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We numerically study the disease dynamics which lead to the disease switching from one host
species to another, resulting in diseases gaining the ability to infect, e.g., humans. Unlike previous
studies that focused on branching processes starting with the first infected humans, we begin by
considering a disease pathogen that initially cannot infect humans. We model the entire process,
starting from an infection in the animal population, including mutations that eventually enable the
disease to cause an epidemic outbreak in the human population. We use an SIR model on a network
consisting of 132 dog and 1320 human nodes, with a single parameter representing the gene of the
pathogen.

We use numerical large-deviation techniques, specifically the 1/t Wang-Landau algorithm, to
calculate the potentially very small probability of the host switching event. This also allows us
to obtain the complete probability density function P (C) of the cumulative fraction C of infected
humans, which is an indicator for the severity of the disease in the human population.

Additionally we calculate correlations of C with selected quantities q that characterize the out-
break. Due to the application of the rare-event algorithm, this is possible for the entire range of C
values.

I. INTRODUCTION

Understanding the dynamics of disease transmission
is a very important aspect for a variety of disciplines
like immunology, biology, statistics, applied mathemat-
ics and statistical physics [1–9]. Besides understand-
ing the dynamics of existing diseases such research often
aims to find effective strategies to fight disease outbreaks,
e.g., considerable efforts have gone into areas like non-
pharmaceutical interventions [10] or vaccinations [11].

Clearly infectious diseases are not only a problem for
humans but affect basically all high-level species on this
planet and many pathogens are known to infect multiple
hosts [12]. In fact, most of the pathogens that infect hu-
mans are known to also infect at least one animal species
[13]. Despite that we only know a small fraction of viruses
that affect domestic let alone wild animals [14–17].

On an evolutionary time scale we know of many
pathogens that adapted to new hosts [18], i.e., host-
switching events. Such events pose a serious thread to
human populations [15] and there is a need to assess
the risk that known diseases pose for spillovers. This
is achieved by considering several risk factors, like the
number of contacts between humans and the current host
species of the disease, which can then be combined into
an overall risk factor [19].

However, to get a more fundamental understanding of
the underlying processes, there is a need to model these
processes with more detail. On the one hand this is quite
useful to understand the importance of different risk fac-
tors better, on the other hand it might provide better
tools for quantifying said risks in the first place.

Models that calculate the probability of a disease
switching to new host species, including mutation events
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such that the pathogen is able to cause an epidemic
outbreak, have been studied before. Antia et al. [20]
used a multi-type branching processes and typical-event
sampling methods for their study. A similar approach
was used to calculate the spillover probability and other
quantities for coupled metapopulations [21]. Another
study started with a single infected human and used a
branching-process to estimate the probability that avian
influenza mutates and becomes a pandemic in the human
population [22]. Furthermore, Schreiber et al. [23] inves-
tigated the evolutionary emergence of infectious diseases
with a combination of within-host dynamics, which ex-
plicitly model the viral load in infected individuals, and
a multi-type branching process on the population level.
Spillover from a reservoir community was also investi-
gated with steady-state analysis [24].

Still, most of these studies begin with the host-
switching event, i.e., they start with the first human in-
fection. This means that pathogens that correspond to
subcritical Zoonoses, i.e., have a very small probability
of infecting humans and would have to mutate to cause
larger outbreaks in the human society, are currently not
studied much [25]. Thus, the animal-human interface is
mostly overlooked in modelling and the host-switch itself
is rarely incorporated [26, 27]. Also, as Antia et al. [20]
mentioned, it would make sense to include the genetic
diversity of the pathogen in the animal population.

For studying the probability of a new host-switching
event, processes that lead to a very high switch proba-
bility are of limited relevance in practical terms, because
such switches are likely to have already occurred during
evolution. Thus, we consider diseases here, where the
switch has not taken place yet.

We should, first, note that more than 109 humans are
constantly exposed to many foreign pathogens that could
potentially infect them. Considering the large number
of more than a 1012 microorganisms on the human skin
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alone [28, 29], not to mention the abundance of microbes
on the entire planet [30, 31], it is clear that contacts
of humans with potential pathogens are frequent. But
since Zoonotic spillovers are relatively rare events [32],
the probability of any single pathogen gaining the abil-
ity to infect humans is actually very small. Alone the
number humans times the number of microorganisms per
human results in 10−21 ongoing contacts, so the overall
spillover probability per contact must be much smaller,
which makes it hard to treat the process by simulations
with standard approaches.

On the other hand, given the large total number of
human-animals contacts, it becomes likely that occasion-
ally one of those diseases manages to perform a host
switch. The emergence of COVID-19 [18, 33] serves as
a recent example and there are many other examples of
cross-species transmissions that also caused serious harm
[34, 35]. Thus, it is very relevant to model such host-
switching processes in particular in the regime of very
small switching probabilities, to be able to, at least in
principle, estimate the risks better.

Thus, in this study, we present a numerical rare-event
study of such switches using a variant [36] of the well-
known SIR model [37–39], which incorporates muta-
tions. Simulating very rare events poses challenges, since
typical-event sampling methods are not feasible due to
the high amount of computational power they would re-
quire. The need for studying rare events is, however, not
exclusive to disease dynamics but also important for a
variety of other areas and has been performed by numer-
ical [40, 41] and analytical or mathematical approaches
[42–44].

Recently the authors of the current work have ap-
plied [45] large-deviation algorithms to the standard SIR
model without mutations and for a single species. In the
current study we build upon those previous work, extend
it to two species and incorporate mutations, which allows
us to study cross-species transmissions with high numer-
ical precision to calculate switching probabilities even as
low as 10−120. We also explore correlation patterns with
other measurable quantities, which further enhances our
understanding of cross-species transmission and trans-
mission of mutating diseases in general.

The remainder of this paper is structured as follows:
First we introduce the SIR model, followed by the pre-
sentation of the utilized network model. We explain the
used large-deviation techniques and provide a small sim-
ple sample study where we explore the parameter space
before presenting the results of our large-deviation inves-
tigation. Finally, we give a summery and an outlook.

We believe that this study will contribute to the grow-
ing body of knowledge in disease transmission dynamics
and provide, on an abstract level, first valuable insights
into the risk of cross-species transmission events.

II. SIR MODEL

We extend an SIR model that was modified to incor-
porate mutations [36] as it is explained below.

Each node of a given network is in either of three
states Susceptible (S), Infected (I) or Recovered (R). The
model is defined by a global recovery probability µ, here
we use a value µ = 0.14 for simplicity, which is somehow
arbitrary since it basically just fixes the time scale. For
details on the dynamics of the SIR model, see below.

Additionally, for each infected node i a, for simplicity
single-valued, gene variable γi ∈ R is stored, which is uti-
lized to determine the transmission probability λi of the
corresponding pathogen hosted by node i. In the original
paper [36] the transmission probability λ was defined to
be some function λ(γ). This is a very simple representa-
tion of a fitness landscape. At least λ(γ) should exhibit a
maximum representing the variant of the pathogen which
transmits best.

We take a similar approach in our study; however, we
aim to investigate a disease that switches from one host
species to the next. Consequently, each infected node is
associated with two lambda values, i.e., the transmission
probability to animals λai and the transmission probabil-
ity to humans λhi . Thus, for simplicity, the transmission
probability depends only on the target species and on the
gene value γ, not on the current species. Consequently
every individual, regardless whether it is an animal or a
human, exhibits both transmission probabilities because
the corresponding pathogen might be transmissible for
both species.

As in the reference work [36] we assume that the fit-
ness landscape exhibits, beyond the most simple case,
more than a single maximum for the infection probabil-
ity to, e.g., account for different routes of transmission.
For this we used the following function modelling the
transmission probability to animals:

λa(γ) = λmax

(
2− γ2

)
(cos (5γ) + 2)

6
. (1)

Here λmax represents a parameter that defines the maxi-
mal transmission probability that the disease can poten-
tially reach. In the context of this work we always use
λmax = 0.15. Together with the value of µ = 0.14 this
means that a global disease is possible.

Mutations that increase the ability of a disease to in-
fect a new host species are likely to decrease the ability of
said disease to infect the old host species [15]. However,
while we did not want the functions λa(γ) and λh(γ)
to be the same, we also did not want them to differ
too much. Thus, we decided to use the same function
shape for both but slightly shifted. There needs to be
an overlapping region, where the transmission probabil-
ity is nonzero for animals and humans, to allow for an
evolution of the gen variable γ. Here, we chose that the
point where λh(γ) starts to differ from 0 aligns with the
point where the transmission probability for the animals
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exhibits a local but not a global maximum, specifically
at γm = 1.00728. . . , i.e.,

γ′ = γ − 2.4214957. . . ≈ γ −
√

2− 1 , (2)

λh(γ) = λa(γ′) . (3)

Note that it can be assumed that the qualitative be-
havior of the model will not depend on the actual shapes
and relative weights of the functions. In Fig. 1 we show
the functions we used to calculate λ from γ. For clarity
we highlighted the most important values in the plot.
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FIG. 1. Functional relation of the gene variable γ and the
transmission probability to humans λh in red and the trans-
mission probability to animals λa in blue. We have also high-
lighted the positions of the two local minima γ1 and γ2 with
dashed vertical lines. The highlighted value of γB = 1.05 will
become important later in this paper and is thus also included.
The height of the local minima and maxima is highlighted
with the dashed horizontal lines.

Having defined the transition probabilities, we can now
proceed to the actual dynamics. To initiate a SIR simu-
lation, all nodes are assigned the S state, except for one
randomly selected node from the animal network, which
we also call patient zero. This node is set to the infected
state I and assigned the initial gene value γ = γinit.

To perform a time step we iterate over all susceptible
nodes that are adjacent to at least one infected node in
a parallel fashion. Let us consider node j with infected
neighbors i, each having corresponding gene values de-
noted by γi. Accordingly, the node j will be flagged to
become infected in the next time step with a probability
of

λj = 1−
∏
i

(1− λ(γi)) . (4)

If the node is flagged we need to determine which specific
node i actually caused the infection of j. This is done by
drawing one node i0 from all infected neighbors such that
each node i exhibits a probability of being chosen that is
proportional to its corresponding λ(γi) value. Next, we
assign the value of the gene variable

γj = γi0 + ϕ (5)

where ϕ is a random number drawn from a Gaussian
distribution with a mean of 0 and a variance of σ. Note
that σ can be understood as a sort of mutation rate,
i.e., a low value of σ will typically result in only minor
mutations whereas a large value of σ lets large mutations
appear more frequently.

Now that all infections for the next time step have been
decided, we need to decide on the recoveries. For this we
iterate over all infected nodes and transition them to the
recovered state R with probability µ. To conclude the
time step, we update the state of all flagged nodes to I.

It is worth noting that we implemented a slightly dif-
ferent algorithm than the one used in Ref. [36], but note
that both implementations are equivalent. This was nec-
essary for algorithmic reasons to incorporate the large-
deviation simulations which we describe later on. For
this purpose we, rather than drawing numbers on de-
mand, pre-generate and store them in vectors, such that
they can be manipulated in a controlled fashion. More
details are provided in Sec. IV and Sec. V. For this it
is beneficial to reduce the amount of required random
numbers, which is the reason for the different implemen-
tation.

Since, for every infected or recovered node j, we have
the information about which node i0 was responsible for
the infection, we can construct an outbreak tree. In this
tree the initial infected node, i.e., patient zero, serves as
root. Directional edges are created from each node to
the nodes it infected. Nodes that were never infected
are disregarded. The resulting outbreak-tree represents
a subgraph of the original graph.

Lastly we need a quantity that characterizes the sever-
ity of the outbreak in the human population. For this we
use the cumulative fraction of humans that contracted
the disease during the outbreak, which we will denote by
C.

III. NETWORK ENSEMBLE

Since we aim to model a disease that switches from
one host species to another we now need to model two
different host species with some links in between.

Considering that this study is fundamental research,
rather than a study tailored for a specific disease or lo-
cation, the details of the contact networks should not
matter much. We still wanted to investigate a relatively
realistic case and chose to use a network model [46] that
was fitted to a population of dogs in N’Djaména, Chad,
in order to evaluate measures against rabies. To model
the network the authors of have measured the contact
network of wild and domesticated dogs and have fitted a
spacial [47] network model to the data. The construction
of this resulting spacial network works as follows:

To create a network of Na animal nodes we first have
to decide their x- and y-coordinates, which should be
located in the unit square. The coordinates are cho-
sen using Latin Hypercube sampling [48, 49], i.e., the
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x-coordinate is sampled exactly once from every inter-

val
{[

0, 1
Na

)
,
[

1
Na
, 2
Na

)
, . . . ,

[
Na−1
Na

, 1
)}

in random or-

der. The y-coordinate is sampled in the same way.
Next we iterate over every pair i < j of nodes and

connect them with the probability

pi,j = 1−
(

1−
(
e−κ
√

(xi−xj)2+(yi−yj)2
))2

, (6)

which depends on the euclidian distance of the nodes and
some scaling variable κ, the value that was actualy used
is listed below.

Additional to those spatially motivated edges, a frac-
tion of nodes are now selected to become something akin
to hubs by connecting them to additional nodes without
any regard for spacial distance. For this we randomly
draw k = N(1 − τ) nodes (rounded to the closest inte-
ger), where τ is a second model parameter.

For each node i in the hub-set we first decide the num-
ber m of hub-links we want to create by drawing m from
a Poisson distribution with mean Λ, where Λ is the last
model parameter. Then we iteratively add m new edges
to the node i where the probability of connecting it to
node j is

p̃i,j =
kj∑N−1
l=0 kl

, (7)

where kj is the current degree of node j.
Throughout this work we used Λ = 7, τ = 0.7 and

κ = 10
√
Na/66 for the parameters, which were taken

from [46], although we scaled κ such that we can use this
parameter set for a different number Na of animals.

This finalizes the animal part of the network. Next
we construct a network intended to represent the human
population. For this we chose to use a small-world net-
work [50]. While this does not perfectly describe human
contact networks it is a good-enough approximation for
the purpose of this study.

The network of humans is initalized with Nh nodes
i = 1, . . . , Nh. First, every node i is connected to all
neighbors j for which |i − j| ≤ 8 mod Nh, i.e., with pe-
riodic boundary conditions. This creates a ring in which
every node now has an initial degree of 16. Next we
iterate over all edges {i, j} once and rewire each with
probability p to a random node j′ 6= i, i.e., we swap
{i, j} → {i, j′}. We use a rewiring probability of p = 0.1
throughout this paper.

This completes the construction of the separate con-
tact networks for each host-species. Now we still need to
create some edges between the networks, i.e., connect a
few animals with humans.

The fraction of ownerless dogs was estimated to be
between 8-15% [46, 51]. Here we use 15% ownerless dogs.
For all other dogs we each drew an owner from the set of
humans that not yet owned a dog and then we created an
edge between them. Thus, all dogs with an owner now
have exactly one edge connecting them to a human node.

IV. LARGE DEVIATIONS

To be able to calculate very small probabilities we need
to employ special large-deviation algorithms. Under the
name of transition-path sampling [52, 53] these methods
gained their initial popularity in statistical physics. Since
then these large-deviation algorithms have been applied
to a variety of models, including but not limited to power
grids [54, 55], the Kardar-Parisi-Zhang equation [56–58],
Ising models [59–62] as well as to measure various graph
[63–66], RNA [67] and protein properties [68–70].

For applying these methods to the SIR model, the
large-deviation simulation needs to be able to control the
underlying SIR simulations [45], i.e., the SIR dynamics
need to be manipulated in a controlled fashion. This al-
lows one to focus on different, originally rare, parts of
the dynamics. Since the control is known, one can eas-
ily obtain the true extremely small probabilities of the
observed events during the subsequent analysis of the re-
sults.

This is done as follows: In a standard SIR simula-
tion, random numbers uniformly distributed in the in-
terval [0, 1] are typically generated on demand. By com-
paring those numbers against the respective transmission
probability λi (see Eq. (4)) or the recovery probability µ
one can decide whether a susceptible node becomes in-
fected or an infected node becomes recovered. In case
of the SIR model with mutations that is applied in this
work, we need to make additional random choices once
a new node i is infected: One uniformly distributed ran-
dom number is required to decide which of i’s infected
neighbors caused the infection, only when node i has one
infected neighbor this step can be skipped. This informa-
tion is required to decide the respective γi value according
to Eq. (5), for which we also need a Gaussian distributed
random number ϕ.

Instead of drawing the random numbers on the fly one
could create them beforehand and store them in the vec-
tors ξaµ, ξhµ, ξaλ, ξhλ , ξθ and ξσ. ξaµ (ξhµ) and ξaλ (ξhλ) contain
a distinct random number for each animal (human) and
time step τ . The number of random numbers in ξθ and
ξσ is independent of the number of time steps and only
dependent on the number of nodes, because each node
can be infected at most once (see Sec. V for more de-
tails). Now ξµ (ξλ) can be used to decide if a node i
becomes recovered (infected) at a given time step. Upon
infection ξθ is used to decide which neighbor of node i
infected it such that finally ξσ can be used to decide the
respective value of γi. Lastly, we store the index of the
first infected node in the variable ξ0, which is a num-
ber uniformly drawn from all indices corresponding to
animals.

As long as the length of the random number vectors
are long enough such that the disease outbreak termi-
nates before the simulation runs out of random numbers,
this procedure cannot change the outcome of the simula-
tions. However, the entire outbreak simulation is now
a deterministic outcome of the randomness contained
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within Ξ =
(
ξaλ, ξ

h
λ , ξ

a
µ, ξ

h
µ, ξθ, ξσ, ξ0

)
. Note that random

numbers are occasionally ignored, e.g., random numbers
corresponding to nodes that, at that time step, have al-
ready recovered will have no effect.

One could do simple sampling if one drew independent
vectors Ξ many times, for each of which any desired quan-
tity, here C, would be evaluated to create a histogram.
This would enable one to estimate the high-probability
part of the distribution P (C). To go beyond this and
estimate the distribution over a large range of the sup-
port, we use this setup to sample rare events by control-
ling the values within Ξ via a Markov-Chain-Monte-Carlo
(MCMC) approach. For this purpose, we employ the
1/t Wang-Landau algorithm [71], which is an improved
version of the original Wang-Landau [72] algorithm that
prevents error saturation [71, 73–75].

The WL algorithm requires an initial estimate h(C) for
the probability density distribution P (C). This estimate
does not need to be normalized and it is usually sufficient
to use, e.g., h(C) = 1 ∀C, though if one has prior infor-
mation about the pdf one can, of course, supply a better
estimate.

Now a Markov-Chain with the steps t = 0, 1, . . . is
created. For each step t a new trial configuration Ξ̃ is
constructed based on the previous configuration Ξ(t−1)

via the Markov moves explained in Sec. V. Each of those
configurations deterministically determine an entire out-
break simulation and thus correspond to the resulting cu-
mulative fractions C̃ and C(t−1), that can be calculated
by performing the respective simulations.

To decide whether to accept, i.e., Ξ(t) = Ξ̃, or reject,
i.e., Ξ(t) = Ξ(t−1), the trial configuration, the Metropolis-
Hastings[76] probability

p = min

[
1,
h(C(t−1))

h(C̃)

]
(8)

is used. This means that the acceptance probability for
the WL algorithm is inverse proportional to the current
estimate h(C) of the probability density function.

To refine the probability density estimate h(C), WL
uses a multiplicative factor f > 0. It is utilized in each
step t to changing the estimate as h(C(t)) → fh(Ct),
while leaving the estimate for the values of C untouched.
Thus, if the simulations remain at some value of C for a
while, it will subsequently become less and less likely to
further remain there due to Eq. (8).

In the beginning the factor is usually relatively large,
e.g., f = e = 2.71. . . and then progressively reduced
via some schedule. This gradual reduction allows the
estimate h(C) to be updated on a finer and finer scale,
such that, apart from the normalization, it ultimately
converges to the sought-after pdf P (C). Thus, we can
obtain

P (C) =
h(C)∑
C h(C)

. (9)

For details about the schedule for changing f we refer to
the literature, just keep in mind that the update schedule

is actually the main difference between the original WL
algorithm [72] and the 1/t WL algorithm [71].

The convergence properties of the Markov chain de-
pend on the chosen parameters of the model. The de-
scribed algorithm works well when we start with an ini-
tial γ value close to 1, i.e., where it is quite likely that
the disease switches from the animals to the humans.

If, however, we have a low value of gamma, e.g.,
γ = −0.663, and a low mutation rate, i.e., a low value
of σ, then we experience some issues: Let us consider a
MCMC chain that currently exhibits the configuration
Ξ where the disease does not switch to the humans, i.e.
one has C = 0. It now becomes very hard to escape,
as there is likely not one single Markov step that can
change the configuration to a state where the humans
become infected, i.e. C > 0. Instead, a sequence of rel-
atively specific Markov moves would be required. From
the perspective of the simulation, however, the interme-
diate configurations all correspond to C = 0 and thus
they all correspond to the same bin in the histogram.

This is an issue, because all moves that do not
change the bin will be accepted since the corresponding
Metropolis-Hastings probability becomes 1. As a result
the Markov moves will randomly move in the configura-
tion space that corresponds to C = 0, without any “drift”
towards C > 0. Only after a long time it might manage
to randomly switch to C > 0. This means the estimate
of h(C = 0) might have grown to a high value. Thus,
a move that leads back to C = 0 is very unlikely to be
accepted, at least for some time. This is bad, because for
a good convergence, the WL algorithm should visit all
possible bins frequently. Furthermore, we observed that
within the simulations the first infected human does not
change anymore, which means that we are also restricted
to a configuration subspace and thus have issues with
ergodicity [77, 78].

Since we could pinpoint our issues to the C = 0 bin of
the histogram we were able to solve them by a quasi two-
dimensional histogram indexed by C and γmax, where
the latter is the current maximum of γ encountered in
the animal population during an outbreak defined by the
current randomness Ξ.

With respect to the shape of λ(γ) we distinguish val-
ues of γmax as follows: Firstly, values smaller than γinit,
which is the value of patient zero, are as considered as
similar, i.e., lumped together. Secondly, values in be-
tween γinit and 1.05 are most important. Thus, this in-
terval is subdivided into N̂ sub intervals, where N̂ can
be chosen somehow arbitrarily, here we used values in
the range N̂ ∈ {100, . . . , 1100}, depending on the chosen
value of γinit. Thirdly, all values γmax > 1.05 are also
lumped together.

Instead of storing a full two dimensional histogram
h(C, γmax), we map it to a one-dimensional one. For
this purpose let us first define the binning for the values
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of γmax ∈ [γinit, 1.05]:

b(γmax) =

⌊
N̂

(
γmax − 1.05

1.05− γinit

)⌋
, (10)

which is smaller than zero. We define a new quantity
Ψ, which denotes the index in the one-dimensional his-
togram for encountered values (C, γmax), as

Ψ(C, γmax) =


C if C > 0

0 else if b(γmax) ≥ 0

−N̂ else if b(γmax) ≤ −N̂
b(γmax) otherwise

, (11)

Thus, the index ranges from −N̂ to the number Nh of
humans.

Sometimes we are only interested in the probability
that the disease switches to the human population. In
that case we do not care about the actual size C of the
outbreak and thus we can use a single bin to account for
all values C > 0, which reduces the required computation
time.

By now calculating the probability h(Ψ) via WL analog
to what is described above we are able to actually sample
the pdf, as now we are able to reach C > 0 from bins with
high γmax values. We can normalize h(Ψ) such that the
sum of all bins equals 1, i.e.,

∑
Ψ h(Ψ) = 1. Note that

we can recover h(C = 0) via

h(C = 0) =

0∑
Ψ=−N̂

h(Ψ) = 1−
∑
Ψ>0

h(Ψ) , (12)

where the latter equality holds due to the normalization.
This approach enables the sampling of extremely rare

events that cannot be accessed through typical-event
sampling (also known as simple sampling) methods. As
a result, it allows for the sampling of distinctive features
of the pdf across its entire support.

Strictly speaking WL does not fulfill detailed balance
[77], however, since h(Ψ) is continuously updated. To
address this we additionally apply entropic sampling [79],
which is very similar to WL, it just does not update the
estimate h(C) of the pdf during the simulation but only
updates it afterwards. This step was here not essential
for estimating P (C), as the accuracy achieved by WL
turned out to be already exceptionally high, making the
subsequent entropic sampling calculation only marginally
beneficial.

Nonetheless, the additional entropic sampling simula-
tion enabled us to achieve a rather uniform sampling of
disease trajectories across the entire range of possible C
values, which in turn allowed us to calculate correlation
with other measurable quantities, even in the range of
very improbable values of C.

All in all, this rigorous numerical method provides high
confidence in the results and has proven to be very fruit-
ful in the past.

V. MCMC MOVES

In this section we will show how the trial configuration
Ξ̃ is created by making small changes to a given current
configuration Ξ(t). Since the different vectors in Ξ in-
fluence the disease dynamics in a different way, we need
several types of moves. We first explain the special ones.

With a probability of 1% a rotation move is performed.
The rotation move is split into three sub-moves, the
human-rotation, the animal-rotation and the combined
rotation, of which one is randomly and uniformly se-
lected. For the human rotation ξhµ and ξhµ are rotated
by Nh to the left (50%) or right (otherwise). Similarly,
for the animal rotation ξaµ and ξaµ are rotated by Na to the
left (50%) or right (otherwise). The combined rotation
works by rotating ξhµ and ξhµ by Nh and ξaµ and ξaµ by Na
to the left (50%) or right (otherwise). Those rotations
roughly correspond to shifting the underlying time series
by one time step to the left or right. Note that, instead
of copying a lot of RAM around, it is more efficient to
just store the current rotation offset.

Before explaining the mutation change moves we first
need to clarify a technicality. The vector ξσ does not
contain Gaussian distributed random numbers, but ran-
dom numbers uniformly distributed on the interval (0, 1]
instead. Using the Box-Muller method [80, 81] we can
transform two uniformly distributed random numbers
u1, u2 into two independent normal-distributed random
numbers ñ1, ñ2. We opted to always use only ñ1, even
though ñ1 and ñ2 are uncorrelated and one could techni-
cally use both. We do this, because both random num-
bers ñ1, ñ2 would change upon changing one of the input
random numbers u1, u2, but we want the simulation to be
able to easily change single random numbers without au-
tomatically changing another. This gives the simulation
a finer control over the mutation changes.

The vector ξσ contains 2(Nh + 3Na) random numbers
uniformly drawn from (0, 1], which correspond to Nh +
3Na Gaussian distributed random numbers.

The first Nh random numbers are used to calculate
the new gene value γ if a human gets infected by another
human, the next Na values are used if an animal infects
a human, the next Na values are used if an animal gets
infected by a human and the last Na values are used if
an animal gets infected by another animal. Note that
these entries are not used randomly, but there exists a
mapping, i.e., which entry we use depends on the index
of the node in question. Now that this is clarified we will
come back to the change moves.

With a probability of 3.5% we perform a simple mu-
tation move. For this we repeat the following between
1 and 22 times (uniformly distributed). uniformly draw
an index of ξσ, corresponding to a pair of two uniform
random numbers and exchange these numbers with newly
drawn ones, which is equal to drawing a new sample from
the Gaussian distribution.

Note that changes of entries corresponding to nodes
that, given Ξ, are not getting infected at all, will not have
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any effect on the simulation and thus will be accepted by
the Metropolis criterion. Also changes that correspond
to leafs in the current outbreak-tree will likely have a
smaller effect and thus also have a high probability of
getting accepted. This results in a high over all accep-
tance rate of this type of move. In Contrast, changes
that effect the children (in the outbreak-tree) of the ini-
tial infected node or more generally nodes on the path to
the first infected human have a high likelihood of getting
rejected, which results in a less efficient sampling.

To combat that, we introduce the tiny mutation change
move, which is performed with a probability of 3.5%.
This move is the reason why we use uniformly distributed
random numbers followed by the Box-Muller method in-
stead of directly using random numbers from the normal-
distribution. Having uniformly distributed numbers lets
us apply an idea that was first used in Ref. [82]: In-
stead of redrawing the pair uniformly distributed num-
bers ui1, u

i
2 corresponding to the ith index of ξ̃σ, we can

just change them slightly, i.e., ûi1,2 = ui1,2 + χ1,2ε, where
χ1,2 is uniformly distributed in [−1, 1] and ε is uniformly
drawn from the set ε ∈

{
10−i|i ∈ {0, 1, 2, 3, 4, 5, 6, 7}

}
. If

the resulting number is outside the allowed range, i.e.,
if ûi1,2 /∈ (0, 1], then value is rejected, i.e., ûi1,2 → ui1,2,

which is necessary to assure that the resulting values ûi1,2
are also distributed according to the correct uniform dis-
tribution.

Now, if a tiny mutation change move is selected, we
do the following between 2 and 44 times (uniformly dis-
tributed). First draw a random index i. Then either
(66.6%) do the above process to only one of the uniform
numbers, i.e., either to ui1 or to ui2, or (33.3%) to both
random numbers, using the same ε value for both ran-
dom numbers but different relative shifts χ1,2. Overall
the tiny mutation change move was found to greatly im-
prove convergence.

With a probability of 1% a decision move is performed,
i.e., we perform the following 132 times: Uniformly draw
a random index i of ξθ. Exchange the ith entry of ξθ with
a new random value, uniformly drawn from [0, 1].

With a probability of 1% we perform a focused time
move which changes some of the random number de-
termining the initial phase of an outbreak. For this,
we first draw a random number ω uniformly from
{0, 1, . . . , 29, 30}. Then we redraw all random numbers
within ξhλ , ξ

a
λ, ξ

h
µ and ξaµ that are associated with the ω’th

time step.
With a probability of 1% a patient move is performed

by uniformly drawing a new animal index for the initial
patient ξ0.

Lastly, if none of the other moves was selected, i.e.,
with probability 89%, we perform a randomize dynamics
move by doing the following 2100 times: Select a random
entry χ of ξhλ , ξhµ, ξaλ or ξaµ in such a way that every entry
has the same probability of being chosen. Then draw a
uniformly distributed random number u ∈ [0, 1] and set
χ→ u.

Note that we document our move choices here for com-

pleteness reasons and to make it easy to reproduce the
results. The correctness of the algorithm does not de-
pend on the exact choice of moves or their exact relative
frequency, as long as ergodicity is fulfilled. It will, how-
ever, affect the efficiency of the algorithm and the speed
of convergence. As a rule of thumb one aims for an accep-
tance rate of about ∼ 50%. We have chosen the relative
frequencies determining which type of move is selected
and the number of changes perform to the corresponding
entries by some experiments with this rule of thumb in
mind but by no means we have performed an exhaustive
simulation parameter test series.

VI. SIMPLE SAMPLING

Next we wanted to sample the model parameter space.
As explained earlier we always use a recovery probability
of µ = 0.14, while the maximal transmission was limited
to λmax = 0.15.

We created a graph with Na = 132 dogs and Nh =
1320 humans, which we will henceforth use for all simu-
lations. To scan the parameter space we considered 200
values for the initial value of γinit evenly spread out in
the interval [−2, 4] and 200 values for the mutation rate
σ that were evenly spread in the range [0, 10].

First, we wanted to measure how probable it is that at
least one human gets infected during an arbitrary out-
break, i.e., how probable it is that the disease switches
from the animals to the humans. We therefore simu-
lated 20000 outbreaks for each parameter combination
and show the results in Fig. 2.
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FIG. 2. Fraction PS of outbreaks where at least one human
contracted the disease for different combinations of the initial
value of γinit and the mutation rate σ. Each data point was
averaged over 20000 outbreak runs.

Clearly, for a mutation rate with a value of σ = 0, no
humans can contract the disease unless the initial value
γinit exceeds 1, since the transmission probability to hu-
mans is λh = 0 below that. For slightly larger values of
σ we observe 6 peaks of PS , which mostly correspond to
the peaks of λh and λa from Fig. 1.
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Interestingly, the largest peak is at γinit = 0, where
the disease is the most infectious to the animals. This
means, to achieve the highest likelihood of infecting hu-
mans, it is more important to first spread well throughout
the animal population and maximize the number of con-
tacts to the human population, than it is to start with a
gene value γ that is already able to infect humans. Note
that zoonotic diseases are also often associated with high
contact rates of host animals and humans [14]

The peak at about γinit = −1 is lower than the peak
at about γinit = 1, even though the corresponding values
of λa are the same. This makes sense, since for the first
case the disease has to mutate more to be able to infect
humans.

At γinit ≈ 1.21 we observe another peak, although at
slightly lower mutation rates. This corresponds to the
point where the disease has an equal likelihood of being
transmitted to animals and humans. This peak and all
those peaks previously discussed decrease in size for very
large mutation rates, because the subsequent infections
will be increasingly dissimilar from their parents and the
offspring of a very infectious disease strain are unable to
maintain this infectiousness.

For values beyond γinit =
√

2 the transmission prob-
ability to animals is 0. Since the initial patient zero is
an animal, this means that the disease can only infect
the humans if the initial animal infects its owner. Thus
the probability PS becomes independent of σ, which is
visible in the figure.

Next we looked at the relative outbreak size C in the
human population. For this we used the same parameter
as before. In fact, we measured it in the same simula-
tion. The results are displayed in Fig. 3. Note that we
only display the results up to σ = 4, since C is not dis-
tinguishable from 0 beyond that.
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FIG. 3. Relative outbreak size in the human population C
for different combinations of the initial value of γinit and the
mutation rate σ. Each data point was averaged over 20000
outbreak runs.

Unsurprisingly this plot looks quite similar to the one
shown before. This time, however, the peak correspond-
ing to the initial value where λa = λh is the largest, even
though this was not the case for PS , which shows that,

if the outbreaks happen here, they are likely to be more
extreme than for the ones for γinit = 0. This is due to
the larger initial transmission probability for λh.

If we look at large mutation rates we can see that C
decreases monotonically, even for γinit >

√
2. This was

expected, since, even though the mutation rate does not
affect the switch probability PS in this case, it will affect
the outbreak that follows.

VII. LARGE-DEVIATION SIMULATION

We next consider the task of precisely measuring the
switch probability PS , in particular in the case where
it is very small. In this case the typical-event sam-
pling approach becomes unfeasible due to the astronom-
ical amount of samples that this endeavor would require.
Therefore, we have to turn to the large-deviation ap-
proach explained in Sec. IV.

Note that we always used exactly the same network,
i.e., the one we already used in the previous section,
as discussed in the beginning of the paper. To mea-
sure one value of PS for a set of parameters we always
performed an entire Wang-Landau simulation, where we
used ln(f) = 10−6 as termination criterion.

We started our simulations with several distinct initial
values of γinit ∈ {γ1, 0, γ2} (see Fig. 1), where γ1 and
γ2 are the locations where λa exhibits the local minima
and γ = 0 corresponds to the global maximum. For the
mutation rates we used various σ distributed in [0, 1].
The results are displayed in Fig. 4.
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FIG. 4. Switch probability PS measured via Wang-Landau
(WL), shown by symbols, and typical-event sampling (te),
shown by lines, for different mutation rates σ and initial values
γinit. Note that γ2 = −γ1 ≈ 0.663, which is also displayed in
Fig. 1. The dashed line indicates the mutation rate σC that
we use for subsequent simulations. The inset displays the
same data until σ = 1 in linear scale

Note that we also measured PS via typical-event sam-
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pling, averaging over 30000 samples each, in the range
where it was easily obtainable .

Looking at the linear range we see the same pattern we
have already seen in Fig. 2, i.e., for larger mutation rates
the initial ability to spread within the animal population
is more important than starting with a value of γinit that
is closer to being able to infect humans. For smaller mu-
tation rates, however, this changes and now we observe
the largest switch probability PS for γinit = γ2. It is also
visible here (see also Fig. 2) that the switch probability
starts to decrease again beyond a certain mutation rate,
i.e., there is an optimal mutation rate making the switch
most likely. Furthermore, we can observe a very steep
decline of the switch probability for small mutation rates
and, for γinit = γ1 the switch probability becomes smaller
than 10−120.

Overall we can clearly see that the large-deviation ap-
proach works very well and enables the calculation of
very tiny switch probabilities with relative ease.

Next we want to investigate the actual size of the out-
break in the human population. For this we chose a mu-
tation rate with a value of σ = σC = 0.05939. This is in
the range where the switch is rather unlikely, but not ex-
tremely unlikely, which, as discussed before, we consider
to be realistic. We performed three Wang-Landau simu-
lations, one for each value γinit ∈ {γ1, 0, γ2}. This time
we additionally performed entropic sampling afterwards,
which allowed us to slightly refine the results, although
this effect was barely visible at all. However, since the
entropic sampling started with a very good estimate for
the probability, i.e., the one obtained with Wang-Landau,
this allows for a rather uniform sampling in the space of
different C values, which allow us to simultaneously mea-
sure other quantities such that we can investigate correla-
tions. To do this we regularly stored the outbreak trees
with additional timing information, which can later be
used for the analysis. The resulting pdfs are displayed in
Fig. 5.

10-50

10-45
10-40

10-35
10-30

10-25

10-20
10-15

10-10
10-5

100

 0  0.2  0.4  0.6  0.8  1

P
(C

)

C

γinit = γ2

γinit = 0

γinit = γ1

FIG. 5. Probability functions P (C) measured with for differ-
ent initial values γinit with a mutation rate of σ = σC . The
probability functions are normalized such that the sum over
all 1321 bins equals 1. Note that the first bin is represented
by symbols to highlight the discontinuity.

Clearly the most probable outcome is C = 0, i.e., no
human infections at all, and there is a discontinuous drop
of probability to the next bin with C = 1. For increasing
values of C the probability P (C) decreases until C ≈ 0.6.
Afterwards the probability increases again and the prob-
ability for just a few infected humans is roughly compa-
rable to the probability of almost all humans contracting
the disease.

Interestingly, apart from the different switch probabil-
ities PS , the general shape of the probability functions
for the different γinit seems very similar. We therefore
removed the bin corresponding to C = 0 and renormal-
ized the results by dividing trough 1−PS . This confirmed
that, apart from the switch probability, the probabilities
are exactly the same. We show a figure for this in the
appendix. As a result, only the outbreak in the animal
population is affected by the choice of γinit and the results
shown in the following are always for γinit = 0.

Next we investigate the shape of outbreak trees. Some
examples can be found in Fig. 6. Most trees display one
single switch of the pathogen from the animal to the hu-
man population. Still, in some cases multiple switches
occur and if those happened roughly at the same time,
then it is possible for both switches to result in human-
network outbreaks of comparable size, like shown in a).
This phenomenon was not specific for C ≈ 0.6 but was
instead observable for all bins.

Next we want to characterize the outbreak trees. Look-
ing at Fig. 6 it seems like for low values of C the leafs are
located at different heights of the tree, while for large
values of C the leafs tend to be concentrated close to the
top of the tree. To quantify this, we measure the height
of the tree and divided it by the average height of the
leafs. We denote this quantity by g. Small values of g
correspond to trees where all leaves exhibits about the
same height, while for larger values of g the leaf heights
exhibit a considerable spread.

The results for the conditional probability P (g|C)
are shown in Fig. 7. We see that the average 〈g〉 =∫
dg gP (g|C) peaks around C ≈ 0.05 with a value of

about 1.85. For C < 0.05 the value of g tends to be
lower, which makes sense. The disease has to mutate to
be able to infect the humans and as visible in Fig. 6 the
switch of the pathogen tends to happen at or at least
close to the top of the outbreak tree, i.e., most levels
of the tree describe the animal dynamics. For C > 0.05,
however, the average 〈g〉 decreases monotonously with C,
i.e., the bulk of the leafs is located closer and closer to
the top of the tree. This confirms the impression already
obtained when looking at the sample trees, that large
outbreaks are characterized by broad infections fronts,
i.e., many independent infection events take place at the
same time.

Although our model is quite limited by encoding the
entire gene of the disease by just one value, γ, one can, in
a restricted way, identify “variants” of the disease in the
following way. We start at any human i and just treat
him as the origin of a new variant. Then we consider
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a) b)

c) d)

FIG. 6. Examples for outbreak trees from the entropic-sampling simulation with γinit = 0. Here a) and b) are two outbreak
trees that correspond to C ≈ 0.6 (the global minimum in probability), c) corresponds to C = 0.1, while d) corresponds to
C ≈ 0.99 (a local maximum in probability). The nodes, represented as dots, display humans (blue) and animals (black). Lines
represent infection events. If a node infected exactly one other node, this other node is plotted directly above and connected
by a line. If it infected several nodes, this is indicated by a horizontal line that intersects the node. The children of the node
are located above and connected by vertical lines to the horizontal line. The children are sorted from left to right according
to the height of the sub trees originating from each child. Black lines indicate animal-animal transmission, blue lines indicate
human-human transmission, orange lines (highlighted by red circles) indicate animal-human transmission and lastly purple
lines (highlighted by green circles) indicate human-animal transmissions. The latter are hard to spot, but do exist for a) and
d).
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FIG. 7. Color coded conditional probability P (g|C). The line
displays the average 〈g〉 as a function of C.

the subtree consisting only of node i and its descendants
and iteratively follow every path to the leafs. For each
of these paths p we keep track of the minimum γpmin and
maximum γpmax of the values of γ that is encountered. If

the encountered fluctuations along a considered path are
larger than some pre-chosen threshold ∆γ, i.e., if γpmax−
γpmin > ∆γ, then we conclude that the “existence” of the
variant has ended and stop the path at the corresponding
node. We do this for all possible infection paths, which
is simply achieved by a recursive function without the
need to enumerate all paths, and count the number Ri
of nodes that are part of this restricted tree starting at
human i. The reach Ri is a kind of topological measure
of the impact of the variant starting at node i.

Thus, we can now define the maximum reach as
Rmax = maxiRi. In a similar fashion we calculate the
second-largest reach Rs. We do the same calculation as
before, but first we remove all nodes that contribute to
Rmax from the outbreak tree. We display the results
of the averaged quantities for different values of ∆γ in
Fig. 8.

For ∆γ = ∞ the largest reach results from a human
that was infected by an animal, since all of their descen-
dants will be counted for Rmax. If all outbreak trees
exhibited exactly one switch to the human population,
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FIG. 8. Averaged largest reach Rmax for different values of
∆γ as a function of C. The dashed line indicates NhC, i.e.,
the total number of humans that were infected. The inset
shows the averaged second largest reach Rs.

this would always equal the total number of human infec-
tions, i.e., it would be equal to NhC. Since we sometimes
observe more than one switch to the human population,
this quantity is slightly below this bound.

This effect is even more visible in the second-largest
reach Rs, since it would be zero if all humans contributed
to the largest reach. It is, however, actually always larger
than zero, although for Rs < 0.1 this is hard to see in
the plot.

By decreasing ∆γ we see a local minimum appearing
for Rmax near C = 0.99, which corresponds to a maxi-
mum of Rs. Interestingly this also corresponds to a local
maximum of P (C), see Fig. 5. From investigating sam-
ple outbreak trees it appears that here separate branches
occur which exhibit high infection probability λh inde-
pendently of one another. On the other hand for C = 1
one again observes relatively higher values of Rmax and
lower values of Rs, which indicates that here one single
rather infectious strain was able to evolve.

For each outbreak tree we can compute the maximum
value of λh that was achieved. Looking at the average〈
λhmax

〉
as a function of C (plot in the appendix) we ob-

serve that around C ≈ 0.95 the disease manages to over-
come the barrier that results from the local minimum of
λh of 0.0396 which is visible in Fig. 1.

If we decrease ∆γ even further, then the curves for
Rmax become quite flat and are of similar magnitude as
Rs. This is similar to the case of studying the largest
and second largest component of random-graph percola-
tion [83, 84] and might indicate that Rmax switched from
an extensive to an intensive quantity. But one would
have to measure this with multiple system sizes and per-
form a finite-size analysis until one can conclude that a
percolation-like phenomenon is present.

Next we take a look at how long the humans take to
recover and the relation to the ourbreak dynamics. For
each outbreak we calculated the mean recovery time tm
that the humans took to recover, where the mean is taken
over all infected humans. This will change from outbreak

to outbreak and results in the conditional probability
P (tm|C), see Fig. 9. We also included the averaged mean
recovery time 〈tm〉 =

∫
dtm tmP (tm|C) conditioned to C.

Furthermore, we show the total expected recovery time

E(tm) =

∞∑
n=1

n(1− µ)n−1µ =
1

µ
≈ 7.14 , (13)

as a dashed horizontal line in the plot. At first glance it
might seem strange that the average recovery time lies
mostly beneath this expected value. But one has to take
into account that an outbreak with a fraction C of hu-
mans contributes proportionally to C and to P (C) to the
statistics, thus

E(tm) =

∑
C P (C)CE(tm|C)∑

C P (C)C
(14)

should hold. This average is dominated from regions
where CP (C) is large, which here is for C near 0.95.
And indeed, plugging in our numerical results we obtain
approximately 7.14, which fits Eq. (13).
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FIG. 9. Color coded conditional probabilities P (tm|C). We
additionally display the average of 〈tm〉 as a function of C.

For small values of C the mean recovery time scatters
quite a lot, which makes sense given that this quantity is
obtained from averaging the recovery time of all infected
humans and for small values of C only very few humans
become infected. Still, on average the values close to
C = 0 have noticeably shorter recovery times and there
is a steep increase in the first few datapoints of 〈tm〉. This
makes sense, as a very fast recovery of the first infected
humans makes it less likely that the disease is transmit-
ted further. Thus, unusual small outbreaks arise due to
unusual quick recoveries.

For larger values of C the mean recovery time becomes
more and more concentrated around the average 〈tm〉
which is close to a value of 6.6 with a slight incline that
is barely noticeable. At about C = 0.8 the slope be-
comes steeper and 〈tm〉 increases noticeably and peaks
at about 〈tm〉 = 7.3 for C = 1. So outbreaks that reach
every single human are characterized by having a larger
recovery time on average, which is also reasonable. It is
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worth mentioning that the mean recovery of the animal
population does not seem to correlate with C at all (not
shown).

Next we explore the influence of the recovery even a bit
further. For each outbreak tree we sort the human nodes
of the outbreak tree by the number of children. Then we
were able to calculate the mean recovery time for a given
number of children. In general it can be expected that
longer recovery times lead to a higher number of chil-
dren. This can be indeed observed in the top of Fig. 10
where the average recovery time conditioned to C and to
the number of children is shown as function of C. The
corresponding plot for the observed transmission rates is
shown in the bottom plot.
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FIG. 10. (top) Mean recovery time 〈tm〉 averaged only over
nodes with a given number of children (ch.) and conditioned
to a value of C, as a function of C. We also included the aver-
age independent of the number of children, i.e., the one that
was already displayed in Fig. 9. (bottom) Averaged transmis-
sion rates λh and λa, again averaged over nodes with a specific
number of children, as a function of C. Again, we include the
averages calculated independent of the number of children for
reference.

One can clearly see that the number of children is cor-
related with the recovery time. Nodes with extremely
short recovery times tend to have no children, while nodes
with more children tend to have longer recovery times.

If we look at increasing values of C we can see that
the recovery time of nodes with 3 or more children tends
to become shorter, the recovery time of nodes with 1 or
fewer children tend to become longer, while the recovery
time of nodes with 2 children are, compared to the others,
mostly unaffected. This is a result of two different mech-
anisms that are at play here. At the later stages of the
disease, which are more relevant for larger values of C,
less and less susceptible nodes remain and thus a longer
recovery time is required to directly infect the same num-
ber of nodes. On the contrary, diseases that have a higher
transmission probability λh tend to have more offspring

and thus the disease becomes more infectious. This effect
can be seen at the bottom of Fig. 10 where higher values
of C are correlated with larger values of λh. A more in-
fectious disease needs less time to infect the same number
of neighbors. For the nodes with 2 children, these effects
seem to roughly balance out. Meanwhile, for nodes with
several children the effect of increased transmission prob-
ability dominates, whereas for nodes with few children,
the effect of the decreasing number susceptible nodes pre-
vails.

We also observe that nodes without children, i.e., leafs,
tend to have a smaller value of λh than their counter-
parts, while nodes with any other number of children
display very similar transmission probabilities.

Also, on average, the disease is more infectious to an-
imals than to humans, reminding us of its animal ori-
gin. This only reverses for large human pandemics with
C > 0.909. Clearly, this is a result of the chosen func-
tions λ(γ) and might result in more noticeable effects if
we had used a larger animal population. Here, however,
it is quite likely that most animals cannot contract the
disease any longer at the time, when the first human gets
infected.

Next we investigate a related property. We are in-
terested to see how the average transmission probability
〈λ〉 measured at the human node which resulted in most
offspring behaves as a function of C. This human was
necessarily infected by an animal, because otherwise its
parent would have been responsible for more offspring
than itself. Note that this human does not have to be
the first human that got infected, since multiple switches
to the human population are possible and their infection
trees are separate.
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FIG. 11. Transmission probability λh to humans and trans-
mission probability λa to animals at the human node i with
the most pathogen offspring and the animal that infected node
i, both as a function of C. Note that we display λa only for
the sake of completeness.

We display the result in Fig. 11. Clearly the disease
tends to exhibit considerable mutations for transmission
from animal to human, which is visible by the small but
clear separation between the two λh(C) curves. In our
statistics the cases will dominate where this human is
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more infectious to other humans than the correspond-
ing animal, because we almost exclusively (except for
CNh = 1 or other very low value of CNh with multiple
host switching events) measure outbreak trees where this
human transmits the disease further. This corresponds
well to the fact that λh(C) for the human is above the
curve for animals.

Looking at the dependence as function of C, up to
C = 0.9 the transmission probability of human and ani-
mal, respectively, do not change much and thus are not
a good indicator for estimating the size of the outbreak.
However, for C > 0.9 we see a clear rise of λh in the hu-
man and even in its animal, which means that the very
large outbreaks where almost every human gets infected
are, on average, originating from a disease that was able
to already obtain a higher infectiousness to humans in the
animal population. This shows that controlling zoonoses
within animal populations has a benefit for the human
population as well.

Finally, we want to take a look at the mutation events
that occur within the human population. As explained
in Sec. II, the disease mutates, more or less, each time
it is transmitted. Since this mutation is drawn from a
Gaussian with mean 0, on average 50% of the mutations
should lead to a reduction of the γ value and vise versa,
although this may not hold true if we constrain the sys-
tem to specific values of C.

Anyhow, we are more interested in the transmission
probability λh to humans, since this is what ultimately
affects the spread of disease within the human popula-
tion. For this purpose, we now only consider transmis-
sions that occurred between humans. Based on the out-
break trees, we computed the fraction of transmissions
that lead to a reduction of an arbitrary quantity q, which
we will call negative mutation fraction of q and denote it
by fq−.

Of special interest is the negative mutation fraction
λh, since these are the mutations that led to a reduction
of the transmission probability. We display the results
for this quantity in Fig. 12. Additionally, we show the
average

〈
fγ−
〉
.

Apart from a few outliers for very small values of C,
which are not displayed, the negative mutation fraction
of the transmission probability λh always exhibits values
larger than 0.5. At first glance this may seem surprising.
However, we only expect an overall average fraction of
0.5 for the fraction of negative changes for γ, not for the
fraction of negative changes for λh, since the function
connecting the two is not monotonous. And if we take the
probability into account and do a calculation analogously
to Eq. (14) we end up with an expected value that can
be calculated via

E(fγ−) =

∑
C P (C)CE(fγ−|C)∑

C P (C)C
. (15)

If we plug in our numerical results we get E(fγ−) = 0.5,
exactly as expected. Note that this calculation ignores
that we have at most C(Nh − 1) mutations from human
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FIG. 12. Color coded conditional probability P (fλ
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also display the average
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−

〉
and the average

〈
fγ−
〉

as a

function of C.

to human transmissions, because the first human gets
infected through an animal, but this effect is negligible.
Also, as we have seen, there can be more than one human
that gets infected from an animal in an outbreak, but this
fraction was always very small in our results, so Eq. (15)
is a good approximation.

Coming back to Fig. 12 we can see that
〈
fλ

h

−

〉
and〈

fγ−
〉

are almost identical for C < 0.7. At around C ≈ 0.7
they start to diverge and for C ≈ 0.95 the negative mu-
tation fraction of λh even starts to increase, even though
the fraction for γ continues to decrease.

There are two reasons for that. Firstly, if λh reaches
the first local maximum (see Fig. 1) then any mutation
will decrease the transmission probability, which is why

the quantities
〈
fλ

h

−

〉
and

〈
fγ−
〉

start diverge at around

C ≈ 0.7. Secondly, as we mentioned earlier at around
C ≈ 0.95 we start to see values of λh that exceed the first
local maximum (see appendix). Clearly, this requires to
go through the local minimum, i.e., many mutations that
decrease the transmission probability must be present in
the outbreak tree, which explains the results visible in
Fig. 12.

VIII. SUMMARY AND OUTLOOK

With the presented model we study the spread of a dis-
ease in a combined animal-human network for a pathogen
which is characterized by a, yet simple, fitness land-
scape. As explained, only diseases are still evolutionary
relevant, where the animal-human host switch exhibits
a very small transmission probability per animal-human
contact.

While previous studies mostly analyzed the danger of
host switching events by applying a branching-process
that starts with the first infected humans, we were able to
model the entire process, starting from a disease which is
not able to infect humans. This disease changes through
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mutations and results in a disease that is able to cause
an epidemic outbreak in the human population.

Using large deviation techniques we were able to nu-
merically cope with the very small probabilities of a host
switching event occurring for a given disease. Note that
our approach could be used for any other functional re-
lation between the value of γ and the transmission prob-
abilities. In fact, this approach can also be extended to
less trivial functions. In particular one could consider
multi-dimensional fitness landscapes, e.g., introduce ad-
ditional gene variables α, β, . . . and let the transmission
probability be a function λ = λ(α, β, γ, . . . ). Ideally one
might be even be able to infer an approximation from the
genome of actual real-world diseases.

Furthermore we were able to calculate the complete
probability density function P (C) of the cumulative frac-
tion of infected humans that characterizes the outbreak.

We are able to analyze the entire outbreak trees that
capture the outbreak dynamics. It is worth mention-
ing that, while the large-deviation simulation is certainly
computationally expensive, the successive analysis of the
stored outbreak trees is quite cheap and therefore fast.
Note that storing the trees also allows for the analysis of
other quantities that one does have in mind when per-
forming the large-deviation simulations.

By measuring the correlations with other quantities
we were able to see that outbreaks that only affect a
fraction of the human population are characterized by
faster recoveries as compared to outbreaks that reach the
entire population.

Also, even if the host switching event itself is quite im-
probable, once the disease manages to mutate such that
one host switching event occurs, it is quite probable that
further events occur. Given that the typical size of pop-
ulations in the real world is much larger and, in contrast
to the applied SIR model, might allow reinfections, espe-
cially given that the disease mutates, diseases that have
shown host switching events are of special concern.

On the other hand, at least in this simplified model, a
host switching event is the result of the disease gradually
becoming more infectious to humans and not character-
ized by a huge single mutation.

Overall we have shown how large-deviation methods
can be applied as an important tool for understanding
host switching events and further studies using the same
methods are likely to be very useful for understanding
and therefore an aid in preventing host switching events
in specific pathogens. Many different research directions,
for various fitness landscapes, network types, or more
complex disease propagation models, can be considered
in this way.
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Appendix A: Shifted pdfs

In Fig. 13 we show the shifted probability density func-
tions mentioned in the main text. The different proba-
bility density functions match exactly.
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FIG. 13. Probability functions P (C) measured with for dif-
ferent initial values γinit with a mutation rate of σ = σC . The
bin corresponding to C = 0 was removed and the remaining
bins were renomalized such that their sum is 1.

Appendix B: Maximal value of λh

In Fig. 14 we show the maximal value of λh that was
reached during the outbreak simulations as a function of
C. Clearly, the infection probability of most outbreaks
is limited by the first local maximum, while the local
minimum next to it can be seen as some sort of barrier.
However, some outbreaks are able to pass this barrier
and achieve very large values of C.

https://github.com/Pardoxa/sir_animal
https://github.com/Pardoxa/sir_animal
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M. Léchenne, A. Tschopp, S. K. Näıssengar, T. Smieszek,
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