Z local
(ℓ,m)

i1−1
∏

i=1

q(ai)

j1−1
∏

j=1

q(bj) βP(i, j) p(ai, bj)

P end
i2,j2

=
1

Z local
(ℓ,m)

ℓ
∏

i=i2+1

q(ai)
m
∏

j=j2+1

q(bj) φP(i, j),



with

Z local
(ℓ,m)

.
= P

(

C
(ℓ,m)
(1,1)

)

=
∑

i2,j2

φP(i2, j2)
ℓ

∏

i=i2+1

q(ai)
m
∏

j=j2+1

q(bj)

Eq. 21 only depends on a ratio between backward probabilities. The
matrix {x, y : Tx,y(i, j)} describes the transition probabilities of a heteroge-
neous Markov chain conditioned on the input sequence al

1 and bm1 . On this
basis we can easily implement a forward sampling algorithm that samples
alignments from the posterior distribution. The algorithm is similar to the
generative process of the pair-HMM. We assume that we have obtained the
transition matrix Tx,y for every (i, j) and a corresponding starting probabil-

ity µ̃(x)
.
= P

(

Π1 = x
∣

∣

∣
C

(ℓ,m)
(1,1)

)

via the backward recursion Eq. 17 To sample

alignments from the posterior distribution P

(

Πt
1 = πt

1

∣

∣

∣C
(ℓ,m)
(i,j)

)

, we proceed

as follows:

1. Choose x with probability µ̂(x) and set (i, j) ← F (x), π1 ← x, and,
t← 1.

2. Repeat the following step until i = ℓ and j = m:

• Advance the time step t ← t + 1. Set πt ← y chosen with the
probability Txy(i, j).

• Set (i, j)← (i, j) + F (y)

• Set x← y.

3. Return πt
1 where πt

1 is an alignment of aℓ
1 and bm1 .

The resulting algorithm is obviously a dramatic improvement on the re-
jection algorithm presented in Section A.1.

A.4 The connection between score based alignment
and pair-HMM

So far, we discussed the algorithms to compute posterior probabilities and to
provide alternative alignments. One essential feature of ppALIGN is the fact
that the user does not need to provide the full parameter set Θ of the pair-
HMM. In this section we discuss the relationship between the score-based
alignment and the pair-HMM.



Classical scoring functions usually involve rescaled matrices S(a, b) =

λ log p(a,b)
q(a)q(b)

where λ > 0 defines the scale of the matrix. When λ is known

ppALIGN determines the pair probabilities p(a, b) from a classical scoring
function with

p(a, b) = exp(S(a, b)/λ) q(a) q(b)

Fortunately protein score matrices, such as the PAM or BLOSUM family (Heinkoff
and Heinkoff, 1992, Schwartz and Dayhoff, 1978) are published together with

• the pair probability matrices p(a, b),

• the background frequencies q(a), and,

• the scale λ.

Hence, we could easily include those values in the software.
For more simple scoring matrices S(a, b), where the background model

is unknown, ppALIGN estimates the background frequencies from the input
sequences for each alignment. Then the pair emission probability matrix is
given by p(a, b) = q(a)q(b)eS(a,b)/λ where λ is a scale factor that is determined
numerically by the normalization condition

∑

a,b q(a)q(b)e
S(a,b)/λ = 1.

Estimating the transition matrix τxy from classical gap costs requires
some approximations which are explained next. Due to the normalization
condition there are 3 × 3 − 3 = 6 free parameters. The aim is to reduce
the number of free parameters to the gap open and gap extension penalties.
We parametrize the set of 9 remaining transition probabilities (i.e. 6 free
parameters) by

τPP = 1− 2ν τPA = νA τPB = 2ν − νA

τAP = (1− 2ν)ηA τAA = ε τAB = ηAψA

τBP = (1− 2ν)ηB τBA = ηBψB τBB = ε

where (1 − 2ν) is the probability of entering the pair state P, ηA and ηB

the probability of leaving the gap state. ψA
.
= 1−ε

ηA

− (1 − 2ν) and ψB
.
=

1−ε
ηB

− (1 − 2ν) are probabilities of entering the state B after having left the
state A and vice versa. The gap extension probability ε is already chosen to
be equal for both types of gaps.

The score of an alignment πt
1 of aℓ

1 and bm1 is defined as the log-likelihood
ratio

v(π) = log
P

(

C
(ℓ,m)
(1,1) , ∃k : (i(k), j(k)) = (ℓ,m)

)

∏ℓ
i=1 q(ai)

∏m
j=1 q(bj)

.



The most likely alignment π̂ = argmaxπ v(π) is referred to as the Viterbi
alignment and the corresponding score v̂ = maxπ v(π) as Viterbi score.

The Viterbi score v(πt
1) can be computed by the log-scale version of Equa-

tion (10),

v(π) = log µ(π1) +

|π|
∑

k=2

log τπk−1,πk
+

|π|
∑

k=1

log pπk

(

ai(k), bj(k)

)

− logZ(ℓ,m)

−
ℓ

∑

i=1

log q(ai)−
m

∑

j=1

log q(bj). (22)

Due to the choice µ(x) = τPx as start distribution, Equation (22) can be
rearranged using Equation (7) into:

v(π) =
∑

k:πk=P

[

log
p(ai(k), bj(k))

q(ai(k))q(bj(k))
+ log(1− 2ν)

]

+

∑

k:πk 6=P

s̃πk−1πk
− log ηπ|π|

− logZ(ℓ,m), (23)

with π0 = P, and, s̃PP = s̃AP = s̃BP = 0, s̃PA = log νAηA, s̃PB = log(2ν − νA)ηB,
s̃AA = s̃BB = log ǫ s̃AB = logψA and s̃BA = logψB. The term − log ηπ|π|

in
Equation (23) penalizes alignments which end in gap states by − log ηA or
− log ηB. The pair states P at the end of the alignment are not penalized
(ηP = 1). These contributions can be safely ignored for long alignments. We
may then relate the scoring function derived from the pair HMM (23) with
the classical scoring function of the Needleman-Wunsch global alignment

s(π) =
∑

paired(a,b)

S(ai, bj) + S(gaps)

=
∑

k:πk=P

S(ai(k), bj(k)) +
t

∑

k:πk 6=P

s̃πk−1πk
,

When ν ≪ 1 the additive term log(1 − 2ν) in Equation (23) is negligible
and we may identify the classical scoring function s with the corresponding
scoring function of the HMM v as:

v(π) ≈ s(π)/λ+ logZ(ℓ,m),



Event pair HMM v(π) score-based parametrization

pair log p(a,b)
q(a)q(b)

S(a, b) S(a, b)/λ

+(1− 2ν)
start a pair s̃PP, s̃AP, s̃BP 0 0
gap open s̃PA −α = −d− e log νAηA = −α/λ

s̃PB −α = −d− e log(2ν − νA)ηB = −α/λ
gap extension s̃AA, s̃BB −β = −e log ε = −β/λ
gap followed by gap s̃AB −∞ † logψA = −∞

s̃BA −α = −d− e logψB = −α/λ

Table 1: Relationship between the scores of the pair HMM and those of
score-based alignments. † This is forbidden by convention.

where λ is the scale of the scoring function defined above. Note that this
global rescaling of the score and the term logZ(ℓ,m) does not change the
optimal alignment and is hence arbitrary. The resulting parametrization are
summarized in Table A.4. The solution of the set of equations in the last
column uniquely determine ν, νA, ηA, ε, ψA, ψB.

B Software Availability

The software is published under following conditions:

• Project name: ppALIGN - Posterior probabilities for score-based
alignments

• Project home page:
http://ppalign.sourceforge.net

• Demo server:
http://www.mi.parisdescartes.fr/ppblast

• Operating system(s): Platform independent, tested with linux and
OS X

• Programming Language: C++, tested with gcc 4.4

• Other requirements: expat, GD library (not for the core library),
cmake or GNU make



• License: GPL
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