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We study an agent-based model of animals marking their territory and evading adversarial ter-
ritory in one dimension, with respect to the distribution of the size of the resulting territories. In
particular, we use sophisticated sampling methods to determine it over a large part of territory sizes,
including atypically small and large configurations, which occur with probability of less than 10−30.
We find hints for the validity of a large deviation principle, the shape of the rate function for the
right tail of the distribution and insight into the structure of atypical realizations.

I. INTRODUCTION

In ecology there is a large interest in the spatial and
temporal distribution of animals. Depending on the
species, the spatial distribution of individuals might be
independent if they do not interact, clumped if there is
some form of attraction between them, or evenly spaced
for repulsive interaction of individuals [1]. Here, we are
especially interested in the latter case, more specifically,
we are interested in territorial species, who inhabit an
exclusive territory, which is defended against members of
the same species. This defense is usually either performed
by aggressive behavior against intruders, or by deterrent
markings of the territory, often by auditory signals or
olfactory scent marks along the perimeter [1].

Central properties of interest for territories, as well
as home ranges, are their size. A common method for
the determination of the size and visualization of home
ranges or territories is to calculate the convex hulls for
the points visited in time for both experimental [2–4]
as well as simulational data [5]. First studies in this
directions appeared in the 1940s [6]. This sparked the
interest of mathematicians, who started to work on the
convex hulls of abstract sets of random points, like inde-
pendently sampled points. More interesting and slightly
closer to ecology are sets of correlated random points.
For simple random walks, first the expectation value of
the perimeter of their convex-hull was studied [7] and nu-
merous other studies lead eventually to exact results for
the stochastic properties of the area [8]. Consequently,
there is quite some interest in the fundamental properties
of convex hulls [9–11], but exact results concerning the
full probability distributions are missing. Nevertheless,
by using numerical large-deviation sampling techniques
the distribution of perimeter and area of various types of
random walks could be studied over hundreds of decades
in probability [12–16].

Although the study of the properties of convex hulls
of random points is motivated by ecological models, no
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study of the stochastic properties of territories, in par-
ticular when addressing the full distribution, is known to
us where the set of random points originates from a more
realistic model of the motion of animals. In this work,
we are treating such a case based on a simple agent-
based model introduced in Ref. [17], where agents per-
form a random walk on a lattice and leave scent marks on
visited sites. When encountering a foreign scent mark,
the agent backtracks away from the adversarial territory.
This model gives rise to territories and with a slight mod-
ification to stable home ranges [18], i.e., the area in which
an animal usually lives. Here, the size of the territory is
quite straight forwardly defined as the area marked by
scent and we will study the distribution of this property
in very high detail using computer simulations [19]. Es-
pecially, we will explore the probability density function
deep into the tails of rare events, which occur with a
probability of less than 10−30 and identify the mecha-
nisms leading to and the properties of such rare events
of individual animals with atypically small or large terri-
tories. In particular, we will make a connection to large
deviation theory and characterize the right tail of atyp-
ically large territories with an approximation of its rate
function.

To obtain estimates of the probability density function
for the size of territories with such a high precision, we
need to employ Markov chain Monte Carlo importance
sampling methods, which we will describe after a precise
model description in Sec. II. Then, in Sec. III, we will
show and interpret the results of our simulations. Finally
we summarize our findings in Sec. IV.

II. MODELS AND METHODS

A. Model Specification

We are studying a model for the emergence of terri-
tory by scent marks introduced in Ref. [17]. This model
lives in discrete d dimensional space. At time t = 0 there
are M agents starting uniformly randomly distributed on
sites of a lattice under the condition that no two agents
start on the same site. The lattice has Ld sites and
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periodic boundary conditions, which we call the world.
On this lattice, there is a discrete-time dynamics and we
are interested in the state at time T . At each of the
t = 1, . . . , T time steps, all agents move synchronously
to one of the 2d adjacent sites. At each time step each
agent marks the current site with its individual scent, po-
tentially adding a new scent to already existing scents.
The way the adjacent site is selected, is determined by
the scents on the current site at time t. If there is no
scent of other agents on the current site, the agent visits
at time t+1 a uniformly randomly selected adjacent site.
Otherwise, if there is an adversarial scent, the agent has
to step at time t+ 1 on an adjacent site already marked
with its own scent, i.e., it backtracks into its own terri-
tory. Note that the site from which the agent retreats,
was marked also with its own scent on entering at time
t. A scent stays active for ta time steps. For ta = 0 this
corresponds to non-interacting agents, each performing
a standard random walk on a lattice, and ta = T to
static territories. Values in between allow the territo-
ries to move on a slower time scale as demonstrated in
Ref. [17]. In this study, we will concentrate on the ta = T
edge case of permanent scents, which never evaporate.

(a) (b)
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FIG. 1. Example for the (a) d = 2 case of M = 18 agents
on a world with periodic boundaries of size L = 256 after
T = 5 · 106 time steps. The intensity and the contour lines
show how often a site was visited by an agent, the markers
show the initial positions. Note that there are only 9 colors
and each is assigned to two unrelated agents; and (b) for the
d = 1 case with M = 10, L = 320 after T = 1024 steps.
Territory of the black agent 0 is marked as the distance `
below the horizontal axis; the distance ∆ is the possible space
available between the starting positions of agent 0’s neighbors.

The interpretation of this model for d = 2 is quite intu-
itive, as there are two dimensional territories of marked
regions arising, if the density of agents is sufficiently
large. In the case of a site marked by several individu-
als, it is considered as being part of the territory of every
agent with an active scent on the site. In Fig. 1(a) an ex-
ample is shown where each field is colored with an agent
specific color whose intensity depends on the number of
visits to the corresponding site (and additional contour
lines for clarity). Clearly, the dynamics lead to extremely
well defined territories.

However, also the d = 1 version of this model has di-

rect application, e.g., Ref. [17] uses it to model organisms
which actively refresh the scent marks on the perimeter
of their territory, and compares it with empirical data
obtained from foxes. The rationale to use the one dimen-
sional version of this model is that a d = 1 agent hitting
the border of its territory and refreshing the scent mark
on one site of a line is similar to a d = 2 agent walking
directly along half of the perimeter of its territory—an
event which can not be modeled with a random walker
in two dimensions.

Since the main mechanism of this model is the inter-
action of multiple agents, we have to carefully determine
the size of the world: too large and there will not be any
interaction, too small and agents will be restricted to a
handful of sites. Especially, we need to pay attention how
the size of the world should scale with increasing number
M of agents or larger number T of steps. Since the single
agents behave in a diffusive way, we scale the size of the
world as L = ba d

√
M
√
T c, where a is a free parameter to

determine the density of agents. Since a is an inverse den-
sity we will call it sparsity. This leads to a roughly similar
number of interactions between agents when increasing
M or T , which we checked numerically (not shown). To
clarify, consider a scaling of the world size proportional to
T , which would fundamentally change the behavior from
a crowded world for small values of T to free diffusion
without any interaction for large values of T .

In the following we will only study the d = 1 case,
although all methods work in principle in arbitrary di-
mensions. The observable, we are studying is the total
size `i of the territory of agent i, i.e., the number of sites
marked with the corresponding agent’s scent. We will
mostly concentrate on one arbitrarily chosen “agent 0”,
without loss of generality. Its territory will be denoted
as ` without subscript. In particular, we are interested
in rare territories, which are much larger or smaller than
typical territories, but which only occur very rarely, e.g.,
when a single agent claims almost the whole worlds as
its territory. If one wants to obtain such events over a
substantial range of the distribution’s support, we need
to generate events with probabilities a small as 10−30.
This requires the application of sophisticated algorithms,
which we explain next.

B. Sampling Rare Events

To characterize these extremely rare events, we will
look at the the rate function Φ(`/T ), which is a central
element of large deviation theory [20]. It describes the
behavior of a large class of distributions in the limit of,
in this case, large times T . Here we will test it for the
distribution of territory sizes after T steps PT (`). The
rate function is defined for our case by

PT (`) = e−TΦ(`/T )+o(T ). (1)

If the distribution PT (`) can be described in such a way
using a rate function, one says the distribution fulfills a
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large deviation principle. Note that Φ is a function of
`/T , i.e., the ratio of the territory size ` to the maximum
size which is possible after T steps. This also means that,
although the full probability distribution is described by
Eq. 1, the region of typical events with a finite probabil-
ity, say PT (`) > 10−10 shrinks to a width of zero on the
x-axis as T →∞.

Here we want to approximate the rate function Φ valid
for T →∞ using simulations of systems with finite values
of T . From the distributions of finite sizes PT (`) we can
calculate empirical rate functions ΦT .

There are cases where the probability density does not
follow Eq. 1 but can still be expressed by

PT (`) = e−T
αΦ̃(`/T )+o(Tα). (2)

for some exponent α, which may even differ for the left
and right tail [21]. Since our data shows that the right
tail `� 〈`〉 follows this form with the classical α = 1, but
the left tail `� 〈`〉 does not, we will focus our evaluation
on this part.

Since the empirical rate functions converge towards a
limiting form for `� 〈`〉, as we will see in Section III, we
can even use them to estimate an approximation of the
functional form of the right tail behavior Φ(r). We will
indeed observe a functional form of Φ(r) very similar to
standard random walks.

Obtaining the data of the far tails of the distribution
P (`), needed to calculate the empirical rate functions,
is far from trivial. The conventional method of gener-
ating independent samples, generating a histogram from
them and estimate the distribution from that, is limited
to values of ` which have a large probability to be ob-
served during a feasible simulation time, say, larger than
10−10. But probabilities of 10−30, which might be needed
to characterize the far tails, are far beyond reach of this
method.

To sample events with such low probabilities efficiently,
we resort to a Markov chain Monte Carlo (MCMC)
method, which was used previously for a range of dif-
ferent applications [22–24] including the study of areas
of convex hulls enclosing the traces of random walks
[12, 13, 15]. Since the method has been described else-
where, we only give a brief description here, which mainly
defines the actual implementation for the present model
and few general explanations. For our MCMC approach,
the states of the Markov chains are given by a realiza-
tion of the set of M random walks. Thus, each state
consists of a stochastic simulation itself, of the actual
random walks, and the random walks are embedded into
a higher-level Markov chain.

First, as for any Markov chain method with the
Metropolis-Hastings algorithm [25], we have to define a
change move to generate trial realizations. While there
are elaborate and efficient change moves for the simple
random walk or the self-avoiding random walk used for
polymer simulations [26], we are not aware of any prior
work for the mutually-avoiding random walks of the ter-
ritoriality model we study. The growth mechanism of

the territoriality model does indeed prevent the use of
methods similar to the ones used for the mentioned non-
growing random walk models, (which is explained in a
bit more detail in [15]). Therefore we resort to a method
which does not operate on the random walk itself, but on
the random numbers used by the computer program to
generate the random walk. This method was introduced
to study non-equilibrium processes in Ref. [27] and suc-
cessfully applied to different models defined by growth
processes [15, 16, 23]. To understand the approach, note
that for any stochastic simulation it is necessary to con-
struct a realization of the studied ensemble from a se-
quence of random numbers. Clearly, it does not change
the behavior if one first generates all the random num-
bers, stores them in a vector ξ = (ξ1, . . . , ξK), and uses
them for the actual stochastic simulation, i.e., to con-
struct the random walks. In this way, a realization of the
stochastic simulations, the set of generated random walks
here, depends deterministically on ξ. Thus, a realization
and the vector ξ can be used synonymously. Instead of
constructing the Markov chain from realizations and pro-
pose change moves applied to the realizations, we build a
Markov chain ξ(0) → ξ(1) → ξ(2) → . . . consisting of ran-
dom number vectors as states and apply change moves to
these vectors. This requires a lot of computational power,
because generally after each change move a new realiza-
tion of M random walks has to be constructed from a
vector ξ . But this approach is quite generally applica-
ble to models, for which specialized change moves on the
realizations are not trivial to construct.

In this concrete case, the random number vector con-
sists of K = M + MT random numbers uniformly dis-
tributed between 0 and 1. The first M entries are used
to determine the initial positions, which are uniformly
distributed on a lattice under the constraint that no site
might start with two agents. The latter MT random
number entries are used to determine for each of the M
agents at each of the T timesteps which site to visit next
under the constraint of the rules introduced in the previ-
ous section. A change move selects a random entry of the
vector ξ and replaces it by a new uniform random num-
ber. The interpretation of each random number depends
on the realization: if the current site has no adversarial
scent, it is used to decide on which of the 2d neighboring
sites to step; otherwise it is used to decide on which of
the usually far fewer adjacent sites of its own territory to
step. This necessitates that for each given random vector
ξ the random walk simulation has to be performed from
the beginning again: a change, which makes an agent step
left instead of right at timestep t, might influence its left
neighbor who has to retreat at t + 2 instead of stepping
right. In two dimensions, one could easily imagine that
such a change could influence the configuration heavily,
e.g., by closing a ‘passage’ between two territories, trap-
ping a third agent. Note that such large changes in `
from changes proposed to the MCMC algorithm usually
lead to a decreased performance. As we will explain in a
few paragraphs, this cascading effect contributes to our
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decision to study the one-dimensional case.
For the Metropolis-Hastings algorithm the change

moves will either be accepted, i.e., used as the next state
of the Markov process, or rejected, i.e., the current state
is kept, according to the Metropolis acceptance probabil-
ity [28]

pacc = min
{

1, e−∆E/Θ
}
. (3)

Here Θ is an artificial temperature, whose role will be ex-
plained in the next paragraph. We identify the “energy”
E with our observable of interest, which is obtained from
each realization of the random walks, here E ≡ `, and
∆E = E(ξ′) − E(ξ) denotes the change in this quan-
tity between the current realization given by the current
vector ξ and the proposed trial realization ξ′.

We can choose the artificial “temperature” Θ freely,
especially—in contrast to natural temperatures—it can
also assume negative values. Note that this means that
small positive values of the the temperature will reject
most changes which increase `, and therefore lead to
atypically small territories. On the other hand, small
negative values of Θ will reject most changes decreasing
`, such that the encountered realizations will have atyp-
ically large areas. Large values of Θ, regardless the sign,
will accept almost all changes and therefore generate typ-
ical realizations. Indeed we can be more precise how ex-
actly the encountered realizations ξ will be distributed
with respect to `. They will eventually be distributed
according to the Boltzmann distribution

QΘ(ξ) =
e−`/Θ

Z(Θ)
Q(ξ), (4)

where Q(ξ) is the distribution of random vectors, i.e.,
effectively realizations of random walks, one would en-
counter when simply sampling from the territorial model
and Z(Θ) =

∑
ξ e
−`(ξ)/ΘQ(ξ) the partition function,

which just takes the role of a normalization constant for
our purposes. Conveniently, we can calculate the distri-
bution P (`) from the distribution of realizations by sum-
ming the probabilities of all realizations with the same
value of ` and analogously for the distribution PΘ(`)
measured in the biased Markov chain, which leads with
Eq. (4) to the following identity [22]

PΘ(`) =
∑

{ξ|`(ξ)=`}

QΘ(ξ)

=
∑

{ξ|`(ξ)=`}

1

Z(Θ)
e−`(ξ)/ΘQ(ξ)

=
1

Z(Θ)
e−`/ΘP (`), (5)

which we can use to remove the bias from our measured
PΘ(`), to obtain the distribution P (`) of the original ter-
ritoriality model.

The last ingredient missing is the knowledge of Z(Θ),
which we can obtain by exploiting the uniqueness of P (`),

i.e., if we have estimates for two biased distributions at
different values of the artificial temperature PΘi(`) and
PΘj (`), we can calculate the ratio of the two correspond-
ing Z(Θi) via

e`/ΘiZ(Θi)PΘi(`) = P (`) = e`/ΘjZ(Θj)PΘj (`). (6)

This requires us to obtain estimates for biased distribu-
tions at multiple values of the artificial temperature, such
that they overlap pairwise. Also the statistical precision
of the estimate in the overlapping region should be de-
cent to avoid large statistical uncertainties. As alluded to
before, we can tune the typical values of the territory size
` encountered in the Markov chain with careful choices
of Θ, such that the encountered values of ` show suf-
ficient overlaps. Note that when increasing the system
size, i.e., the number K of entries of ξ, one has to in-
crease the number of different values of the temperatures
Θ in order to cover a substantial range of the support
of P (`). Here, we used up to 14 different temperatures.
Note that the simulations for different artificial tempera-
tures are completely independent and can be performed
in parallel.

As for all Markov chain Monte Carlo techniques, the
subsequent realizations in the Markov chain are corre-
lated. So one has to ensure that the Markov process is in
equilibrium before taking measurements and to perform
enough change moves before taking the next measure-
ments to allow the samples to decorrelate [25].

This sampling method also allows us to measure other
properties of the encountered samples. While a full joint
probability distribution would need two independent ar-
tificial temperatures and much more simulation time, we
can use the values of a second observable o encountered
during one simulation, to construct a partial joint prob-
ability distribution using Bayes’ theorem. Because ` is
biased, the pairs (o, `) encountered during the simulation
can not be used to estimate the joint probability P (o, `)
directly, but they can be used to estimate the conditioned
probability P (o|`). After the simulation we obtain P (`)
from the data, as described above. Now Bayes’ theorem
allows us to obtain a part of the joint probability density
P (o, `) = P (o|`)P (`).

Markov chain Monte Carlo methods are still rather
compute intensive and a systematic study of the two-
dimensional territories is infeasible, as we explain now:
It necessitates a number of agents M which increases
quadratically in the linear size of the system to preserve
a fixed sparsity. The linear size of the system must be
larger than T to avoid extreme walks to interact with
themselves (or for non-periodic borders with the bound-
ary). At the same time the interaction between the differ-
ent agents leads to a problem when choosing the change
moves: A single changed step of a single agent will cas-
cade via the interactions through the whole system and
often introduce a substantial change, which has to be
rejected. This is aggravated by the fact that quite large
times T are necessary to observe the formation of territo-
ries. Since current studies of the full distribution of home
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range areas for comparable random walk models with a
single random walker are limited to T < 10000 [12–15],
even though there exist efficient change moves for those
models, the two-dimensional case of the territory model
is beyond reach at the moment.

Fortunately, the problems of the two-dimensional case
either vanish or are far less severe in the one-dimensional
case. In one dimension agents can not go beyond the
initial positions of their direct neighbors, such that the
linear size may be smaller than T without risking self-
interaction. This also reduces the severity of the cascad-
ing of change moves through the whole systems, since
mostly only the two direct neighbors will be affected.
Finally, the number of agents M scales only linear in
the linear size of the system to preserve a fixed spar-
sity, instead of quadratically. Therefore, we will present
in the following sections our numerical results character-
izing the one-dimensional case and compare them to a
standard random walk on the same lattice (the M = 1
case).

III. RESULTS

Before we dive into the full distribution, it is useful to
take a look at the behavior of the mean territory size 〈`〉.
This can be obtained via simple sampling, such that we
have access to larger systems than for the study of the
full distribution.

One of the fundamental properties of simple random
walks is their diffusive behavior, i.e., observables charac-
terizing their size along one dimension scale as

√
T in the

number of steps, i.e., 〈`〉 /
√
T → µ, for T → ∞ where µ

is a constant. We expect this for the present model as
well, which is reflected by the scaling of the world size
like
√
T . Our results shown below are consistent with

that. Also the value of µ and its dependence on a or M
are still of interest.

Therefore we show in Fig. 2 the average territory size `
measured over 106 random realizations for different num-
bers of steps taken T and different values of the parame-
ters determining the number M and sparsity a of agents.
Here we choose intermediate values of a, since very large
ones would inhibit the interaction between the agents.
The solid lines are fits to the form ` = µ

√
T +C1, where

the first term mirrors the dominating diffusive scaling
behavior and the second term should account for correc-
tions to this scaling for finite sizes.

Indeed, the fits of this form describe the behavior well
(with χ2

red goodness of fit values between 0.7 and 1.2 for
all shown cases.) The fit results for C1 are always smaller
than 0.5, i.e., they have no visual impact on Fig. 2. The
values of µ obtained by the fits are listed in the caption of
Fig. 2 and are much smaller than the known value of the
span of simple random walks. The span is the distance
from the leftmost to rightmost visited point, which is
analogue to our territory. For a one-dimensional lattice
with unit spacing it is known to be µ =

√
8/π = 1.596..

[29], i.e., the interaction of the agents has a large influence
on the typical behavior.
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FIG. 2. Behavior of the mean territory size for a selection
of parameters M and a. The horizontal axis is shown with
a logarithmic scale to adequately show the measured values
over many orders of magnitudes. Fits are to ` = µM,a

√
T+C1

for ` ≥ 1024. The resulting values are µ5,1 = 0.8737(3),
µ10,1/2 = 0.4905(2), µ10,1 = 0.8418(3), µ10,2 = 1.1572(3), and
µ20,1 = 0.8272(3).

Interestingly the choice of the number of agents M ,
despite not changing the sparsity of the agents, has an
influence on the asymptotic territory size, as the value
of µ decreases with growing value of M . Since we do
not look at any special agent, this must mean that more
agents lead to a higher proportion of unclaimed territory.
Less surprising is that a increased sparsity a, i.e., lower
density of agents, does not lead to proportionally more
territory. Especially for large values of the sparsity a, the
limiting factor is not the amount of unclaimed territory,
but the diffusive behavior of the agents which have access
to the largest area of free territory, while other agents
are restricted to small areas due to unfavorable initial
conditions. This effect, however should diminish greatly
in the two-dimensional version of the model.

For standard random walks without territorial compe-
tition it is well known that not only the means but the
whole distribution of the span shows a T -independent
form when scaled with

√
T [30, 31]. If this scaling is also

valid for the territoriality model under scrutiny, we would
expect that the distributions measured for different val-
ues of the number of steps T would collapse on the same
T -independent scaling form, i.e.,

P̃ (`/
√
T ) =

√
TPT (`). (7)

In the inset of Fig. 3 we can see that this collapse works
well in the high-probability region. Also there is a com-
parison to the distribution P (`) of a simple random walk
on a lattice, which has its maximum at larger values of
`/
√
T , which is consistent with our results for the mean

values, from above. In the main plot of Fig. 3, we can ob-
serve the same effect over almost the whole distribution.
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Only in the far right tail, where effects of the finite-size
world come into play, deviations from the common curve
are strong.
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FIG. 3. Distribution of the territory size PT (`) for different
numbers of steps T ∈ {128, 256, 512, 1024} including very rare
configurations. The axes are scaled to collapse all sizes on
a size-independent scaling form. The inset shows the high
probability part with a linear instead of logarithmical axis
with data obtained via simple sampling and therefore larger
values of T ∈ {1024, 4096, 16384, 65536}. Also shown is a
standard random walk (RW) for comparison. Not all available
data points are shown for clarity.

To study the far tails of extremely rare configurations
in more detail, it is useful to look at examples of such rare
instances. In Fig. 4 examples for both the left and right
tail are shown. They are realizations from the equilib-
rium distribution of the artificial temperature ensemble
at Θ = 1 and Θ = −1 respectively.
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x
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x

FIG. 4. Example configurations with a number T = 1024 of
steps, world size L = 320, and a number M = 10 of agents
obtained where agent 0 (black lines) is biased to (a) small
territories and (b) large territories. Apparently a large con-
tribution to the territory an agent can annex, depends on the
initial positions, either confining the agent, resulting in very
small territories, or confining most other agents, resulting in
a very large territory. In the latter case, also a rare config-
uration of steps taken is necessary to achieve the observed
ballistic movement leading to a large territory.

First, consider Fig. 4(a) corresponding to a realiza-
tion from the left tail. Apparently agent 0, marked in

black, is confined from the very beginning by its two
neighbors which start extremely close to each other. All
other agents seem to behave quite typically. If we assume
that this trapping mechanism is the dominant mechanism
leading to very small territory sizes `, we can try to es-
timate the behavior of the left tail of the distribution.
Therefore we need to know the distribution of the dis-
tance ∆ from the left to the right neighbor of agent 0.
Since the starting positions are almost independent (the
only correlation arises by the impossibility of two walkers
starting on the same site), we can approximate the initial
positions as a Poisson point process. Note that the Pois-
son point process lives on a continuum, while we have
a discrete lattice. Therefore the approximation becomes
better for increasing size of the world L. Fortunately,
for a Poisson point process with a point density of, here,
λ = M/L the distribution of the size δ of Voronoi cells,
i.e., half the distance ∆ = 2δ to the left and right nearest
neighbors, is known to be P (δ) = 4λ2δe−2λδ [32].

For small values of ∆ the diffusion of the agent would
cover all of the available area. Due to the competition of
its adversaries we would expect that for a given (small)
value of ∆ an area of ∆/2 = δ would be claimed by agent
0 on average. Thus we use δ ≈ ` and expect

PT (`) ≈ 4λ2`e−2λ` (8)

for small values of `. We compare this approximation to
the data we simulated in double logarithmic axes to em-
phasize the left tail. We rescale the axes the same way as
in Fig. 3, to enable the visualization of very different sizes
in the same plot. Also, this scaling lets Eq. (8) collapse
on a T -independent scaling form. Note that the events
in the left tail are probable enough that we can observe
the whole tail using our simple sampling results: they
often reach the very leftmost point ` = 2 of minimal pos-
sible territory in this model. First, we can see in Fig. 5 a
reasonable matching, with a deviation of 20% over most
of the tail, between our measurements and the approxi-
mation. The matching becomes better for larger values
of T , which is expected, since the approximation Eq. (8)
becomes better in that case. Thus, the initial positions
of the agents determine the left tail of the distribution of
territories in a major way. We will explore this in more
detail using correlations of multiple observables later in
this manuscript.

For the right tail of larger than typical territories the
instances seem to consist of extremely dense initial con-
ditions for all agents, in such a way that the agent with
the largest territory can occupy almost the whole world,
which is shown in Fig. 4(b). The total size of the ter-
ritory should therefore depend somewhat on the size of
the world. However, the “straight line” movement in the
example suggests a ballistic character of the agents with
extremely large territories, i.e., for extremely large terri-
tories, additionally to the rare initial conditions, also a
rare configuration of steps is necessary. In this case the
territory size ` should scale like the number of steps T
in the far right tail for worlds which are large enough.
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FIG. 5. Rescaled probability densities PT (`) in a log-log plot
to emphasize the left tail for walks with different number of
steps T . The solid line is the distribution (8). The size of

the world scales as L = baM
√
T c with M = 10 agents and

sparsity a = 1.
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FIG. 6. Empirical rate functions in a log-log plot to empha-
size the power-law behavior of the right tail for walks with
different number of steps T . The size of the world scales as
L = baM

√
T c with M = 10 agents and sparsity a = 1.

Therefore, we scale the horizontal axis of the rate func-
tion like `/T in Fig. 6, i.e.,

PT (`) ≈ e−TΦ(r)(`/T ). (9)

Further we shift all empirical rate functions such that
their minimum has a value of zero. Note that this is
a property of the rate function, because the probability
should not converge to zero for exactly every value of `.
The shift does therefore not change the form to which the
empirical rate functions converge with increasing T . In-
deed, for our data we observe that the right tails converge
to a common form, which behaves like Φ(r) ∝ (`/T )

2
un-

til effects of the limited world size and therefore limited
territory size truncate the distribution. This is the same
behavior of the rate function as for a single random walk
observed before [12, 14]. Assuming the rate function be-
haves like a power law for large values of T in the right

tail, Φ
(r)
T (`/T ) → (`/T )

κ
, one can understand the value

of the exponent κ = 2 by comparing the form of the dis-
tribution expressed via the rate function in Eq. (9) with
the scaling Eq. (7) demonstrated in Fig. 3. Since this
should only be valid for large values of T , we can neglect
the
√
T factor in Eq. (7) and arrive at

exp
(
−TΦ(r)(`/T )

)
≈ P̃

(
`/
√
T
)

(10)

Since P̃ has no explicit dependency on T , we must be
able to formulate the left hand side as a function of the
same argument `/

√
T :

exp
(
−TΦ(r)(`/T )

)
≈ exp (−T (`/T )κ) (11)

= exp
(
−
(
`/T (κ−1)/κ

)κ)
(12)

and therefore (κ − 1)/κ = 1/2 ⇒ κ = 2. Note that this
argument is more generally stated in Ref. [15]. One can
observe a collapse onto a common curve for the right tail
onto this form, which suggests that the large deviation
principle holds here and no fundamental differences to
standard random walks exist for the limit of extremely
large territories—though the detailed shape and location
of the typical region differ a lot (cf. Fig. 3).

In the almost complete probability density functions
we showed, it is obvious that very large territory sizes
are far more rare than very small territory sizes. This
can be made plausible by the following simple argument:
While left-tail events only need two arbitrary agents to
start close to agent 0, right tail events need every agent
to start in a very small region. Also while left tail events
do not need any rare configuration of steps, since the
starting positions are already sufficient to restrict agent
0 to a very small territory, right tail events need a rare
configuration of steps from agent 0, to span the available
territory. For extremely right-tail events, even the neigh-
bors need to show rare subdiffusive behavior to not claim
territory before agent 0 arrives.

Although, we limited this study to the limit ta = T
of permanent scents, there are still free parameters like
the sparsity a and number of agents M . We will test
their influence on the full distribution with a very short
parameter study shown in Fig. 7.

First, we should consider the influence we expect for
different values of the sparsity a: Since a directly governs
the density of agents due to L ∝ a, one would expect for
small values of the sparsity a, i.e., high densities, that the
distribution P (`) becomes concentrated around the min-
imum ` = 2. For large values of a, the density decreases
so far as to prohibit interactions between agents, such
that the territory size ` will behave the same way as the
span of a single random walk. Both expectations are met
when looking at the inset of Fig. 7(a). Here for smaller
values of a a more pronounced peak at lower values of `
arises and the curve for larger values of a becomes more
similar to the curve of a single random walk shown as a
black line. Moreover, the main plot shows the behavior of
the tails. Here, a truncation effect becomes visible, as the
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FIG. 7. Parameter study. L = baM
√
T c. (a) varying a

(M = 10, T = 256), lines visualize a standard random walk
(RW), (b) varying M (a = 1, T = 256). The M = 10, a = 1
data set is the same as shown in Figs. 3 and 6 for T = 256.

world size L becomes smaller than the number of steps
T and the extremely large territories do not fit into the
world anymore. However, for fixed, non-zero values of a,
we expect the T → ∞ limit of the right tail rate func-
tion Φ(`/T )(r) to exhibit the same (`/T )2 shape, which
we observed for a = 1 before and for the non-interacting
limit a → ∞ in [12, 14, 15], with possible differences in
the prefactor.

Next, consider the influence of the number of agents
M . Since the density of agents is independent of M ,
due to the scaling of L ∝ M , we do not expect a large
influence of M on the typical regime beyond the slight in-
fluence we already observed for the mean value in Fig. 2.
While very low values ofM , likeM = 2 will surely impact
the interaction between the walkers, this effect should
diminish quickly for larger values. Indeed, the distribu-
tion P (`) for M ≥ 5, which we visualized in the inset of
Fig. 7(b), are very similar to each other. However, for
the far tails visualized in the main plot, considerable dif-
ferences become apparent. Since L ∝ M , we encounter
the same truncation as visible for small a. So larger val-
ues of M allow us to explore deeper into the right tail—
unfortunately the computational cost also increases with

M .
Previously, we considered a few extreme example con-

figurations to get a feeling for the structure of extreme
configurations. To get a more complete and quantitative
picture, we can instead scrutinize the joint probability of
two characteristic observables. From the data collected
during the necessary simulations for determining P (`),
using Bayes’ theorem as described in Sec. II, we can de-
termine very large parts of the joint probabilities of `
and any observable, as shown in Fig. 8, for very little
additional computational cost.

0 40 80 120 160〈`〉
`

0

40

80

` m
a
x

10−20

10−10

P
(`
,`

m
a
x
)

FIG. 8. Joint probability distribution of P (`, `max) showing
anti-correlation of the size of the territory of agent 0 with
the largest territory of its adversaries for T = 256, M = 10,
a = 1, L = 160. The dashed lines mark `max = ` (rising),
`max + ` = L (descending). The vertical line shows the mean
value 〈`〉 and the white line with black outline the average of
`max restricted to the given value of `.

First, we show in Fig. 8 the joint probability of `
and the size of the largest territory of all other agents
`max := maxi>0 `i. Parts of the joint distribution are
marked white, if there are no data. Note that the upper
right triangle above the dashed line has a probability of
0, since the sum of the two territories must be smaller or
equal to the size of the world, also the M−2 other agents
block at least a small territory. The white line with black
outline shows the mean values `max(`) for each value of
`, it exhibits an expected slight anti-correlation. This
anti-correlation is due to the fact that all agents share
the same world, if one occupies more, the others get less.
The distribution can be split into two parts, one where
the territory of agent 0 is dominating, below the line
given by `max = `, and another where one of the other
agents covers the largest territory, above this line. In
the region where agent 0 has a territory of typical size,
marked by the vertical line, almost always at least one
other agent covers a larger territory. The distribution
is located in the figure above the rising dashed line. In
particular one can learn from this figure that only when
agent 0 covers about twice of its typical territory, where
the rising dashed line crosses the `max(`) line near ` = 25,
agent 0 covers among all agents the largest part of the
world. This is where the real large-deviation behavior
sets in.

Next, in Fig. 9, we want to study the efficiency of the
agents. Here again we mark the inaccessible region in the
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top right of the diagram by a dashed line. Also here, the
conditioned mean at a given value of the territory size `
is indicated by a white line with black border.
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FIG. 9. Joint probability distribution of P (`,∆) showing cor-
relation of the size of the territory of agent 0 with (a) the
distance ∆(t = 0) between its initial neighbors and (b) the
distance between the final territories of its neighbors ∆(t = T )
for T = 256, M = 10, a = 1, L = 160. The vertical lines again
show the mean value 〈`〉 and the white lines with black out-
line the average of ∆(t = 0) − `, respectively ∆(t = T ) − `,
restricted to the given value of `.

First, in Fig. 9(a) we look at the observable ∆(t = 0)−
`, which is how many sites, of those which are accessible
given the starting positions, are not claimed. This is
a measure of inefficiency. Since lower values of ∆(t =
0)−` signify a more efficient use of the available space, we
encounter the—only at the first sight—counter-intuitive
result, that agents with exceptionally small territories are
still exceptionally efficient. This can be explained by the
fact that the initial positions are indeed the driving factor
resulting in very small territories. Also note that at very
small values of ` we encountered no realizations with even
typical values of ∆, shown by the large white area for
small values of `. Also we note that for small values of `
the mean of ∆(t = 0)−` has a slope of almost one, which
supports our guess that in this case the agent should
claim on average half of the initially available space. The
maximum of this inefficiency measure is reached around
the typical realizations of ` ≈ µ ·

√
T (` ≈ 13.4 for these

data). To reach larger than typical territory sizes, the

inefficiency has to decrease again, since agents need to
claim larger portions of the limited total size.

Also we study ∆(t = T ) − `, which is how many sites
are still available to agent 0 in the end of the simula-
tion. This is a measure to estimate how large the role
of confinement by their neighbors is. Small values indi-
cate that the agents were limited by scent marks left by
their neighbors, while large values indicate that there was
still much territory unclaimed and the agent was limited
by its diffusive character. In accordance with our obser-
vation that agents with smaller than typical territories
are constrained by the small territory available, Fig. 9(b)
shows that almost all agents in this category claim every
last site. Similarly, agents with extremely large territo-
ries obtain them by not leaving sites unclaimed. Only in
the region of typical instances we see realizations which
leave significant portions of sites unclaimed. Overall,
there is a high similarity of Fig. 9(a) and Fig. 9(b), which
shows that rare realizations are mostly determined by
rare initial positions of the agents, rather than by rare
spatio-temporal evolutions.

IV. SUMMARY AND OUTLOOK

We studied a model for the emergence of territories
by scent marks left by random walkers in one-dimension,
which was used before to model the territorial behavior of
foxes [17]. The typical, i.e., high-probability, behavior of
our model turns out to be very different from the typical
behavior of standard random walks. Using sophisticated
large-deviation Markov chain Monte Carlo algorithms,
we are able to obtain the distribution of the territory
size over almost the full range of the support and many
decades in probability. For the analysis, we concentrate
on the behavior of extreme realizations, in which one in-
dividual either claims an extremely large or extremely
small territory. The results indicate that the far right
tail can be described by a rate function of a power law
shape with exponent 2. This is similar to the behav-
ior found for non-interacting random walks, which show
that the presence of interactions, which lead to the emer-
gence of territories, does not change the large-deviation
behavior of the right tail substantially. This is also a
good justification for the previous studies motivated by
complex interacting systems to scrutinize the rare-event
properties of simple models. Further, we use large parts
of the joint probability densities of the territory size and
the size of the largest adversarial territory or the size of
unmarked territory, as well as examples of very atypical
territory realizations to gain insight into the processes
leading to atypical realizations.

For further studies in the rare-event range, it would
probably not be very interesting to study the behavior
as a function of the lifetime ta of the scent. The reason
is that for the present study with ta = ∞ we already
found an asymptotic similarity of these repelling, but
not self-avoiding, random walks with the pure random



10

walk model. Nevertheless, it could be interesting to see
whether this similarity still exists for larger dimensions
than one. But for that purpose a much higher numerical
effort would be needed.
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