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Abstract

We numerically simulated the spread of disease for a Susceptible-Infected-Recovered 1

(SIR) model on contact networks drawn from a small-world ensemble. We investigated 2

the impact of two types of vaccination strategies, namely random vaccination and 3

high-degree heuristics, on the probability density function (pdf) of the cumulative 4

number C of infected people over a large range of its support. To obtain the pdf even in 5

the range of probabilities as small as 10−80, we applied a large-deviation approach, in 6

particular the 1/t Wang-Landau algorithm. To study the size-dependence of the pdfs 7

within the framework of large-deviation theory, we analyzed the empirical rate function. 8

To find out how typical as well as extreme mild or extreme severe infection courses arise, 9

we investigated the structures of the time series conditioned to the observed values of C. 10

Introduction 11

Due to the high relevance for the societies, the studying the spread of diseases has long 12

since become a very important problem in a variety of disciplines like biology, applied 13

mathematics, statistics and statistical physics [1–5]. Beyond the analysis of the 14

dynamics of existing diseases one main target is to understand how to fight them. One 15

of the best ways to mitigate the impact of a disease is the application of vaccines, which 16

have been successfully used to eradicate many diseases like the smallpox [6], rabies [7] 17

and measles [8], although this success is undermined by anti-vaccination 18

movements [9–12]. The creation and evaluation of new vaccines is a delicate, complex 19

and time consuming process [13–15]. In particular, the safety and effectiveness of new 20

vaccines has to be proven rigorously [16,17]. 21

To model the effect of vaccinations one has to first model the disease itself. A very 22

famous and influential mode, the Susceptible-Infected-Recovered (SIR) model, was 23

introduced by Kermack and McKendrick in 1927 [18] who build upon previous research 24

by Ross and Hudson [19–23]. Initially the model was investigated for a fully-mixed 25

population [24,25]. This means, the disease can propagate in between all individuals 26

with the same likelihood. In physics this corresponds to a mean-field model. Naturally 27

those early studies ignored the effect of heterogeneity within the population and thus 28

later studies [26,27] have incorporated contact networks, where each node represents, 29

e.g., an individual and the edges represent the contacts between them. 30

In its simplest form, vaccination can be modeled as granting perfect immunity to the 31

disease, i.e., an individual that has been vaccinated cannot contract the disease 32

forevermore. Here we consider the case that a vaccination is applied before the first 33
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infected individual is introduced in the network. This could be the case for a population 34

of domestic animals which is partially vaccinated before the disease is first introduced to 35

the population via a wild animal. This approach is equivalent to studying the disease 36

dynamics on a new network, where all nodes that could successfully be vaccinated have 37

been removed from the original network. Thus, the disease can only propagate within 38

connected components [28] of the network and one can model the vaccination as site 39

percolation problem [29] and usually aims at reducing the network below its percolation 40

threshold [28,30]. 41

This viewpoint means that one has to achieve a rather high fraction of vaccinated 42

individuals and ignores the effects of stochastic fluctuations that can play an important 43

role in disease extinction [31]. Therefore it makes sense to model the stochastic process 44

that governs the disease propagation if we want to fully understand the impact of 45

vaccines. 46

To gain an understanding of the impact a disease has before going extinct one can, 47

e.g., look at the probability density function P (C) for the cumulative number C of 48

infections, i.e., how many nodes contracted the disease over its lifespan. In order to 49

obtain a comprehensive description of such stochastic processes, one should obtain the 50

desired distribution over a large range of its support. For few very simple models this 51

can be done analytically, but for most interesting cases one has to apply numerical 52

simulations [32]. In order to access a distribution even in the large-deviation tails which 53

exhibit probabilities as small as 10−50 or lower one has to go beyond typical-event 54

simulation and has to use special large-deviation techniques [33], like the ones the 55

authors of the present work have applied in a previous study [34] where we investigated 56

the pure SIR model comprehensively. In particular we found that the large-deviation 57

principle [35–37] is fulfilled, which indicates that the model belongs to a standard class 58

in large-deviation theory. Furthermore, our approach allowed us to obtain correlation 59

patterns with other measurable quantities, which further deepens the understanding of 60

the disease model and of different phases which are visible in the distribution P (C). 61

In the present work we study the impact of two types of widely investigated 62

vaccination strategies, i.e., random vaccination and target vaccination where nodes with 63

a high-degree are vaccinated first [38]. For an overview of different vaccination 64

strategies and the state of research in general we refer to a detailed review article [39]. 65

In our work we aim at obtaining P (C) over a large range of the support, identify 66

different phases in the distribution, relate these phases to different patterns of disease 67

evolution and verify whether the mathematical large-deviation principle still holds. 68

The paper is structured as follows. First we introduce the SIR model and the 69

network ensemble. Then we introduce the algorithms we applied, which includes the 70

vaccination strategies. Next we briefly investigate the available parameter space to 71

choose which parameters we use for the later analysis. We present the large-deviation 72

analysis where we display the calculated probability density functions as well as 73

corresponding rate functions and correlations with other quantities. We finish the paper 74

with a summary and an outlook. 75

Model 76

The SIR model we apply is defined as follows. For a given network, each node is in 77

either of four states Susceptible (S), Infected (I), Recovered (R) or Vaccinated (V), 78

where the vaccinated state is equivalent to the recovered state and the distinction is just 79

made for our convenience. 80

To begin a simulation we assign all nodes the state S and then first apply one of the 81

vaccination strategies that will be later discussed in Sec Vaccination strategies to assign 82

a subset of nodes the vaccinated state V. 83
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Then, different from the case without vaccinations [34], we choose 5 initial infected 84

nodes, randomly and uniformly drawn from all possible nodes without allowing 85

duplicates. Thus, the not so relevant case that just by chance the initial infection dies 86

out quickly is much less common. This means, the trivial peak of P (C) at C = 1 is 87

much less prominent in our results. Note that vaccinated nodes can also be chosen 88

among the initial infected one. In this case initial infection takes prevalence for the 89

initialization, to obtain actually 5 infected nodes. However, for the later times of the 90

disease dynamics, vaccinated nodes can never be infected, as desired. 91

The actual disease dynamics is performed as follows: At each time step τ we iterate 92

over all susceptible neighbors of all currently infected nodes. With the transmission 93

probability λ we flag them to become infected. Next we iterate over all currently 94

infected nodes again, this time we let each of them recover with the recovery probability 95

µ. To finalize the time step we infect all nodes that were flagged to become infected. 96

At time step τ we denote the current fraction of infected and recovered nodes by i(τ) 97

and r(τ), respectively. From those fractions we can obtain the cumulative fraction of 98

infected nodes, i.e., c(τ) = i(τ) + r(τ). 99

This can also be used to create an indicator for the severity of a disease outbreak by
defining

C ≡ lim
τ→∞

c(τ) = lim
τ→∞

r(τ) , (1)

where the latter equality obviously only holds for µ > 0. 100

Network ensemble 101

We chose a small-world network [40] to represent our contact network. This is motivated 102

by the fact that many real-world contact-networks exhibit small-world properties [41]. 103

The creation of a network with N nodes works as follows. First a initial ring 104

structure is created where each node i is connected to its next and second next 105

neighbors given by i+ 1 mod N and i+ 2 mod N , respectively. Since all edges are 106

undirected this means each node starts with an initial degree of 4. 107

Next, we iterate over all edges {i, j} and rewire them with probability p to a random 108

node j′ 6= i, i.e., we exchange {i, j} → {i, j′}. Throughout this paper we use a rewiring 109

probability of p = 0.1. Note that we only draw a random node for j because each edge 110

is “rooted” at one node and thus the minimal degree a node exhibits is 2. This rewiring 111

is responsible for the small-world properties of the network as it introduces shortcuts 112

and leads to a rather small diameter [28], i.e., from each node one can reach any other 113

node via a short path of edges. 114

Algorithms 115

Large deviation algorithms 116

We apply special large-deviation algorithms [42]. Such algorithms exist since the 117

1950s [43]. In statistical physics their popularity first increased for studying the 118

dynamics of molecules via transition path sampling [44, 45]. Since then, such algorithms 119

were applied for many different models, e.g., the resilience of power grids [46,47], 120

random walks [48–51], random graph properties [52–55], longest increasing 121

subsequences [56,57], ground states of Ising spin glasses [58], and the 122

Kardar-Parisi-Zhang equation [59]. 123

The general idea for the SIR model is that the large-deviation simulation embraces 124

the SIR simulation [34], i.e., it is able to manipulate the SIR dynamics in a controlled 125

fashion to get access to the desired properties. 126
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This manipulation works as follows: In a standard SIR simulation one would draw 127

on demand random numbers that are uniformly distributed in [0, 1]. These numbers are 128

then used for comparisons with the recovery probability µ or the transmission 129

probability λ to decide whether a node becomes recovered or infected. Instead of 130

creating the random numbers on demand one could, of course, draw them beforehand 131

and store them in the two vectors ξµ and ξλ, such that these vectors contain a distinct 132

random number for each node and each time step τ . 133

As long as the random number vectors contain enough numbers such that the 134

disease outbreak dies out before running out of numbers, this in and of itself will not 135

change the outcome. We refer to [34] for a detailed explanation of the estimation of the 136

required vector length Comment for Alex: {Grundidee ist immer noch die gleiche, 137

aber ich habe den threshold des kriteriums leicht verändert und den faktor leicht erhöht 138

verglichen mit der vergangenen Arbeit. Sollte das hier erwähnt werden? ANTWORT: 139

Als Fußnote.}. 140

Before the SIR simulation is started the vaccination is applied, which essentially 141

equals the removal of the vaccinated nodes. The specifics of how the nodes for the 142

vaccination are chosen depends on the applied heuristics Comment for Yannick: 143

{Heuristik auf Englisch ist heuritics mit “s”, auch im singular, habe ich entsprechend 144

geändert}. All heuristics, however, require a vector ξord to give a deterministic outcome, 145

as explained in Sec Vaccination strategies. This vector is created by shuffling the vector 146

[0, 1, . . . , N − 1] of node IDs. 147

Lastly we also need to decide which nodes will be set to the infected state before the 148

SIR simulation is started, i.e., which nodes should be “patient zero”. For this we create 149

the vector ξ0 by shuffling a new vector initialized with [0, 1, . . . , N − 1]. In this work we 150

always start with 5 initial infections. Comment for Yannick: {Wäre es nicht 151

sparsamer einfach fünf verschiedenen Zufallszahlen zu nehmen?} Thus the first five 152

entries of the vector determine the initially infected nodes. 153

To be able to sample rare events we now control the values contained within the 154

vectors (ξµ, ξλ, ξord, ξ0) with a Markov-Chain-Monte-Carlo (MCMC) approach that is 155

sitting on top of the SIR simulation, i.e., the outcome of the SIR simulation now 156

depends deterministically on the random numbers encountered during the MCMC. This 157

MCMC is set up in a way to allow the estimation of a large range of the 158

probability-density function (pdf) P (C) for a given network. To be more precise we 159

apply the 1/t Wang-Landau (WL) algorithm [60], which is a slight modification of the 160

original Wang-Landau algorithm [61] that prevents error saturation [60,62–64] 161

Since the approach we use here is very similar to the one we used for [34] we will 162

only outline the general idea. The WL approach starts with a non-normalized estimate 163

for the probability distribution, i.e., P (C) = 1 ∀C. Each step t = 0, 1, . . . of the 164

Markov-Chain consists of the generation of a new trial configuration 165

Ξ′ =
(
ξ′µ, ξ

′
λ, ξ
′
ord, ξ

′
0

)
, which is generated from the current configuration 166

Ξ(t) =
(
ξ

(t)
µ , ξ

(t)
λ , ξ

(t)
ord, ξ

(t)
0

)
as explained in Sec MCMC Moves. Since both 167

configurations of random vectors deterministically determine the outbreak courses they 168

correspond to, they also determine the resulting cumulative fractions C ′ and C(t) of 169

infections, which are calculated by simulating a complete run of the SIR simulation. 170

The trial configuration is accepted, i.e., Ξ(t+1) = Ξ′ and thus C(t+1) = C ′, with the 171

Metropolis-Hastings probability min{1, P (C(t))/P (C ′)}. If the trial configuration is not 172

accepted we keep the old configuration, i.e., Ξ(t+1) = Ξ(t). 173

A multiplicative factor f > 1 is used to update the pdf estimate at C(t+1), i.e., 174

P (C(t+1)) = fP (C(t+1)). All other values of P (C) are not changed for the current step. 175

Due to this the probability of generating the trial configuration with value C becomes 176

in the long run inversely proportional to the probability P (C) of occurence. This allows 177

for a rather uniform sampling of the space of C values while the pdf estimate is 178
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continuously refined. Usually a rather large factor f = e ≈ 2.71 is used initially, which 179

forces a quick but rough estimate of P (C). Then some schedule is used to iteratively 180

reduce f during the process to change the estimate on an increasingly finer scale. Here 181

lies the main difference between the 1/t WL algorithm we applied [60] and the original 182

WL algorithm [61]. 183

This method is able to measure very rare events that are inaccessible via 184

typical-event sampling methods, also called simple sampling, and thereby allows for the 185

sampling of distinct features of the pdf over a very large range or even the full support. 186

Since P (C) is updated continuously, the WL method does not strictly fulfill detailed 187

balance [65]. To ensure a correct statistics in the end, we subsequently employ entropic 188

sampling [66]. This approach uses the pdf estimated by WL as a starting point and 189

works as the WL approach, but P (C) is not updated any more. The obtained histogram 190

for the ecountered values of C is used to finally correct the pdf obtained by WL. This 191

slightly refines the accuracy of our measurements even in the region of very low 192

probabilities like 10−100. But more than that it enables us to more evenly sample 193

disease infection time series over the range of C values. Overall this rigorous numerical 194

approach ensures high confidence in the results and has proven very successful in the 195

past. 196

MCMC Moves 197

Here we will explain in detail how the trial configuration is created. 198

With a probability of 1% a rotation move is performed. That means that the vectors 199

ξµ and ξλ are rotated by N elements to the right (50%) or left (otherwise), which 200

roughly corresponds to shifting the resulting time series by one time step to the left or 201

right. Note that this can be implemented quite efficiently by only storing a offset 202

variable and thus removing the need to actually copy a lot of memory for the operation. 203

With a probability of 0.5% we perform a exchange patient move, which is done by 204

drawing a ∈ {0, . . . , 4} and b ∈ {5, . . . , N − 1} and then swapping the values 205

ξ0[a]↔ ξ0 [b], which effectively exchanges one of the initial infected nodes. 206

With a probability of 2% we perform an walk patient move that was found to 207

improve convergence. The basic idea of this move is letting one randomly chosen of the 208

initial patients perform one step of a random walk on the underlying (not vaccinated) 209

network structure while making sure that each node has the same probability of 210

occurring. This is ergodic with respect to the positions of the initial patients because we 211

demand a connected network for this study in the first place. 212

For this move, we draw first one of the initial patients p0 ∈ {ξ0[0], . . . , ξ0[4]}. Then 213

we draw a uniformly distributed random number u ∈ [0, 1]. Let A be the adjacency list 214

of p0, i.e., a list that contains every node p0 is connected to via an edge. Let dmax be 215

the maximal degree of the network. Then the new patient zero p′0 becomes 216

p′0 =

{
A[i] if i

dmax
≤ u < i+1

dmax

p0 otherwise
(2)

and ξ0 is changed accordingly. Note that the finite probability of nothing changing is 217

necessary to ensure detailed balance: The naive approach of always moving the patient 218

would bias the system in such a way that nodes with higher degree would have a higher 219

probability of being chosen. 220

With a probability of 1% we do a reset start move, i.e., we redraw all random 221

numbers from ξµ, ξλ that are associated with the time step τ = 0. This move was 222

included since our testing suggested that it improves the convergence of the algorithm. 223

Lastly, if none of the above moves was selected, which happens with a probability of 224

95.5%, we just randomize the dynamics a bit. Thus, we repeat the following 3000 times: 225
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Draw a uniformly distributed random number u ∈ [0, 1], draw one of the vectors 226

ξ ∈ {ξµ, ξλ} and uniformly choose a random index i of the vector to exchange the 227

random number of the entry, i.e., ξ[i] = u. The number 3000 of times was chosen to 228

achieve an acceptance rate of roughly 50% of this move. 229

Histogram interval width 230

Since we are vaccinating at the beginning of the SIR simulation and our vaccination 231

assumes an effectiveness of 100% this means that we have to estimate how many nodes 232

the disease can still reach. It is, e.g., possible that some nodes are surrounded by 233

vaccinated nodes and are therefore unreachable by the disease, if the disease does not 234

start on them. From an algorithmic-technical point of view, we need to determine a 235

maximum for C because Wang-Landau will not work if a bin of the histogram is 236

impossible to reach. 237

So we initialize the system and employ a greedy heuristics that only uses part of the 238

Markov chain. For each step of the Markov chain we calculate the largest connected 239

component that contains an initial infection by first removing all vaccinated nodes 240

except those chosen as initial patients and then using a depth first search starting with 241

the patients zero. Then we do a Markov move, where we only allow moves that change 242

ξord or ξ0 and calculate again. We reject the move if the size of the largest connected 243

component decreased. 244

After 50000 steps we take the maximal size of the largest connected component that 245

we encountered as estimate. If we later notice that the large deviation algorithm is 246

unable to reach the largest C values we remove the bins that the algorithm was not able 247

to reach and rerun the simulation, which happened only few times. 248

Note that nodes that are vaccinated can still be chosen as patients zero and in that 249

case are not removed from the network because we consider that the vaccination was 250

performed too late and was therefore ineffective. 251

Vaccination strategies 252

We denote the total number of vaccination doses with Nv and its fraction by 253

nv = Nv/N , where N is the total number of nodes, as usual. 254

We consider a total of three vaccination strategies: 255

1. A uniformly random vaccination heuristics. It is the simplest vaccination 256

strategy [38] that does not assume any knowledge of the topology whatsoever. For 257

this we randomly and uniformly draw Nv nodes, while not allowing duplicates. As 258

explained in Sec Large deviation algorithms, the large-deviation scheme will 259

supply the vector ξord as randomness input for the vaccination schemes. 260

Conveniently we can obtain the indices of the nodes we want to vaccinate by just 261

taking the first Nv entries of ξord. Comment for Yannick: {Wie werden 262

“duplicates” aufgelöst, ggf. als Fußnote}. 263

2. A natural choice for a targeted vaccination strategy is to mainly target highly 264

connected nodes [30] which is the main idea of the high degree heuristics. For this 265

we take the Nv nodes with the highest degrees possible. 266

Note that the choice of the Nv nodes is rarely unique as usually there are many 267

nodes with the same degree. Thus, the choice of the small-degree vaccinated 268

nodes must be done by some algorithm. In this case we randomly draw from the 269

list of nodes with the corresponding degree. This can be accomplished by selecting 270

nodes of the same degree in an order as given by the vector ξord, starting with the 271

nodes of highest degree. Note that for this heuristics to be efficient, the degree 272
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distribution is obviously not allowed to be homogeneous. This vaccination scheme 273

has been proven to be especially effective for scale-free networks [67]. 274

3. The adaptive high degree heuristics is taking the idea one step further. This time 275

we first take the node with the highest degree (if this is not unique we randomly 276

and uniformly choose one of the possible nodes by using the ξord vector). Then, 277

and this is the only difference to the previous strategy, we reduce the degree of all 278

of the neighbors of the node that is now set to be vaccinated. This process is 279

repeated until Nv nodes are chosen. It is explained in more detail in S1 Appendix. 280

ToDo: {I forgot to search for a source that uses this vaccination strategy} 281

Simple sampling 282

Before performing the relatively expensive large-deviation simulations we wanted to 283

determine suitable values of the parameters to investigate. We chose to keep µ = 0.14 284

from our previous study [34] and chose a rather large value of λ = 0.4 for the 285

transmission probability, which corresponds to a parameter-space location within the 286

epidemic phase if it was without vaccinations. 287

For each network size we want to study later we drew randomly one network, which 288

means a typical network, and measured within simple-sample simulations the average C 289

and its variance σ2(C) for different fractions nv of vaccinated nodes. The results for 290

N = 3200 are shown in Fig 1 as example. 291

0.0

0.2

0.4

0.6

0.8

1.0

 0  0.1  0.2  0.3  0.4  0.5

C _

nv

high deg
adaptive
random

0.000

0.004

0.008

0.012

0.016

 0.1  0.15  0.2  0.25  0.3  0.35  0.4

σ
2

nv

Fig 1. Average cumulative fraction C of infected nodes for a typical network of
N = 3200 nodes for different fractions nv of vaccinated nodes and the three applied
vaccination strategies. The inset shows the variance σ2(C). The data is obtained by
averaging over 10000 samples per point and error bars are not shown as they are smaller
than symbol size. The dashed lines indicate the positions of the peaks of the variance,
respectively.

As expected the random vaccination strategy gives the worst results and requires the 292

largest fraction of vaccinated nodes to achieve a certain value of C. The adaptive high 293

degree heuristics is just slightly better than the not-adaptive one only in a very small 294

window around nv ≈ 0.1. On the other hand the non-adaptive one is better in the 295
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interval nv ∈ [0.1, 0.23]. There is basically no difference between the two anywhere else. 296

Below we discuss how the counter-intuitive behavior that the adaptive vaccination 297

strategy in some cases performs worse can be understood. 298

But first we discuss how we obtained critical threshold values ncv. We fitted 299

Gaussians (not shown) to the peak regions of the variance curves to find the exact 300

position of the peak, which we tread as network-specific critical vaccination values ncv. 301

In Fig 1 these critical values are visualized by the dashed lines. Note that the worse 302

performance of the adaptive strategy on the interval [0.1, 0.23] results in a higher value 303

of ncv for this strategy. 304

We have performed this type of simulation and analysis for all networks that we 305

want to study with the large-deviation algorithm. Since we always used the exact same 306

networks when comparing different strategies, we use only one network for each 307

simple-sampling study per system size N that is considered later on. 308

Note that within our preliminary simulations we also tried to average over multiple 309

networks for each considered size N and then use finite-size scaling to find the critical 310

vaccination doses for an infinite system, similar to what we did to obtain λc in [34]. We 311

found out that the actual distributions such as P (C) still depend somehow on the 312

actual network, especially for the high degree heuristics. Therefore, the infinite-size 313

critical vaccination does not help much in selecting suitable values of nv. Thus, we 314

opted to use network-specific values of ncv, which fluctuate slightly: We obtained critical 315

values for N ∈ [1414, 6400] and found ncv ∈ [0.351, 0.364] for the random heuristics, 316

ncv ∈ [0.166, 0.186] for the adaptive high-degree heuristics and ncv ∈ [0.132, 0.150] for the 317

non-adaptive high degree heuristics. 318

To understand why the adaptive strategy is performing worse than the non-adaptive 319

one we initialized the network as if we wanted to perform an outbreak simulation. We 320

then removed all vaccinated nodes and calculate the size of the remaining connected 321

components and summed up the size of the components that contained any infected 322

nodes, as this size represents an upper limit for the number of nodes that the disease 323

can reach. We denote this quantity with S. The results are displayed in Fig 2, where we 324

also include an upper bound which is given by the total number of remaining 325

non-vaccinated nodes. 326

In panel (a) of the figure we see the results for the actual value p = 0.1 of the 327

rewiring probability used throughout the paper. Clearly the size S decreases more 328

rapidly for the non-adaptive high degree heuristics compared to the adaptive one. 329

By looking at (b) we can understand why. A rewiring probability of p = 0 means 330

that we never rewire and thus retain the original ring structure the network is initiated 331

with. Here every node has degree 4, which means that the non-adaptive high degree 332

heuristics and the random vaccination heuristics are equivalent. For this reason, these 333

two cannot be distinguished in the figure. The adaptive high degree heuristics however 334

will, due to its adaptive nature, distribute the vaccinations more or less evenly over the 335

ring, as nodes whose neighbors have been vaccinated have a reduced degree. This makes 336

splits of components less likely. This leads to S(nv) following the upper bound for quite 337

some range of values of nv before the network finally splits up into more components. 338

In contrast if we look at (c), where we chose a rewiring probability of p = 1, which 339

results in random networks similar to Erdőes-Rényi [68] networks with the difference 340

being that due to the construction each node has at least degree 2, we see a different 341

picture. Now that the underlying ring structure is destroyed. Therefore the adaptive 342

strategy performs better leading to reduced values of S as compared with the other 343

heuristics. 344

Note that in all three cases for any value of nv by using adaptive high-degree 345

heuristics more edges are effectively removed than when using the other two strategies 346

(not shown), which corresponds to the intuitive expectation. As we have seen, it is only 347
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S

nv

Fig 2. Sum S of relatives sizes of the connected components that contain the initial
infections, shown as function of nv. Results are for a network of size N = 3200, for the
different vaccination strategies. Panels (a), (b) and (c) contain the results for different
rewiring probabilities p ∈ {0, 0.1, 1}. Each data point was averaged over 20000 samples.
Error bars are smaller than the symbol size. We also include an upper bound for the
cluster size, which is the fraction of the network that was not yet vaccinated. ToDo:
{upper bound wohl etwas zu hell.}

the special small-world network structure which makes the adaptive vaccination strategy 348

perform in some range of values for nv worse than the non-adaptive high-degree strategy. 349

Results: Large deviation sampling 350

By using the large-deviation approach we can determine the probability density 351

function of interest, i.e., P (C), over a large range of or even on its full support. 352

In Fig 3 we show the probability density functions for the random heuristics for 353

different system sizes N measured at their respective critical vaccination fraction ncv. 354

The pdf exhibits two peaks, one near C ≈ 0 one around C ≈ 0.25. Both peaks move 355

towards smaller values for increasing system size and become sharper. We can also see 356

that the data gathered by large-deviation sampling agrees very well with the simple 357

sampling results - at least in the range where simple sampling was able to reach. 358

From the pdfs we can calculate the empirical rate functions 359

Φ(C,N) := − lnPN (C)

N
+ ΦN0 (3)

where ΦN0 is a constant that shifts the resulting rate function such that they all have 360

their respective minimum at Φmin ≡ minC Φ(C,N) = 0. The idea behind calculating 361

the rate function is to verify whether the probability density functions obey the so 362

called large-deviation principle as described by large-deviation theory [33,35–37]. If it 363

obeys this principle the shape of the pdf has to follow the standard finite-size behavior 364

PN (C) ∼ e−NΦ(C,N)+o(N) . (4)
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Fig 3. Probability density of the cumulative number C of infections for different
system sizes N at their critical vaccination doses ncv with the random vaccination
strategy as measured by the large-deviation algorithm. It also includes simple sampling
data for the largest system size. Linear scale in the inset. ToDo: {Vieleicht style fuer
simple sampling etwas anders so dass man wirklich sieht, dass es uebereinander liegt.
Auch ist die hellblau vermutlich zu blass fuer s/w Druck.}

Note that the size N is primarily important as a linear prefactor to the rate function, 365

while other dependencies on the size are less important, as denoted by o(N), i.e., their 366

contributions vanish relatively in the limit N →∞. From Eq (4) it is also clear why at 367

the minimum Φmin = 0 should hold, because if Φmin > 0 the probability would converge 368

to zero everywhere while if Φmin < 0, P (C) would diverge for some values of C. To 369

check the large deviation principle is of interest, because models for which the principle 370

holds are better accessible by analytical approaches, e.g., by using the Gärtner-Ellis 371

theorem [33,35–37]. 372

The rate functions we calculated from the pdfs of Fig 3 are shown in Fig 4. In the 373

range C ∈ [0, 0.25] it looks like the functions converge to Comment for Yannick: 374

{“Converge to” hat 15 Mio google Treffer aber “coverge against” was vorher stand hat 375

nur 27 Tausend (und die sind a la “is (rarely) used by Germans” ;-) } a limiting shape 376

for N →∞. Right to the second minimum of the rate function, which corresponds to 377

the maximum of the pdf at around C ≈ 0.25, the case is less clear and some of the 378

functions for different system sizes even overlap. If we shift each function horizontally 379

such that their minimum appears at the same value of C (not shown) the functions 380

exhibit a monotonous N -dependence also in the region of large values of C, indicating a 381

convergence as well. 382

The position of the minimum is also shown in Fig 4 and seems to follow an 383

exponential function. We therefore fitted the function 384

Cmin(N) = a e−bN + C∞min , (5)

which worked pretty well. 385

Additional pdfs and rate functions for the other heuristics at their respective critical 386

points look very similar and are thus moved to S2 Appendix. 387

In Fig 5 we show the comparison of the different vaccination strategies at their 388

respective critical vaccination value. The probability density functions for both 389

high-degree heuristics are almost identical even though the adaptive high-degree 390

heuristics vaccinated about 3% more nodes than the non-adaptive one. The shape for 391
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Fig 4. Rate functions Φ(C) for the random vaccination heuristics for different system
sizes N at their respective critical vaccination. The gray inset shows the position of the
minimum of the rate function as a function of Comment for Yannick: {“plotted
over” scheint mir auch nicht so gebräuchlich, hat 1 Mio google Treffer, dagegen “Plotted
as a function of” 27 Mio} N as well as the fit Eq (5) with a = 0.142(5), b = 0.00044(4)
and C∞min = 0.248(3). The other inset shows a zoom for better visibility.

the random heuristics is a bit different. The peaks of P (C) for this vaccination 392

heuristics are shifted to the left and appear sharper as compared to the two high-degree 393

heuristics. Also the probabilities for large values of C are significantly smaller and the 394

decline in probability is steeper. 395

C
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Fig 5. Probability density functions of the cumulative fraction C of infections for
N = 3200 for the different vaccination heuristics at their respective critical point. For
the adaptive high-degree heuristics that corresponds to Nv = 530, for the non-adaptive
one to Nv = 424, and for the random heuristics to Nv = 1133. Linear scale in the inset.
ToDo: {Im Bild heisst es “high-degree” wobei es sonst überall als “non-adaptive”
bezeichnet wird.}

In Fig 6 we compare all three heuristics with the same vaccination doses Nv = 530, 396

which is the critical vaccination value for the adaptive high-degree heuristics for the 397
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system size N = 3200. Looking at the different pdfs we can see three different general 398

shapes. The pdf of the non-adaptive high degree heuristics exhibits one maximum at 399

C ≈ 0.05 and strongly declines afterwards. The pdf for the adaptive high degree 400

heuristics exhibits two maxima that are comparable in height (better visible in S2 401

Appendix) and a sharp decline in probability after the second one. Lastly the random 402

heuristics also exhibits two maxima, however the second maximum is at a very large C 403

value and the first peak is at noticeably lower probabilities. The probability also 404

declines below 10−20 in between both maxima, i.e., they are much stronger separated. 405
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Fig 6. Probability density functions of the cumulative fraction C of infections for
N = 3200 and Nv = 530 for the different vaccination strategies. Linear scale in inset.
ToDo: {Im Bild heisst es “high-degree” wobei es sonst überall als “non-adaptive”
bezeichnet wird.}

Overall we can see that the non-adaptive high-degree heuristics proved very effective, 406

followed by the adaptive high degree heuristics whereas the random heuristics is the 407

least-efficient of them. 408

Now we want to see how the distributions look like when we choose values of Nv 409

such that the distributions roughly exhibit a maximum roughly at the same values of C, 410

i.e., where the non-adaptive high degree heuristics exhibits its maximum in Fig 6. This 411

allows us to compare the mere shape of the distributions. 412

The achieve this, we first performed a few simple sampling simulations for various 413

values of Nv to align the C positions of the maxima before running the large-deviation 414

simulations. It turned our that it is not possible to find a value of Nv to align the 415

random heuristics well, because here the peak position is too insensitive to the value of 416

Nv, as demonstrated by Fig 7. Thus we had to compromise for the random heuristics. 417

The measured pdfs are displayed in Fig 8. 418

Both high-degree heuristics display a very similar behavior, whereas the random 419

heuristics displays two peaks in the range of small values of C and exhibits a much 420

steeper decline in probability for increasing values of C resulting in much smaller 421

probabilities for the tail. Thus, while exhibiting about the same typical number of 422

infections, strong fluctuations are much more reduced for the random heuristics, at the 423

price of a much larger number of vaccinated nodes. 424

With the same idea in mind we now wanted to align the maxima to the position of 425

the maximum for the random heuristics from Fig 6. Again, we used simple sampling to 426

align the maxima and did large deviations afterwards. This time no issue occurred 427

during the alignment and the results of the large-deviation simulations can be found in 428
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Fig 7. Probability density functions of the cumulative fraction C of infections for the
random heuristics, N = 3200, and for different number Nv of vaccinated nodes. The
histograms were measured via simple sampling using 8000000 samples each. Linear scale
in the inset. The dashed line indicates the position of the maximum that we aimed for.
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Fig 8. Probability density functions of the cumulative fraction C of infected nodes for
N = 3200 for the different vaccination strategies. The non-adaptive high-degree
heuristics used Nv = 530, the adaptive one used Nv = 670 and the random heuristics
used Nv = 1240. Linear scale in inset.

Fig 9. 429

Again both high-degree heuristics give very similar results. The general shape of the 430

pdf for the random heuristics is also similar, and all curves exhibit two maxima at 431

roughly the same positions and with the same magnitudes. Apart from that, for the 432

random heuristics the probability to observe intermediate values C is much lower as 433

compared to the other two heuristics, i.e., the fluctuations away from typical values are 434

again much more reduced. 435
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Fig 9. Probability density functions of the cumulative fraction C of infections for
N = 3200 for the different vaccination strategies. The non-adaptive high-degree
heuristics used Nv = 315, the adaptive one used Nv = 305 and the random heuristics
used Nv = 530. On the left we show the data in logarithmic scale and on the right the
range C ∈ [0.65, 0.85] in linear scale.

Infection course analysis 436

In previous work on the SIR dynamics without protections measure [34] we have 437

observed that the infection dynamics is remarkably different for different regions of the 438

distributions P (C). This allowed us to pin-point characteristic properties of mild, 439

typical and severe outbreaks. This might help to design or improve suitable protection 440

measures. To investigate whether such characteristic properties can be identified in the 441

presence of vaccinations, we stored during the entropic sampling every X’th disease 442

time series, where we calculated X in such a way that we store 2000000 time series in 443

total per entropic sampling simulation. These disease time series were binned according 444

to their respective value of C. 445

Disparity 446

To compare the time series with one another we now computed their disparity [34], 447

which is defined as follows. Let us first focus on two arbitrary time series X1, X2, where 448

X(τ) corresponds to c(τ) or i(τ) with the only difference that we normalize them by 449

dividing every entry X(τ) by the maximum, i.e., maxτ X(τ), with the intention of only 450

investigating the shape and not the magnitude of the curves. Note that the time series 451

X1 and X2 may have different lengths l1, l2 and we thus define lmax = max{l1, l2}. If 452

necessary we continue a time series beyond its given length by repeating its last value, 453

which makes sense because for larger time usually no further changes occur. In this way 454

both series have lmax entries finally. 455

This lets us define the distance 456

d(X1, X2) = l−1
max

lmax∑
τ=0

|X1(τ)−X2(τ)| . (6)

We now define the disparity VX(C1, C2) for two different values of C as averaged 457

distance d. The average is performed over all pairs of time series where time series X1 458

exhibits the bin value C = C1 and the other C = C2, respectively. 459
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In Fig 10 we show the disparity heat maps for the three vaccination heuristics as 460

calculated from the normalized i(τ) time series. The pdfs P (C) that correspond to 461

these disparities were already displayed in Fig 6. Note that the diagonals represent the 462

comparisons within a single bin, i.e., of time series that lead to the same cumulative 463

number of infections C. Thus, they represent the amount of variation of the time series 464

for a given value of C. 465
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Fig 10. Color-coded disparity Vi(C1, C2) of the i(τ) time series for N = 3200, Nv = 530. On the left we show the results for
the non-adaptive high-degree vaccination, ToDo: {Die Ueberschriften passen nicht zu der in der Caption/Text erwähnten
Reihenfolge, die Bilder scheinen (!, check) in der richtigen Reihenfolge.} in the middle the results for the adaptive high-degree
vaccination and on the right the results for the random vaccination. The time series are binned with their corresponding value
of C and for each bin 1500 randomly drawn time series are used for the calculation of the disparity Vi(C1, C2). For the
shaded area no time-series exist as it was outside of the interval used for WL.

Looking at the heat map for the non-adaptive high degree heuristics we make a few 466

observations. Along the diagonal, the disparity increases with growing value of C. Thus 467

two different diseases evolution which exhibit the same value of C are more similar if C 468

is small. Apart from that one can see a cone-shape of the boundaries between similar 469

values of V . 470

The heat map for the adaptive strategy in Fig 10 looks rather similar. Though this 471

time, along the diagonal, the time series are becoming more dissimilar until C ≈ 0.3 and 472

become more similar again if C is increased further, though this effect is very small and 473

almost not visible. 474

The heat map for the random heuristics, displayed on the right in Fig 10 looks 475

different. Here we can see three regions, the first, C < 0.1, is a region of curves that are 476

similar to one another. The second, 0.1 ≤ C < 0.35, consists of a slightly higher 477

disparity and the last region, 0.35 ≤ C, consists of curves that are very similar to one 478

another. Thus, also for this quantity of measurement, which tells more about the details 479

of the disease evolution, the random heuristics leads to smaller fluctuations as compared 480

to the degree-based ones. Interestingly, when fixing C1 at a small value like 0.05 and 481

varying C2, one observes that first the disparity increases, but at much larger values of 482

C2 the shape of the time evolution become more similar again. This resembles 483

“reentrant” behavior sometimes observed for phase transitions. 484

In Fig 11 we show some examples of the time-series used to create the heat maps to 485

better understand behavior we observed when analyzing the disparities. 486

On the left we see the curves for the non-adaptive high degree heuristics. For small 487
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Fig 11. Infection time series i(τ) for different values of C. These time series were created during the entropic sampling with
a Network of size N = 3200 and a vaccination doses of Nv = 530. On the left we show the results for the non-adaptive
high-degree heuristics, in the middle for the adaptive high-degree heuristics and on the right for the random heuristics. For
each value of C we plot 30 time series. We also included one arbitrary time series for each C value that we highlighted for
clarity.

values of C, i(τ) peaks close to the beginning before the disease quickly goes extinct. 488

For larger value of C the time-series display a strongly fluctuating behavior, where no 489

clear peak exists and the disease takes way longer to go extinct, though the actual 490

duration varies a lot. Thus, the evolution of diseases is very hard to predict. On 491

average, for increased value of C, the duration of the outbreak grows as well as the 492

maximum of nodes that are infected at the same time, though the maximum is rather 493

small and here at most about 6% of the network were effected at once. 494

In the center of Fig 11 we present the time series corresponding to the adaptive 495

heuristics. Compared to the plot on the left we see a tendency for the curves to peak 496

earlier, i.e., within the first 100 time steps, and the disease dies out quicker overall. Also 497

some remnants of the strongly fluctuating behavior of the left plot can be seen. 498

The time-series corresponding to the random heuristics are displayed in Fig 11 on 499

the right. We see that the time series for large C display a clear peak and Gaussian-like 500

shape. Still, the time series for values of C near C = 0.3 are still a bit more fluctuating 501

and correspond to slowly-developing diseases as were observed also for the case without 502

vaccinations [34]. These outbreak tend to take the longest to become extinct. Overall 503

the heat map and time series that are seen for the random case here look very similar to 504

the ones without vaccinations [34]. Obviously, random vaccination alters the structure 505

of the network of non-vaccinated nodes not very strongly. 506

Conditional densities 507

For the health care system it is important to estimate the total number of people that 508

will be infected at once or rather the maximum of this quantity, because this should not 509

exceed the capacity of the care units. We therefore look at the maximum 510

M := N max
τ

i(τ) . (7)

To investigate how M correlates with the cumulative number of infections we calculate 511

the conditional density ρ (M |C), i.e., the probability for a disease outbreak to exhibit a 512

specific value of M given the value for C. In Fig 12 we show this conditional density for 513

N = 3200 and Nv = 530, i.e., calculated during the same simulation we used to generate 514

Fig 6, such that we can use that figure to know how probable a given range of C values 515

is. Note that most parts of ρ (M |C) are for values of C where P (C) is extremely small, 516

i.e. they are accessible only by using the large-deviation approach. 517
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Fig 12. Color-coded conditional densities ρ (M |C) for a network of N = 3200 nodes and Nv = 530 vaccination doses for the
three analyzed vaccination strategies. The blue stripes indicate the C range that was outside of the Wang-Landau interval.

For the non-adaptive high degree heuristics the system is beyond its critical 518

vaccination value and C < 0.1 is highly likely. Since the disease dies out quickly in this 519

range, it results in very small values for M . Only for very small values of C, the 520

maximum M increases strongly. Even if we look at the less likely outcomes, M always 521

stays below 200. 522

The density for the adaptive heuristics looks up to C ≈ 0.4 very similar to the 523

non-adaptive one. For larger values of C, outbreaks tend to lead to higher values of M , 524

though overall M stays below 400. When considering the pdf in Fig 6, we can conclude 525

that M < 200 is the most likely outcome here and the large values of M are not so 526

relevant when deciding about the capacities of health-care systems. 527

For the random heuristics up until C < 0.25 its conditional density is very similar to 528

the other two heuristics. Then, however, M almost linearly increases with C and the 529

incline is much steeper than seen for the high-degree heuristics. For the random 530

heuristics C > 0.7 is the most probable range and thus a typical outbreak exhibits 531

M > 600, leading to a much higher load on the health-care system. 532

Next, we wanted to investigate the speed with which the disease propagates through 533

the network. One could investigate the entire duration of the disease, but it makes more 534

sense to go about it differently. In the real-world it is unlikely that the disease will get 535

detected immediately. We want a quantity to reflect that. We use the c(τ) time series 536

and measure the number of time steps τ1 it takes until c(τ1) = 0.1× c(∞) and the 537

number of time steps τ2 it takes until c(τ2) = 0.9× c(∞) is reached. The we define 538

τ90
10 = τ2 − τ1, i.e., we measure the number of time steps the disease required to reach 539

90% of its final cumulative number of infections once it already reached 10%, for each 540

run. 541

We calculated the conditional densities ρ
(
τ90
10 |C

)
for the different vaccination 542

strategies for N = 3200 and Nv = 530 and show the results in Fig 13. Again we can use 543

Fig 6 to see how probable each value of C is. 544

All strategies exhibit a similar incline for C ≤ 0.05. The disease durations are rather 545

short and do not fluctuate much. This can be seen as one specific phase within range of 546

possible C values. 547

On the other hand, for the non-adaptive strategy we see a large spread of duration 548

times for C > 0.05 and this spread increases for increasing value of C. This means it 549

will be hard to predict the duration of this disease even if the value of C that will be 550

reached in total was known. This occurrence of s strong-fluctuation phase fits with the 551

observations from Fig 11 where we saw a fluctuation-rich behavior for the corresponding 552
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Fig 13. Conditional density ρ
(
τ90
10 |C

)
that shows the probability of τ90

10 for any given
value of C for N = 3200 and Nv = 530 for the different vaccination strategies. The blue
stripes indicate the C range that was outside of the Wang-Landau interval.

time series. 553

The adaptive strategy shows a similar behavior for C > 0.05, though the durations 554

tend to be a bit lower and the spread does not become as large as for the non-adaptive 555

case. For C > 0.5 the durations tend to become a tiny bit shorter again and the spread 556

of duration times also decreases, but only slightly. This correspond to the slightly 557

higher values of M , i.e., the diseases are more concentrated in time. 558

The spread of durations for the random heuristics is much smaller overall and peaks 559

at around C ≈ 0.2, which is in a rather improbable range. For C > 0.5 the spread is 560

almost non-existent and τ90
10 becomes constant, which is also reflected in Fig 11 where 561

we can see a very regular behavior. This can be seen as the presence of a third phase for 562

large values of C, in contrast to the two degree-based heuristics. 563

Thus, for the random heuristics the disease outbreaks are stronger, but can be 564

predicted better due to smaller fluctuations. 565

Summary and outlook 566

We investigated the effect vaccinations on the dynamics of disease spreading for the 567

standard SIR model. We considered three different vaccination strategies, namely a 568

random vaccination heuristics and two different heuristics which target high-degree 569

nodes first. 570

For this purpose we chose a rather large transmission probability of λ = 0.4 such 571

that the model would, without vaccination, exhibit a strong epidemic outbreak. 572

Using large-deviation methods and especially the 1/t Wang-Landau algorithm [60] 573

we were able to calculate the probability distribution P (C) of the cumulative fraction C 574

of infected nodes over a large range of its support and down to probabilities as small as 575

10−80. While probability densities such as 10−10, which are out of range of standard 576

approaches, might be even useful for practical considerations, obtaining P (C) over a 577

large range of the support is in particular satisfying from a scientific point of view, 578

because we are able to obtain a quantity which is analytically not accessible. In 579

particular we investigated the empirical rate functions and found that the convergence 580

properties were less clear than in the pure SIR case [34]. Nevertheless, when considering 581

the the finite-size dependence includes horizontal shifts on the C axis as well as changes 582

on the probability axis, it appears likely that the large-deviation principle is fulfilled. 583

Thus it appears likely, that analytical calculations of the probability densities are 584

possible with, e.g., the Gärtner-Ellis theorem. 585

By additionally applying an entropic sampling algorithm [66], we were able to 586

investigate the actual time-series corresponding to different ranges of the value of C. 587
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Having available these sample time series of typical as well as extreme behavior might 588

allow one to understand strong or weak outbreaks better which could lead to more 589

sophisticated strategies. We compared the time-series of the three vaccination strategies 590

given the same network and same vaccination amount. We observed that for most of 591

the cases with targeted high-degree vaccination a behavior with strong fluctuations 592

dominates. This effect is less pronounced for the adaptive heuristics. For the random 593

heuristics, in principle three phases can be observed along the C axis. In general, 594

fluctuations are mostly suppressed, making disease propagation better predictable, 595

although the strategy is less efficient as compared to the degree-based ones. 596

For practical applications, one could draw from these results the strategy to use a 597

targeted high-degree heuristics to vaccinate enough nodes to exclude a pandemic, but to 598

additonally vaccinate a certain fraction of randomly chosen nodes, to reduce the 599

fluctuations such that the infection dynamics becomes more regular and predictable. 600

This would probably also increase the acceptance of vaccination measures in the society. 601

The approaches used here is very general, such that in can be applied for many 602

different disease-spreading problems, such as those exhibiting different infected states, 603

including the implementation of other counter measures, or processes which take place 604

on dynamic networks. 605

Furthermore, the large-deviation approach could be even more useful, if one 606

considers coupled networks of multiple species. This would allow one to investigate the 607

transfer of zoonoses between animals and humans. In this way one could study the 608

fundamental processes or conditions that are required to let a disease transfer between 609

different host species and possibly result in a huge outbreak in the new host species. 610

Note that for relevant outbreaks these transfer probabilities are necessarily small, 611

because for the cases with a high transfer probability, they will have happened during 612

evolution already. Thus, a large-deviation approach is very suitable in this case. 613

Supporting information 614

S1 Appendix. Comment for Yannick: {Im Algorithmus sieht es so aus, als zuerst 615

in der Map Positionen in den Listen gespeichert werden (intit) aber auch Degrees und 616

Positionen (erste for i Schleife).} 617

Comment for Yannick: {Der “Algorithmus” ist sehr low level, eher wie ein Code, 618

und dadurch recht schwer verständlich. Entweder müsste es zu den einzelnen 619

Abschnitten eine Erklärung geben, auch dazu dass die “-1” als Marker genutzt wird 620

wenn ein Knoten aus einer Liste entfernt wurde, oder der Algorithmus müsse auf 621

höherem Level beschrieben werden und damit kürzer ausfallen. Auch müsste erklärt 622

werden dass mit L[d][i] das i. Element der Liste gemeint ist und nicht ein Wert der einer 623

Matrix zugewiesen wurde. } 624

S2 Appendix. Additional pdfs and rate functions. In Fig 14 we show the pdfs 625

for the adaptive high-degree heuristics measured at their respective critical vaccination 626

doses nv. 627

The general shape of the resulting pdfs is very similar to the ones from the random 628

heuristics, however the position of the second peak is shifted more towards the right and 629

the height of the first peak is much lower. This fits well with the observation that the 630

average C at the critical vaccination dose ncv is higher for the high degree heuristics (see 631

Fig 1) than for the random heuristics. 632

Looking at the rate functions shown in Fig 15 we also see a similar picture. 633

Again it seems like the shape to the left of the second minimum, i.e., for about 634

C < 0.3, converges to a limiting shape for N →∞. Beyond the minimum though no 635
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Fig 14. Probability density of the cumulative fraction C of infections for different
system sizes N at their critical vaccination doses ncv with the adaptive high-degree
vaccination strategy as measured by the large-deviation algorithm. It also includes
simple sampling data for the largest system size. Linear scale in the inset.
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Fig 15. Rate functions Φ(C) for the adaptive high-degree vaccination heuristics for
different system sizes N at their respective critical vaccination. The gray inset shows
the position of the minimum of the rate function as function of N as well as the fit
Eq (5) with a = 0.15(3), b = 0.00026(26) and C∞min = 0.32(6), which means the fit has
rather large errors. The other inset shows a zoom for better visibility.

clear convergence is visible until we shift the functions in such a way that their 636

minimum occurs at the same position (not shown). 637

We also fitted an exponential function to the position of the minimum, but the fit 638

does not work as well as before. Note that for each system size we only look at a single, 639

arbitrarily drawn network, so some discrepancies are to be expected and it is rather 640

remarkable that those were not noticeable for the random vaccination heuristics, even 641

though we used the exact same networks for each vaccination strategy. 642

For the sake of completion we show the measured probability densities for the 643

non-adaptive high-degree heuristics in Fig 16. The general shapes of the pdfs for the 644

two high-degree heuristics are very similar. 645
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Fig 16. Probability density of the cumulative fraction C of infections for different
system sizes N at their critical vaccination doses ncv with the non-adaptive high-degree
vaccination strategy as measured by the large-deviation algorithm. It also includes
simple sampling data for the largest system size. Linear scale in the inset.

The respective rate functions are shown in Fig 17 and exhibit a similar behavior. 646

This time, however, shifting the functions in such a way that their positions of the 647

minima agree (not shown) does not lead to a complete monotonous pattern, as the 648

function for N = 6400 now is located in between those for N = 3200 and N = 4525. 649
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Fig 17. Rate functions Φ(C) for the non-adaptive high-degree vaccination heuristics
for different system sizes N at their respective critical vaccination. The gray inset shows
the position of the minimum of the rate function as function of N as well as the fit
Eq (5) with a = 23(7), b = 0.00019(15) and C∞min = 0.28(9), which means the fit has
rather large errors. The other inset shows a zoom for better visibility.
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