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We simulate disease spreads for the Susceptible-Infected-Recovered (SIR) model on contact net-
works with a particular focus on incorporated protective measures such as face masks. We consider
the small-world network model. By using a large-deviation approach, in particular the 1/t Wang-
Landau algorithm, we obtained the full probability density function (pdf) of cumulative number C
of infected people over the full range of its support. In this way we are able to reach probabilities as
small as 10−50. We obtain distinct characteristics in the pdf such as non-analyticities induced by the
onset of the protective measures. Still, the results indicate that the mathematical large-deviation
principle also holds for this extended SIR model, meaning that the size-dependence enters P (C)
in a simple fashion and the distribution is determined by the so-called rate function. We observe
different phases in the pdf, which we investigate by analyzing the corresponding infection courses,
i.e., time series, and and their correlations to the observed values of C.

I. INTRODUCTION

Not just since the recent SARS-CoV-2 pandemic the
spread of disease has been an important field to study in
various different disciplines like statistics, applied math-
ematics and biology [1–5]. The pandemic did, however,
naturally increase the interest in the area [6–11].

One of the most influential models, the susceptible-
infected-recovered (SIR) model, was first introduced by
Kermack and McKendrick in 1927 [12]. The first math-
ematical models based on the original SIR model often
worked under the assumption that the population they
describe is fully-mixed [13, 14], i.e., each individual has
the same likelihood to spread the disease to any other
individual. These fully-mixed models fail, however, to
capture the importance of the topology on the disease-
spread dynamics. Thus many studies focused on incorpo-
rating the contact-network-topology into the differential
equations [15–18].

Traditionally, these stochastic models are investigated
with respect to the typical behavior of an ensemble of
networks, i.e., concerning those events which occur with
rather high probabilities. This allows one to calculate,
e.g., the typical outbreak size or the epidemic threshold,
i.e., the value of a parameter like the infection rate be-
yond which a pandemic occurs.

If one wants to investigate the model in its full extend,
one needs, e.g., to obtain the underlying probability dis-
tribution of the quantity of interest over a large range
of its support. This involves reaching the large-deviation
tails where the probabilities are as small as 10−50. In a
previous work, some of us have numerically studied the
large-devition tails [19] of the pure SIR model for differ-
ent infection probabilities λ. This allowed us not only to
obtain corresponding probability distributions, but also
to indentify different phases which are present for the
same value of λ, however, in different regions of the dis-
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tributions and which exhibit characteristic properties and
correlation patterns. Knowing the extremes of the dis-
tributions, the very mild infection courses and the very
sever ones, might help to indentify measures which lead
to effective mitigation of diseases. This is similar to en-
ergy grids, where large-deviation studies have helped to
find rules of thumb for creating network structures which
lead to resilient energy grids [20, 21].

In the present work, we want to go beyond the previ-
ous large-deviation study of the raw SIR model. A severe
real-world disease will not proceed as an isolated process
and a pandemic can pose a serious thread for modern
society, since it has the potential to disrupt the economy
or even claim many lives. Thus, it is important to find
ways to prevent or at least limit such outbreaks. In the
beginning of a pandemic, as seen with Covid-19, no phar-
maceutical interventions might be possible and therefore
the impact of such a pandemic has to be mitigated via
non-pharmaceutical interventions (NPIs) [22].

In this study we focus on abstract NPIs that are able
to reduce the transmissibility of a disease. A concrete
example would be a mandatory mask wearing order by
the government, as has been seen during the Corona pan-
demic.

We want to study the probability distribution func-
tion of the cumulative number of infected people occur-
ring during a disease spreading through a small-world
[23] network, subject to NPIs. We want to investigate
the influence of the NPIs on the distribution over its full
range of the support. Since this involves probabilities
as low as 10−50 we cannot simulate the model by using
typical-event sampling alone and instead have to rely on
special large-deviation techniques [24–26] that are based
on Wang-Landau [27, 28] followed by entropic sampling
[29].

Beyond the more practical questions we also consider
a mathematical viewpoint by investigate the rate func-
tion. This allows us to verify whether the large-deviation
principle [30–33] holds, i.e., whether the probability dis-
tribution falls into a standard class with respect to its
large-deviation behavior.

Note that when aiming at simulating real-world sys-

mailto:timo.marks@uol.de
mailto:yannick.feld@uol.de
https://www.yfeld.de


2

tems, averaging over network ensembles is often not nec-
essary, because usually only one or few typically rather
large networks are given, sometimes rather complex ones,
e.g., multiplex networks [34]. For this reason, we also
focus on a given typical network here, but investigate
it with respect to its typical as well as rare dynamical
diseases-spreading properties.

The remainder of the paper is structured as follows.
First the SIR model and the used network ensemble are
defined. Next we present the algorithms used for the
rare event sampling. We briefly investigate the available
parameter space to decide on the actual parameter we
use for the later analysis. Then we present the results of
the large-deviation simulations and the investigation of
the empirical rate function. We finish with a summary
and outlook

II. MODEL

To model the disease spread we use the same SIR-
model as in a previous large-deviation study [19] but with
some slight modification to incorporate the use of protec-
tive measures.

In principle, each of the N nodes of the graph is in
one of three states: Susceptible (S), Infected (I) or Re-
covered (R). Our simulations of disease spreads always
start with one infected node. At each time step τ for
each infected node we iterate over their susceptible neigh-
bors. Each of those then becomes infected with the trans-
mission probability λ. Then we iterate over all infected
nodes, excluding those that were infected during this
time step, and let each recover with the recovery prob-
ability µ.

At time step τ the current fraction of susceptible, in-
fected and recovered nodes are denoted by s(τ), i(τ) and
r(τ) respectively, from which the fraction of cumulative
infected nodes c(τ) = i(τ) + r(τ) can be computed. One
way to indicate the severity of the disease spread is the
fraction C of infected nodes after the infection died out

C = lim
τ→∞

c(τ) = lim
τ→∞

r(τ), (1)

which also marks the end of the disease-spread simula-
tion. The latter equality only holds for µ > 0.

Here we include protective measures in a simple way.
Once a predefined threshold θ of simultaneously infected
nodes is reached, the transmission probability λ is de-
creased by multiplying it with a suppression factor α ≤ 1.
Thus, the new transmission probability until the end of
the disease-spread simulation is

λ′ = λα. (2)

This mimics, for example, a persistent mask requirement,
which was levied in many countries during the COVID-19
pandemic.

III. NETWORK ENSEMBLE

We use a small-world network [23] to model contacts in
a population, since many contact-networks exhibit small-
world properties [35]. For the modelling of real-world
diseases, one certainly needs more sophisticated network
models. But since our study is focussed on fundamen-
tal properties, in particular the influence of NPIs on the
shape of the investigated probability distributions and
the description of corresponding phases, the main results
should be apparent for a simple network model.

The model we use is defined as follows. We start with
a ring of N nodes in which each node i is connected to
its next neighbor i + 1 mod N and to its second next
neighbour i+ 2 mod N . All edges {i, j} are undirected
and therefore each node has a degree of 4 in the initial
network. In order to gain small-world characteristics, we
iterate over all edges {i, j} and rewire each with a prob-
ability p to a random node j′, i.e. the edge becomes
{i, j′}. This introduces long-ranging connections while
maintaining high transitivity, both of which are features
of small-world networks [36]. We use a rewire probability
of p = 0.1 just like in our previous study [19], although
other values also lead to small-world characteristics [23].
If the resulting network is unconnected, we run the net-
work generation again, until a connected one is obtained.

IV. ALGORITHMS

Since the focus of our work is in exploring the tail of
the probability density function P (C) we need to apply
special large-deviation algorithms [24]. Such algorithms
exisits since the 1950s [37]. In statistical physics, these
techniques have become widespread, probably starting
with transition path-sampling [38, 39] of molecule dyn-
camics. Later on many other variants and models were
considered, e.g., distribution of alignment scores of pro-
tein sequences [25, 40, 41], nucleation [42], properties of
random graphs [43, 44], dynamics of the totally asym-
metric exclusion process [45, 46], calculation of partition
functions [47], dynamics of model glasses [48], ground
states of Ising spin glasses [49], dynamics of Ising fer-
romagnets [50], statistics of negative-weight percolation
[51], properties of fractional Brownian motion [52], the
Kardar-Parisi-Zhang equation [53], and work distribu-
tions of non-equilibrium processes [26, 54].

The basic idea, as explained for the SIR model, is that
the large-deviation algorithm controlls the simulation of
instances of courses of disease spreads. This means, the
algorithm must be able to manipulate the disease spread
in a controlled fashion. Here, the simulation of the dis-
ease spread with additional protective measures is carried
out in a similar way as in a previous [19] study.

The first main idea is as follows. For a standard
disease-spread simulation one would draw random num-
bers distributed uniformly in [0, 1] on the fly during
the simulation and compare these with the transmis-
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sion probability λ or the recovery probability µ to decide
whether nodes get infected or become recovered. Instead,
we draw all random numbers before a run of the actual
disease-spread simulation is performed. These numbers
are stored in two vectors ξλ, ξµ, which contain for each
node and for every time step τ a distinct random num-
ber. These numbers are used during the disease-spread
simulation. So far, this is only a technicality and will not
change the outcome of the disease-spread process.

Note that the vectors must contain enough random
numbers for all possible simulation outcomes. For a de-
tailed explanation of the vector length estimation we re-
fer to reference [19]. With this approach, the vectors are
chosen long enough, so every simulation could finish and
no infected node was left.

The second idea of our approach is that values
contained in these random number vectors are con-
trolled within an Markov-Chain-Monte-Carlo (MCMC)
approach which is wrapped around the disease-spread
simulation. Thus, depending on the vectors chosen with
the MCMC different infection courses, i.e., time series,
will occur. The MCMC is set up in such a way that an
estimate for the full pdf P (C) for a given specific network
is obtained directly. Specifically, the 1/t Wang-Landau
algorithm [28] is used, which is a small modification to
the original Wang-Landau (WL) [27] algorithm to pre-
vent error saturation [28, 55].

We here only outline the basic idea of the WL ap-
proach. Initially a non-normalized probability distribu-
tion P (C) = 1 is assumed for all values of C. In each
step t = 1, 2, . . . of the Markov-Chain a new trial con-
figuration ξ′λ, ξ

′
µ is generated from the current configu-

ration ξ
(t)
λ , ξ

(t)
µ . Both configurations of random vectors

determine courses of infection and correspond to result-
ing cumulative numbers C ′ and C(t) which are deter-
mined by complete runs of the disease-spread simulations
using the random-number vectors. The trial configura-
tion is accepted with a Metropolis-Hastings probability
min{1, P (C)/P (C ′)} which results in the new configura-

tion ξ
(t+1)
λ , ξ

(t+1)
µ and a corresponding value C(t+1). In

case of non-acceptance, the configuration at time t also
becomes the one at time t+1. Then, the estimate for the
distribution is updated by a multiplicative factor f > 1
at C(t+1), i.e., P (C(t+1)) = fP (C(t+1)). Since the in-
verse of the acceptance probability is proportional to the
probability of the trial configuration, and because the
estimated probability is increased for each current con-
figuration, the WL algorithm rather automatically more
or less uniformly samples the full space of C values while
obtaining a better and better estimate for the distribu-
tion P (C). In principle one starts with a relatively large
factor f ≈ 2, to quickly obtain a rough estimate of P (C)
and then iteratively reduces f according to some schedule
to adjust the distribution on a finer scale. Here in par-
ticular we follow the 1/t Wang-Landau algorithm, see
the literature [28] for details. The Markov moves, i.e.,
changes of the vectors to generate the trial configura-
tions are identical to the related previous study [19] and

are therefore not repeated here.
This overall approach enables studies in regions of low

probabilities, which would not be accessible with simple
sampling techniques. Utilizing this approach, one can in-
vestigate distinct features of the probability density func-
tion over a large range or even the full support.

In order to increase the accurracy and to sample tra-
jectories of the infection courses, even in the region of
low probabilities 10−50, we additionally perform entropic
sampling [29] after the the Wang-Landau algorithm is
finished. The general principle of entropic sampling is
similar to the Wang-Landau algorithm, but here we al-
ready start with the estimated pdf from WL which is
not updated any more, i.e., in this way detailed balance
[56] is ensured. This results in a sampling of all possible
trajectories which is rather uniform in the space of cor-
responding values of C. Note that the here obtained his-
togram of the observed values of C also allows for a final
although small improvement of the estimate of the distri-
bution. This approach allows us to perform the analysis
of the time series as presented in Sec. VI A.

V. RESULTS: SIMPLE SAMPLING

In order to analyze the effect of protective measures
on the spread of the disease, we first have to decide on
the values of some parameters. In this section we use
simple sampling, i.e., typical-event sampling, to explore
the parameter space and choose these parameters such
that the obtained results are informative.

A. Parameter Selection

Since for a large range of the parameter space many
global results, like the initial growth, depend mainly on
the relative difference between transmission and recovery
probability, one is basically free to choose any recovery
probability. We chose to set the recovery probability to
µ = 0.14, just like in previous studies [19].

With this choice, for the pure model without NPIs a
critical transmission of λc(N = ∞) = 0.1763 was found,
at which an infinitely large small-world network switches
from a non-pandemic to a pandemic phase [19]. The
critial value was obtained by consindering for different
network sizes the transmission probabilities λc(N), which
maximise the variance of C, respectively, and extrapolat-
ing to N →∞ using a fit to a power-law plus a constant.
It was observed that for system sizes 1000 ≤ N ≤ 3200
these critical transmissions λc(N) are, at least within
their standard-deviations, almost equal to the limiting
value [19].

Thus we present below the result for a small-world net-
work of N = 1000 nodes to analyze the general effects of
the protective measures by varying the suppression factor
α.
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Lastly, the threshold θ of the fraction of simultane-
ously infected nodes at which the protective measures
take effect has to be chosen, i.e., the measures take affect
once i(τ)/N > θ is reached. If this threshold is set too
high θ → 1, almost no spread of a disease will reach the
point at which the transmission probability would be re-
duced. Furthermore, a threshold θ set too high does not
reflect real-world pandemic interventions, because pro-
tective measures are not introduced when, e.g., already
θ = 0.5 ≡ 50% of the network is simultaneously infected.

If the threshold is set to low θ → 0 on the other
hand, the protective measures take effect very early in
the simulation. This would approximately correspond to
a simulation that starts with the reduced transmission
probability in the first place but without any protective
measures. The results of these simulations are already
present in [19] and thus of no interest here.

For our simulations we have fixed the threshold to
θ = 0.05. As a result most of the time the disease is
not yet strongly spread throughout the network when
the protective measures are activated, i.e., the measures
can still influence the spread significantly, however the
disease still takes some time to reach the threshold and
thus makes these simulations different from starting with
a reduced value of λ. We have also performed simula-
tions of other values of the threshold in the vicinity of
θ = 0.05, but could not observe any change with respect
to the general behavior.

B. Protective Measure Effects

For both the transmission probability λ and the sup-
pression factor α, 100 equally spaced values in the inter-
val [0, 1] are chosen which lead to 104 possible combina-
tions. For each parameter configuration, 105 small-world
networks are generated and the disease-spread simulation
is performed. The mean fraction of cumulative infected
nodes C and their standard deviation σ are calculated
for these small-world networks and the results are shown
in Fig. 1.

Without protective measures, i.e., α = 1, the position
of the peak of the standard deviation λc(∞) ≈ 0.172 cor-
responds to the critical transmission of reference [19] with
deviations due to the lower resolution of the considered
values of λ and the different system size. With increasing
strength of the protective measures α → 0 this critical
point of the epidemic phase moves to larger transmissions
λ(α)→ 1 until protective measures are so strong that on
average the infection does not spread through the whole
network anymore. This is illustrated by the values C̄ � 1
for α ≤ 0.2

In addition to this critical line separating the pandemic
from the non-pandemic region, another peak at λ ≈ 0.13
can be identified when looking the standard deviation. In
Fig. 1 this is well visible for small values of α. Further in-
vestigations show that this point corresponds to infection
courses where the ratio of currently infected stays just
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FIG. 1. Average fraction C̄ of cumulative infected nodes
for different combinations of transmission probabilities λ and
suppression factor α (top). Standard deviation σ of C (bot-
tom). Both quantities are obtained from cosidering 105 dif-
ferent small-world networks of size N = 1000 nodes. Contour
lines are included.

below or barely reaches the threshold θ. This explains
the high variability of these infection courses, leading to
a peak in the variance of C. Note that the value of λ
where this happens depends also on the value of θ. As
we observed, right at this point λ = 0.13 about half of the
infection courses stay below θ = 0.05 for a long time and
can therefore infect many nodes before the disease even-
tually dies out. The other half of the infection courses
reaches the threshold significantly earlier.

C. Choice of suppression factor α

We are in particular interested in the effect of NPIs on
outbreaks when it actually matters, i.e., for cases where
one observes large fractions C → 1 without the protective
measures. This is in particular the case if the transmis-
sion probability is well beyond the critical one of the pure
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case, e.g., for λ = 0.5, but the exact choice of λ is not
essential.

What remains is to chose a value of α. Three cases will
now be distinguished. The first case represents no pro-
tective measures, the second case moderate and third one
strong protective interventions. It is hard to determine
what actual values of α corresponds to given real-world
interventions. Many studies about the SARS-CoV 19
pandemic show, that even the same protective measures,
such as restraint of large gatherings, public obligation to
wear a mask or lockdowns have different effects across
countries [11, 57].

Across all these studies, the transmission of the virus
gets reduced by 30%−80% [11, 57, 58], which corresponds
to a parameter of α ∈ [0.2, 0.7]. A smaller value of α,
thus highly effective interventions, typically correspond
to a strong contact ban. Higher values of α correspond to
more moderate interventions such as a ban of large-scale
events. Therefore, we chose α = 0.5 for moderate and
α = 0.2 for strong protective measures.

VI. RESULTS: LARGE DEVIATIONS

Using large-deviation methods, it is possible to deter-
mine the probability density function of interest over a
large range of or even on its full support. Here we con-
sider the distribution P (C) of the fraction C of cumula-
tive infected nodes Eq. (1).

In Fig. 2 the pdfs for an arbitrarily drawn network with
N = 1000 nodes, a transmission probability of λ = 0.5
and the three cases α ∈ {1, 0.5, 0.2} are shown.
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FIG. 2. Probability density function P (C) of the fraction of
cumulative infected nodes C for three suppression strengths
α ∈ {1, 0.5, 0.2}. The network size is N = 1000 nodes with a
transmission probability of λ = 0.5.

Because of the large value of λ > λc(α = 1), without
protective measures (α = 1) the two most likely out-
comes are either that the disease dies out immediately
as patient zero recovers before infecting another node or
that almost the entire network gets infected during the
disease outbreak. This is reflected by the appearance of

two peaks at C = 1/N and at C ≈ 1. The intermedi-
ate states of C ≈ 0.5 are highly unlikely, one observes
values as small as P (C) ≈ 10−40. This is plausible, be-
cause we start the outbreak with just one infected node,
so the chance of this node recovering before transmitting
the disease further is non-negligible. If the disease did
not die out in the first time steps though it will likely
propagate throughout the entire network due to the high
transmission probability.

The other two pdfs show some totally different proba-
bility distributions with a distinct kink characteristic at
C = 0.075 for α = 0.5 and C = 0.06 for α = 0.2.

First of all, for small fractions C ≤ 0.05 the curves
show the same courses as for the α = 1 case which is due
to the threshold θ = 0.05. For C < θ it is impossible for
the infection courses to exceed the threshold and trig-
ger the transmission reduction through the suppression
factor α. So the pdfs in this region must be the same
regardless of the chosen value of α.

Looking at some of the sampled trajectories i(τ) re-
sulting in the different C values (not shown) one can un-
derstand why the strong measures with α = 0.2 deviates
from the pdf with no measures (α = 1) earlier than the
moderate case with α = 0.5. The strong measures are
able to reduce the spread of disease more efficiently and
thus are able to push some outbreaks that reached the
threshold to smaller C values, than the moderate choice
of α is able to, and thus it increases the probability of
observing smaller values of C. In the analyses presented
below, this kink in the distribution, which is a visible
identification of protective measures usage, will also be-
come visible for other measurable properties.

A. Infection Course Disparity

During the entropic sampling we store every 100th out-
break trajectory. These curves can be binned according
to their corresponding C value.

Next, we address the question whether for different
values of C the disease-spread courses are rather similar
to each other or very different. In order to compare the
time series, especially near the occurence of the kink, we
randomly choose 800 infection courses from each bin C
and compute the disparity [19] of the bins.

The disparity is defined as follows. First we consider
two arbitrary time series X1, X2. Xi can be, e.g., s(τ),
c(τ) or i(τ) as observed in the simulations but normal-
ized. The normalization is obtained by dividing the orig-
inal time series values Xi(τ) by the maximum observed
value, i.e., Xmax

i = maxτ Xi(τ). This allows one to com-
pare the general shape of the time series rather than their
magnitudes. Let l1, l2 be the lengths of the two time se-
ries with lmax = max{l1, l2}. The values of Xi beyond its
given length we define as the last recorded value. With
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this, we define the distance

d(X1, X2) = l−1
max

lmax∑
τ=0

|X1(τ)−X2(τ)| . (3)

Now the disparity VX(C1, C2) for two given values of
fractions C is defined as distance d averaged over all pairs
of corresponding time series where a pair always consists
of one time series which exhibits value C1 and one which
exhibits C2. Examples for such time series are shown in
Sec. VI B.

Fig. 3 displays the results for the normalized i(τ) time
series in form of a heatmap for α ∈ {0.5, 0.2}. The dis-
parity between times series exhibiting values C1 and C2

is color coded accordingly. These heatmaps serve in some
sense as phase diagrams in the C space, as it was used
for the case without NPIs [19].
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FIG. 3. Color-coded disparity Vi(C1, C2) of the i(τ) time se-
ries for N = 1000 and α = 0.5 (top) and α = 0.2 (bottom).
The time series i(τ) are binned according to the fraction C.
Each bin contains 800 randomly drawn time series. To com-
pute the disparity Vi(C1, C2), the time series from the two
bins C1 and C2 are compared pairwise according to Eq. (3).

The diagonal represents the comparison of infection
courses within one single bin C, i.e., denote the variabil-
ity within a given “class” of infections. Here we observe
in general a high similarity. At C = 0.075, α = 0.5 and
C = 0.06, α = 0.2 a sharp edge in the heatmaps can be
recognised, corresponding to the kinks in the probability
distribution.

If we compare time series with high infected fractions,

e.g., C = 0.8 with the other time series, we can mainly
recognise 2 regions.

1. The time series are in general quite similar to one
another, i.e., exhibit small values of Vi, when both
compared time series originate from bins with high
value of C, like C ≥ 0.2 for α = 0.5 and C ≥ 0.4
for α = 0.2

2. Time series were one of the two exhibits a lower
fraction C differ more strongly, leading to a dispar-
ity of Vi ≈ 0.35 .

For the second region one has to distinguish two cases.
For very small values of C, in particular C < θ = 0.05,
the NPIs were not activated, so the time series will be like
the one seen for the standard case. For larger values, the
behavior changes, visible as discontinuity lines in the heat
maps. Note that the actual value of C where a change is
visible is larger than θ, because the NPIs are triggered by
the value of the fraction i(τ) of currently infected rather
than by the cumulative fraction c(τ). The point where
the change is actually visible for α = 0.5 is C = 0.075 and
for α = 0.2 we have C = 0.06, which, as noted earlier,
directly corresponds to the point where the measured pdf
P (C) deviates from α = 1.0 .

Right at the discontinuity the effect of protective mea-
sures leads to a fast decrease of infection numbers once
the threshold is reached thus making the overall time se-
ries more similar to one another than when comparing to
time series that barley missed triggering the NPIs. This
results in a reduction of the disparity as can be seen by
comparing the disparity on the diagonals for small but
increasing values of C, where a jump to very small values
of the disparity is visible.

When we compare the disparity on the vertical (or hor-
izontal, its symmetric after all) C ≈ 0.8 line one can see
that the disparity first decreases before a sharp rise at
the mentioned discontinuity and then it decreases again.
This effect is much more pronounced for α = 0.5 and
barely noticeable for α = 0.2. The reason for this behav-
ior is that for α = 0.5, the maxima of the i(τ) time series
for rather small and rather large values of C appear at
very similar times, see also Sec. VI B below. For α = 0.2
the position of the maximum depends stronger on the
final value of C, leading to larger disparities.

The results for VC and Vr (not shown) look qualita-
tively similar to Vi, whereas the disparity Vs (not shown)
is not so informative.

B. Time Series Analysis

In order to understand the behavior of the infection dy-
namics in the different regions better, Fig. 4 shows some
non-normalized time series for the case of medium NPIs
with α = 0.5. The time series of i(τ) are binned accord-
ing to their respective C values. In each case 100 time
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series are plotted with transparent colors and one arbi-
trary example course per chosen value of C is highlighted.
Depending on the value of C one gets different character-
istic courses, in principle there are three different types
of behaviors. The first one corresponds to the first region
in the disparity heatmap, while the other two types occur
in the second region of the disparity heat map. In detail:

0
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τ
)

τ
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0.10
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FIG. 4. Infection time series i(τ) for different values of C.
The time series were generated during the entropic sampling
of a network with N = 1000 nodes and λ = 0.5, α = 0.5. The
threshold θ is indicated by the dashed line.

For very small values, like C = 0.04 and C = 0.06
shown in the plot, the infection numbers stay low, be-
low the threshold Nθ = 50, such that the NPIs are not
activated. The diseases die out very quickly.

For intermediate values like C = 0.1, the infection is
quickly rising and hits the threshold value, such that the
NPIs are activated. This leads to a quick decrease after-
wards. When looking at P (C) shown in Fig. 2, one ob-
serves that for α = 0.5 this appears with a rather small
probability.

Finally, for even larger values of C, the infections are
also fast growing. Although the NPIs are activated, the
growth continues such that many nodes get infected. The
infection course looks like in a typical non-intervening
exponential disease spread [19]. For this medium NPIs
with α = 0.5 this happens often, see Fig. 2, thus many
nodes are typically becoming infected.

In Fig. 5 we consider the case α = 0.2 and show 100
time series for different values C respectively. Again
three different types can be observed. For low values
C ∈ {0.04, 0.1} the same general shapes of the time se-
ries can be recognized just like in the moderate protective
measure case with α = 0.5.

However, in the other two cases the time series exhibit
lower peak values of the number of infected as compared
to the cases with α = 0.5. This is due to the strong NPIs.
This means, the infection is less severe with respect to the
load on the health care system. But for a given value of
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FIG. 5. Infection time series i(τ) for different values of C.
The time series were generated during the entropic sampling
of a network with N = 1000 nodes and λ = 0.5, α = 0.2. The
threshold θ is indicated by the dashed line.

C, this means, the infection will last longer, i.e., it does
not decrease so quickly, as compared to the medium-NPI
case. From the distribution P (C) in Fig. 2 one observes
that this type of behavior with a medium number of total
infected is now very common.

For the largest C values, the time series exhibit a bit
higher peak values, but still lower that for α = 0.5 and
they last also very long. But for α = 0.2 such a behavior
is very rare with P (C) < 10−10. Thus, the NPI is strong
enough to reduce its probability considerably.

C. Analysis of peaks for simultaneously infected
nodes

The sample disease-spread courses presented in the
previous section indicate that for moderate and strong
NPIs, the shape of the time series may differ.

Therefore we investigate now the time step τ at
which the infected fraction reaches the maximum value
maxτ (i(τ)) and denote it by τmax. Now, for all infection
courses corresponding to the bin C, the time step τmax

is considered and a normalized distribution ρ(τmax|C) is
calculated. The results are shown in the heatmaps of
Fig. 6.

Here the outcomes of moderate (α = 0.5) and strong
(α = 0.2) protective measures differ significantly from
each other. This can be seen by considering four different
intervals along the C axis, where the first one corresponds
to the first region visible in the disparity heatmaps, while
the other three intervals subdivide the second region of
the disparity heatmaps.

1. The first interval for about C ≤ 0.06 collects all the
disease-spread courses were no protective measures
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FIG. 6. Conditional density ρ(τmax|C) that shows the prob-
ability of τmax for any given C for α = 0.5 (top) and α = 0.2
(bottom) as measured during the entropic sampling.

are activated. Thus, they look exactly the same for
α = 0.2 and α = 0.5. The distributions of τmax are
moderately broad.

2. The second interval starts with a visible sharp
“edge” and very narrow distribution dominated by
values τmax ≈ 10 until C ≈ 0.2. The narrowing
is induced by a kind of synchronization of the pro-
cesses due to the onset of the NPIs. The distribu-
tions ρ(τmax|C) for the two cases look not the same
but still similar.

3. For larger values until C ≈ 0.8, the two cases of
the NPIs strength differ strongly. For the moderate
NPIs, the mean of τmax grows slowly and the dis-
tribution broadens. On the other hand, for strong
NPIs, the distribution ρ(τmax|C) is still dominated
by rather early-time peaks, but exhibits a much
broader spread. Thus, stronger fluctuations ap-
pear. This makes it for real-world situations a bit
more difficult to predict the development of a dis-
eases, although, as mentioned, the peak load on the
health care system will be smaller, which is good.

4. In the fourth interval C ≥ 0.8, the behavior for
α = 0.5 is similar to the third interval. For α = 0.2
only the broad part of distribution remains, which
means that the time of the peak position is not
that well defined. The disease-spread courses are
characterized by long-lasting medium-high levels of
infections, as already visible in Fig. 5

D. Different system sizes

Finally, we turn to a more mathematical question.
In large-deviation theory [30–33] there is a large class
of probability distributions obeying the large-deviation
principle. This means the shape follows a standard form
with respect to the finite-size bevhavior as

PN (C) ∼ e−NΦ(C)+o(N). (4)

This means dominating contribution of the size N en-
ters just as a linear prefactor before the so-called rate
function Φ, which only depends on the density C. Other
dependencies on the size are less important o(N). Pro-
cesses which obey this large-deviation principle are typi-
cally better accessible to analytical methods, for example
by the application of the Gärtner-Ellis theorem [30–33].

To investigate whether P (C) of the disease-spread with
NPIs follows the large-deviation principle, we have to
simulate the system for different system sizes, resulting
in separate distributions PN (C). From this we compute
the empirical rate function

Φ(C,N) := − lnPN (C)

N
+ Φ0, (5)

where Φ0 is a constant that ensures that all rate func-
tions have their minimum at minC Φ(C,N) = 0. We do
this because for the limiting rate function the minimum
value has to be Φmin = 0, because otherwise P (C) would
either converge to zero (Φmin > 0) or diverge (Φmin < 0)
everywhere. Thus, we can safely define Φ(C,N) such
that this holds also for finite values of N .

Hence, we have performed large-deviation simulations
for different system sizes of N ∈ [500, 3000] with λ = 0.5
and α = 0.2 from which we then calculated the cor-
responding rate functions. They are shown in Fig. 7.
The results suggest that the general observations for the
N ≥ 1000 case are independent of the system size: There
is a peak near C = 0.05, a minimum of Φ(C) appears in
the vicinity of C = 0.3 and for C → 1 a strong growth is
visible.

Note that we always consider just one specific network
for each system size N . For a real mathematical extrap-
olation, one would also have to average over different
graphs, maybe also over rare graphs, such that a kind
of “two-fold” large-deviation study would be necessary.
This is beyond the scope of the current study and would
require a much larger numerical effort.

We did, however, do some test simulations for different
networks and observed significant changes only for very
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FIG. 7. Rate functions for different system sizes N and the
parameters λ = 0.5, α = 0.2.

small values of C, not for larger ones. This is because the
spread of a disease with a small total number of infected
nodes depends much more on the local neighbourhood of
the first infected one as compared to infections reaching
large fractions of the graph.

In general, the observed empirical rate functions are
close enough such that we can safely assume that the lim-
iting rate function exists and the large-deviation principle
applies. This is kind of surprising, due to the extistance
of the non-analytical behavior induced by the NPIs.

VII. SUMMARY AND OUTLOOK

We studied a standard SIR model to investigated the
effect of protective measures that come into effect after a
threshold θ of simultaneously infected nodes is reached.
We considered two different values of the protective mea-
sure suppression factor α corresponding to medium and
strong measures. We evaluated the effect on the probabil-
ity distribution P (C) of cumulative infected nodes C. In
order to obtain the pdf on its full support we used large-
deviation methods and especially the 1/t Wang-Landau
algorithm [28]. We combined this with subsequent en-
tropic sampling [29]. With this approach, we can observe
the probability density distribution for probability den-
sities as small as 10−50. Most striking, we observed a
characteristic kink in the pdf that corresponds directly
to the onset of the protective measures.

Our approach allowed us to look very deep into the
changes of the infection dynamics induced by using NPIs.
In particular, there are broad ranges of values of C, where
moderate NPIs lead to a typical behavior, whereas strong
NPIs lead to rare behavior with P (C) < 10−10 or even
lower. For other values of C it is just opposite.

Furthermore, the approach allowed us to sample rep-
resentative disease-spread courses, i.e., time series i(τ),
c(τ), r(τ) for every possible value of C, which we binned.
Hence we also could analyze courses which appear with
rather low probabilities, such that they can not be ac-

cessed with simple sampling techniques.
We performed a comparison of the courses and could

identify three different characteristic behaviors of the
course of infections, which can be summarized by two
regions in the disparity heatmaps. We also evaluated
the times τmax where the maximum of simultaneously
infected nodes were reached, which represents the high-
est load to a health-care system. We observed that the
distribution of the time step τmax changes when using
different protective measure strengths. With moderate
measures, the peak of i(τ) can be frequently encountered
at very similar time steps τmax. However, the peaking
times for strong NPIs are much more distributed in the
time domain, making the measures necessary for longer
times and accurate predictions of the evolution more dif-
ficult, which might pose difficulties for the acceptance of
the measures in the society.

Finally, looking at mathematical large-deviation prop-
erties of the model, the investigation of the rate function
suggest that the the large-deviation principle holds. This
means the probability distribution follows a standard be-
havior with respect to the finite-size dependence of the
tails and could be accessible to standard analytical meth-
ods like the application of the Gärtner-Ellis theorem.

With respect to the modeling of disease spread, in fu-
ture studies we want to increase the spectrum of pro-
tective measures by implementing lockdowns directly
through changes in the network structure. Removing
edges between nodes would represent the core principle
of lockdowns, whereby in this study we used a global re-
duction in the transmission probability. We furthermore
plan to study the effect of vaccinations. Also it could be
interesting to couple networks of different species, e.g.,
to model the transfer of zoonoses between animals and
humans, which is often a rare process as well. Thus,
large-deviation approaches should turn out to be very
useful here as well.

In general, our results confirm that the application
of large-deviation approaches to dynamic phenomena al-
lows one to investigate the influence of rather arbitrary
changes to the system. On the analysis side, one can
identify different phases by looking at characteristic prop-
erties of the corresponding time series. Here many more
dynamical or non-equilibrium models should be accessi-
ble in this way.
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[3] M. Salathé and J. H. Jones, PLOS Computational Biol-
ogy 6, 1 (2010).

[4] W. Wang, M. Tang, H. E. Stanley, and L. A. Braunstein,
Reports on Progress in Physics 80, 036603 (2017).

[5] Y. Chen, F. Liu, Q. Yu, and T. Li, Applied Mathematical
Modelling 97, 281 (2021).

[6] X. Geng, G. G. Katul, F. Gerges, E. Bou-Zeid, H. Nas-
sif, and M. C. Boufadel, Proceedings of the National
Academy of Sciences 118, e2023321118 (2021).

[7] L. J. Muhammad, E. A. Algehyne, S. Usman, A. Ahmad,
C. Chakraborty, and I. A. Mohammed, SN COMPUT.
SCI. 2 (2021), 10.1007/s42979-020-00394-7.

[8] R. ud Din and E. A. Algehyne, Results in Physics 23,
103970 (2021).

[9] C. Comito and C. Pizzuti, Artificial Intelligence in
Medicine 128, 102286 (2022).

[10] M. Cevik, M. Tate, O. Lloyd, A. E. Maraolo, J. Schafers,
and A. Ho, The Lancet Microbe 2, e13 (2021).

[11] J. Dehning, J. Zierenberg, F. P. Spitzner, M. Wibral,
J. P. Neto, M. Wilczek, and V. Priesemann, Science
369, eabb9789 (2020).

[12] W. O. Kermack and A. G. McKendrick, Proc. R. Soc.
Lond. A 155, 700–721 (1927).

[13] N. T. J. Bailey, The mathematical theory of infectious
diseases and its applications, 2nd ed. (Charles Griffin &
Company Ltd, 1975).

[14] F. Brauer, P. van den Driessche, and J. W. et al.,
Mathematical Epidemiology (Springer, Berlin, Heidel-
berg, 2008).

[15] M. E. J. Newman, Phys. Rev. E 66, 016128 (2002).
[16] Y. Moreno, R. Pastor-Satorras, and A. Vespignani, Eur.

Phys. J. B 26, 521 (2002).
[17] E. Volz, J. Math. Biol. 56, 293 (2008).
[18] J. C. Miller, J. Math. Biol. 62, 349 (2011).
[19] Y. Feld and A. K. Hartmann, Phys. Rev. E 105, 034313

(2022).
[20] T. Dewenter and A. K. Hartmann, New Journal of

Physics 17, 015005 (2015).
[21] Y. Feld and A. K. Hartmann, Chaos: An Interdisci-

plinary Journal of Nonlinear Science 29, 113103 (2019).
[22] A. Mendez-Brito, C. El Bcheraoui, and F. Pozo-Martin,

The Journal of infection 83, 281 (2021).
[23] D. J. Watts and S. H. Strogatz, Nature 393, 440 (1998).
[24] J. A. Bucklew, Introduction to rare event simulation

(Springer-Verlag, New York, 2004).
[25] A. K. Hartmann, Phys. Rev. E 65, 056102 (2002).
[26] A. K. Hartmann, Phys. Rev. E 89, 052103 (2014).
[27] F. Wang and D. P. Landau, Phys. Rev. Lett. 86, 2050

(2001).
[28] R. E. Belardinelli and V. D. Pereyra, Phys. Rev. E 75,

046701 (2007).
[29] J. Lee, Phys. Rev. Lett. 71, 211 (1993).
[30] F. den Hollander, Large Deviations (American Mathe-

matical Society, Providence, 2000).
[31] H. Touchette, Physics Reports 478, 1 (2009).
[32] A. Dembo and O. Zeitouni, Large Deviations Techniques

and Applications (Springer, Berlin, 2010).
[33] H. Touchette, in Modern Computational Science 11: Lec-

ture Notes from the 3rd International Oldenburg Summer
School , edited by R. Leidl and A. K. Hartmann (BIS-
Verlag, Oldenburg, 2011) preprint arXiv:1106.4146.

[34] Q.-H. Liu, M. Ajelli, A. Aleta, S. Merler, Y. Moreno, and
A. Vespignani, Proceedings of the National Academy of
Sciences 115, 12680 (2018).

[35] S. Eubank, H. Guclu, V. S. A. Kumar, M. V. Marathe,
A. Srinivasan, Z. Toroczkai, and N. Wang, Nature 429,
180 (2004).

[36] M. Newman, Networks: An Introduction (Oxford Uni-
versity Press, 2010) pp. 552–565.

[37] J. M. Hammersley and K. W. Morton, Math. Proc.
Cambr. Phil. Soc. 52, 449 (1956).

[38] C. Dellago, P. G. Bolhuis, F. S. Csajka, and D. Chandler,
J. Chem. Phys. 108, 1964 (1998).

[39] G. E. Crooks and D. Chandler, Phys. Rev. E 64, 026109
(2001).

[40] A. K. Hartmann, in New Optimization Algorithms in
Physics, edited by A. K. Hartmann and H. Rieger
(Whiley-VCH, Weinheim, 2004).

[41] S. Wolfsheimer, B. Burghardt, and A. K. Hartmann,
Algorithms Mol. Biol. 2, 9 (2007).

[42] D. A. Adams, R. M. Ziff, and L. M. Sander, J. Chem.
Phys. 133, 174107 (2010).

[43] A. Engel, R. Monasson, and A. K. Hartmann, J. Stat.
Phys. 117, 387–426 (2004).

[44] A. K. Hartmann, Eur. Phys. J. B 84, 627 (2011).
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