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Energy grids play an important role for modern society. In recent years there was a shift from using few
central power sources to using many small power sources, due to efforts to increase the percentage of renewable
energies. Therefore the properties of extremely stable and unstable networks are of interest.

In this paper distributions of the basin stability, a nonlinear measure to quantify the ability of a power grid
to recover from perturbations, and its correlations with other measurable quantities, namely diameter, flow
backup capacity, power-sign ratio, universal order parameter, biconnected component, clustering coefficient,
two core, and leafs are studied. The energy grids are modeled by an Erdős-Rényi random graph ensemble and
a small-world graph ensemble, where the latter is defined in such a way, that it does not exhibit dead ends.
Using large deviation techniques, we reach very improbable power grids that are extremely stable as well as
ones that are extremely unstable, respectively. The 1/t-algorithm, a variation of Wang-Landau, which does
not suffer from error saturation, and additional entropic sampling is used to achieve good precision even for
very small probabilities ranging over eight decades.

Power grids, and therefore their stability, are
of utmost importance for our modern society. A
possible way to characterize the stability of power
grids against perturbations is the nonlinear basin
stability that was introduced in recent years. We
now use a large deviation approach to investi-
gate the probability density function of the basin
stability, even for very small probabilities, for
two different network ensembles. We are able to
investigate the significance of static measurable
quantities on the dynamic stability by measuring
their correlations to the basin stability even for
very improbable realizations of grids.

I. INTRODUCTION

Stability of complex systems1,2 is an ubiquitous phe-
nomenon which is an essential property of many natu-
ral and engineered systems on various length and time
scales like the solar system,3 ecological communities,4,5

or gene networks.6 Technological networks are crucial for
the functioning of modern societies. Here one is inter-
ested in designing them in order to, first, fulfill the de-
sired task in the standard case, but also such that they
are resilient against fluctuations and failures. Thus, in
contrast to natural systems, which are shaped by biolog-
ical and physical evolution, technological networks can
and have to be engineered to reach an optimum behav-
ior. During recent years in particular energy grids came
into the focus of research in engineering, computer sci-
ence and statistical physics because of the ongoing change
of the composition of the energy sources. Due to ongoing
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climate change, carbon-based energy resources have to
be decreased.7,8 Thus, more and more decentralized re-
newable energy sources become part of the grid, replac-
ing centralized power generation of fossil fuel or nuclear
power plants. This leads to a lot of challenges concern-
ing grid topology and stability.9 Instabilities, even orig-
inating on a small scale, can lead to failures and even
cascading failures, i.e., large scale blackouts.10

Several different approaches to model power grids11 ex-
ists. Viewed in an abstract way, a power grid is a general
transport model, where some capacity for transporting
the entity of interest has to be provided.12–15 If one is
not interested in the dynamics of power grids, one can
just use Kirchoffs equations and study the power flow in
the steady state.16 Here one can study networks with re-
spect to the (static) so called N−1 stability, which means
that the electrical grid should provide enough transport
capacity to compensate single line (or node) failures.17

If one is also interested in studying dynamic proper-
ties, e.g., resilience against fluctuations in time, one has
to consider more elaborate models. By generalizing the
swing equation11,18 of a synchronous machine to small
networks, Filatrella, Nielsen and Pedersen arrived19 at a
model similar to the Kuramoto model.20 The dynamics
of the oscillators i is here governed by the phase angles θi
and influenced through the couplings of the oscillators.
This model stimulated many studies in the field of power
grids. In Ref. 21 the synchronization of this dynamical
model on the topology of the power grid of the United
Kingdom (UK) is investigated. Also in Refs. 22 and 23
this Kuramoto-like model was analyzed with respect to
its application for power grids. These studies motivated
further investigations of this model.24–27

Recently an extension of the model was proposed,28

which not only includes the phase angles but also the
voltage amplitudes. In a subsequent study, in particular
the influence of non-Gaussian and intermittent statistics
of the fluctuations of the power transfer was considered.29
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Previous studies on stability of power grids mainly con-
sidered either very small networks, like two coupled os-
cillators, or the analysis of medium-scale grids inspired
by existing real-word transmission grids. If one wants to
go beyond existing, engineering-like knowledge of how to
construct very stable networks, a feasible approach could
be to generate many random networks, evaluate the cor-
responding stabilities and try to identify the properties
of the most (and least) stable ones. This could lead to
design principles of which properties to seek and which to
avoid. One basic finding in a previous study25 was that
“dead ends”, i.e. nodes connected just to one other node
(a leaf in graph theoretical language) should be avoided.
In this study, 1000 randomly generated networks from
the Erdős-Rény ensemble30 were considered and each
time the reaction of the network to node disturbances
studied. Nevertheless, by sampling networks in this way,
only typical networks with respect to the original ensem-
ble will be generated. To understand better the origins or
conditions of stability (or instability), one would rather
like to sample extremely stable or unstable networks. For
this reason recently large-deviation approaches31,32 have
been applied to study the distribution of the N − 1 re-
silience for general transport networks15 and for power-
flow models.17 This allowed the authors to reach ex-
tremely stable grids which by chance occur only with
very small probabilities like 10−100. By measuring other
quantities of these networks, it was found out that often
increasing the connectivity enhances stability, but this is
a rather trivial effect (and costly in practice). Further-
more it was found15,17 that networks exhibiting a small
diameter33 foster the stability of the grids. The large-
deviation study of Ref. 17 also showed that on average a
power-sign ratio smaller than 0.5 should be avoided for
the creation of stable grids. Note that for the Kuramoto
model a large sign ratio correlates with high synchronic-
ity of the oscillators.34,35

To the knowledge of the authors, such a large-deviation
study has not been performed for a dynamic power grid
model. Thus, it is the purpose of the present work to in-
vestigate a dynamic stability of the Kuramoto-like model
in a similar fashion.

To classify the stability of a synchronous (fixed) point
of a power grid, we use basin stability.25,36 It goes be-
yond nonlinear stability in the following way: A stable
system is perturbed several times and it is measured how
often the system returns to the stable point. Thus, the
volume of the basin of attraction of the fixed point is esti-
mated. Basin stability was studied in recent years several
times25,27,36–38 including the application to power grids.

We present the results of our study of the basin sta-
bility of the model by Filatrella et al.19 for the ensem-
ble of Erdős-Rényi (ER)30 and small-world (SW)39 net-
works. We investigated the probability distribution of
the basin stability as well as correlations between stabil-
ity and other properties of power grids or networks in
general. We applied a large-deviation approach, in par-
ticular the 1/t-algorithm,40 which is an extension to the

original Wang-Landau algorithm,41 and subsequently en-
tropic sampling.42 In this way we were not only able to
investigate the tails of the distribution, e.g., the proba-
bilities of occurrence of particular stable grids, but also
the properties of these grids by measuring the mentioned
correlations to other quantities like number of leafs, net-
work diameter or static stability measures.

The paper is organized as follows. Next, we present the
details of the Kuromato-like model and the definitions of
the network ensembles. In the third section, we explain
the algorithms we have used and the quantities we have
measured. In Sec. IV we present our results, followed by
a summary and an outlook.

II. MODEL

A. Kuramoto-like model

The Kuramoto-like model, as derived by Filatrella et
al.,19 describes a set of N coupled oscillators i with phase
θi(t). Their dynamic is defined by a system of coupled
differential equations:

θ̈i = Wi − αθ̇i +K
∑
j 6=i

Aji sin(θj − θi) (1)

All parameters correspond to the renormalized param-
eter of the original work.19 That means a phase velocity
of θ̇i = 0 corresponds to a node i, which is synchronized
with the grid frequency of, e.g., 50Hz. K is the (global)
coupling, α the (global) dampening and Wi is the power
source (input/output) of oscillator i. A negative or posi-
tive power source corresponds to a consumer or generator
respectively. The connectivity of the network is repre-
sented in the adjacency matrix A as

Aij =

{
1 if i, j connected

0 otherwise
. (2)

Note that the degree ki of a node i is given by ki =∑
j Aij . Hence, within our model, an instance of an en-

ergy grid G is given by its underlying network, as defined
by A and the distribution of power sources {Wi}.

For the purpose of this paper we used a binary distri-
bution of the power sources, i.e.,

Wi ∈ {−1, 1} and
∑
i

Wi = 0. (3)

That means, every generator is equal as is every con-
sumer. Also there are as many generators as there are
consumers. This ensures an overall power balance. The
values of the other parameters are stated in Sec. IV A 1
and Sec. IV B 1.

B. Network ensembles

We investigated two ensembles, Erdős-Rényi30 net-
works and small-world networks.39,43,44
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Erdős-Rényi networks are constructed as follows. First
generate N nodes with labels i.

Now, for each possible pair of nodes use an independent
random number such that with probability

p =
c

N − 1
(4)

an edge is create between this pair, where c is the param-
eter determining the mean degree.

Our implementation of small-world networks consists
of N nodes i = 0, . . . , N − 1, initially arranged in a ring.
All nodes i are connected by edges (i, i+ 1) and (i, i+ 2)
to their next and second-next neighbors (where nodes
N and N + 1 are identified with nodes 0 and 1). Next
some edges are made “long-range”, i.e., each edge (i, j)
j ∈ {i+ 1, i+ 2} is, with probability p, rewired as (i, j′)
with a randomly selected node j′ 6= i. Here we used
p = 0.1.

For any network type, depth first search is used to
verify whether the constructed network is connected, i.e.,
there exists a path of edges between any pair of nodes.
If not, the created network does not represent a valid
energy network, so the whole network is discarded and
the aforementioned construction process is restarted until
a connected network is created. Finally, to complete a
grid realization, for all nodes the corresponding values of
Wi are drawn according to Eq. (3).

III. METHODS

Next, we present the approach we used to measure the
dynamical stability of a given network using the basin
stability. A natural approach to sample many networks,
to explore the distribution of the stability, is simple sam-
pling, which we explain in Sec. III B. To obtain the prob-
ability distribution down to very small probabilities, we
use a Markov-chain based Monte Carlo approach, which
we detail in Sec. III C to Sec. III E. Finally, we define the
additional quantities we use to characterize the networks.

A. Basin stability

The basin stability was introduced by Menck et al.36

as a simple however nonlinear way to characterize the
stability of a desirable state against small or large pertur-
bations. For any given grid G which is in a fixed point,
stability here means the likelihood of returning to this
fixed point after a perturbation. Therefore grids which
are stable in this sense are resilient against fluctuations
of the oscillators or of the environment.

The basic idea is to estimate the volume of the basin
of attraction and use the relative size of this volume to
quantify the stability of the current stable state. The
stability measure turned out to be well suited for power
grids modeled by the Kuramoto-like model.25

Basin stability can be implemented in different ways,
e.g., one can perturb single or multiple nodes. Multiple-
node (m-node) basin stability, as proposed by Mitra et
al.,37 is particularly suited to measure the stability of a
grid as whole. Calculating the m-node basin stability
(m ≥ 1) works as follows:

Let the grid G be in its fixed point at some time t0:
θi(t0) = θfix

i for all nodes i. Note that Eq. (1) depends
only on differences of phase angles, thus any global shift
of the angles has no influence. In practice we normalize
all angles by subtracting θ0. We only consider those fixed
points which are at least stable in the sense of a linear
stability analysis (see Sec. III E). Now draw L random
sets Bj each consisting of m distinct nodes. For each
drawn set Bj perturb the nodes i′ ∈ Bj in the set by uni-
formly drawing random initial conditions θi′ ∈ [−π, π] for
all these nodes. Let the system continue its evolution ac-
cording to Eq. (1) and determine whether the run returns
to the initial fixed point. This is repeated U times for
each set. Fj is the number of runs returning to the initial
fixed point for set Bj . Then, the stability Sm(G) of the
grid G, is the set-averaged fraction of runs returning to
the initial fixed point given by

Sm ≡ SL,m(G) =
1

L

L∑
j=1

Fj
U
. (5)

Note that we will omit L and G whenever the meaning is
clear. For the purpose of this study we chose U = 1 runs
per set, L different sets each exhibiting m nodes. Note
that Sm can only assume L + 1 different values due to
the chosen parameters.

To determine whether an evolution is returning to the
initial fixed point, a Runge-Kutta of 5th order with time
step ∆t = 0.07 is used to integrate the system for tf time
units (see Sec. III E). We consider the phase angle θi of
a grid G to be returned if it deviates finally less than a
threshold value θth from its fixed point θfix

i ≡ θfix
i (G):

∆θi(t) := θfix
i − θi(t) (6)

if |∆θi(tf )| < θth ∀i → stable
otherwise → unstable

(7)

A run is counted as stable if condition Eq. (7) holds for
all nodes i. In this paper we use θth = 0.05.

In Fig. 1 an example for such a run is shown. This run
is counted as unstable, since Eq. (7) does not hold for
all i.

B. Simple sampling

To measure the probability density function (pdf) of
the stability S with simple sampling, one has to create a
grid for each sample independently. Then one can create
a histogram H(S) counting the occurrences of each sta-
bility. Let there be 10k samples. Then the probability is
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Figure 1. Example phase dynamics for a stable (light blue)
and an unstable (dark red) oscillator of a run. The dashed
lines indicate the magnitude of the threshold.

estimated as

p(S) ≈ H(S) · 10−k . (8)

That means, to resolve a probability of 10−k one has
to have at least 10k samples.

C. Large-deviation Sampling

If one is interested in obtaining a probability distri-
bution over a large range of the support, down to very
small probabilities, specific large-deviation algorithms
can be applied.32 First application of such algorithms
date back to the 1950 under the name of variance-
reduction techniques.45 In physics, these techniques be-
came better known, e.g., via the application of transition-
path sampling46 to study dynamics of molecules. In
statistical physics the approach was used, among other
applications, to investigate the statistics of sequence
alignment,47 the properties of random networks48–51 or
of non-equilibrium processes.52–54

The approach we applied here is based on the Wang-
Landau (WL) algorithm.41 The basic idea of the algo-
rithm is as follows: Let g(S) be a non-normalized esti-
mate for the density of states for the stabilities S, which
is determined by the ensemble of random grids G and
their corresponding stabilities S = S(G). Clearly, g(S)
is the target quantity and not known beforehand. Thus,
the WL algorithm starts with an unbiased guess g(S) = 1
∀S and the basic aim is to determine the correct density
g(S). This works by performing a random walk in grid
space, i.e., creating a Markov chain of states, which are
realizations of grids here. As usual each visited state is
only dependent on the previous state and transition rates
between states.

Let Gn be the grid at step n of the Markov chain and
Sn = S(Gn) its basin stability Eq. (5). Now, a trial grid
G′ is generated from Gn, by changing edges and gen-
erators slightly, for details see Sec. III D. This trial grid

exhibits a stability S′ = S(G′). WL tells us to accept the
trial grid, i.e., use Gn+1 = G′ with a Metropolis-Hastings
probability

pacc = min

(
g(Sn)

g(S′)
, 1

)
. (9)

If the trial grid is not accepted, the current grid is kept,
i.e., Gn+1 = Gn.

The estimate g(S) is updated at S = S(Gn+1) with
a multiplicative factor f > 1, i.e., g(S(Gn+1)) → f ·
g(S(Gn+1)), each step during the simulation, which is
intended to converge to the sought-after pdf. At the be-
ginning f is rather large, like f = e ≈ 2.71 and reduced
towards 1 during the simulation.

The original algorithm has problems with the satura-
tion of the final error as pointed out originally by Ref. 55
(see also Refs. 40, 56, and 57). To circumvent the prob-
lem, Belardinelli and Pereyra introduced an algorithm,40

which is based on Wang-Landau but f is updated differ-
ently, mainly log(f) ∝ 1/n, where n is again the Markov
time. It was shown, that the this algorithm does not
suffer from error saturation.56

Since the WL algorithm and its variants suffer from the
lack of detailed balance, we perform entropic sampling42

afterwards. This means, we start with the estimate g(S)
as computed by WL. We again perform a Markov chain
of states, i.e., grids, according to the Metropolis-Hastings
probability Eq. (9). The only difference to WL is that the
density estimate g is not updated any more.

Instead, a histogram of visited stabilites H(S) is main-
tained. As the last step of the simulation, the probability
density P (S) is calculated. First, from a non-normalized
combination of g(S) and H(S):

P̃ (S) =

{
g(S) if H(S) = 0

g(S) ·H(S) otherwise
(10)

and finally normalizing P (S) = P̃ (S)/
∫
S̃
P̃ (S̃)dS̃. For

our simulations, the entropic sampling used the same
number of steps as the WL sampling. We also verified
that the case H(S) = 0 did not occur.

To make the calculation of the probability density
function over the whole stability regime more feasible,
we split the stability range into multiple overlapping
intervals.58,59 For each interval we performed a WL plus
an entropic sampling simulation. To obtain a full pdf,
we finally merged the resulting pdfs, which can be done,
since the pdfs of the overlapping regions have to match,
at least within statistical fluctuations.41,47 This was also
used as stopping criterion for the WL algorithm by termi-
nating when the overlapping regions match sufficiently.

We chose to investigate a global stability measure be-
cause there are no special nodes, as all nodes are treated
the same in the ensembles. If, however, one had an en-
semble where nodes are distinguishable, for example if
one would look at a specific grid topology and was in-
terested in the influence of the placement or the output
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Wi of the power sources, the described large-deviation
techniques could also be applied to investigate a local
stability measure instead.

D. Change move

The Markov chain simulation is build on a basic change
move to generate trial grids allowing to perform the ran-
dom walk in the ensemble of power grids. The change
move we used works as follows.

For the Erdős-Rényi ensemble: Draw a pair i, j of
nodes. Remove the edge {i, j} connecting the drawn node
pair if it exists. Create an edge between the nodes with
probability p (see Sec. II B).

For the small-world ensemble: Draw an edge (i, j).
With probability 1 − p the edge is reset to its original
state in the ring. Otherwise it is rewired with a random
node j′, i.e. (i, j)→ (i, j′).

Repeat this τ times. This τ determines the change size
in each step. Finally, draw another pair i, j and exchange
the values Wi ↔Wj .

If the resulting trial network is not connected the trial
grid will be rejected immediately in the Markov Chain.
Otherwise the trial grid is accepted with the probability
depending on the basin stability of the two power grids
(see Sec. III C Eq. (9)).

In order to achieve an efficient change step, the change
size τ is not a fixed value, but will be chosen for each
step randomly as explained below:

The basic idea is to gather statistics on how the em-
pirical acceptance frequencies depend on the change size.
Thus, two histograms are created, one Hr(τ) for count-
ing rejected moves and Ha(τ) one for counting accepted
moves. We assume that an empirical acceptance of 0.5
is good, but allow for change sizes exhibiting similar ac-
ceptance frequencies.

Initially, or when the value of f is changed, we start
building new acceptance statistics. Then, we chose a
maximum change size τmax. Now, each possible change
size τ ∈ {1, . . . , τmax} used during the WL simulations
is tried l = 50 times, in random order. Technically we
used a list of l · τmax change sizes, from which one change
size is taken randomly and used whenever a change move
is performed. This is used to build up initial statistics
Hr(τ) and Ha(τ).

Using these statistics, we obtain an empirical τ -

depended acceptance rate facc(τ) = Ha(τ)
Ha(τ)+Hr(τ) . Next,

we construct a subset Mτ = {τ | 0.5 − ∆f ≤ facc(τ) ≤
0.5 + ∆f} of change sizes such that they exhibit em-
pirical acceptance rates in a window of size 2∆f = 0.3
around the desirable acceptance rate 0.5. If the set Mτ

is too small, e.g., smaller than 7, we add iteratively those
changes sizes which exhibit an acceptance rate closest to
0.5 until the set size 7 is reached. During the WL and
entropic sampling simulations, unless the statistics are
rebuild as explained above, we always draw the change
size randomly and uniformly from the set Mτ . Anyway,

the acceptance histograms Hr(τ) and Ha(τ) are updated
during the remainder of the simulation and the set Mτ

of change sizes is occasionally adapted.
Note that this adaptive approach is rather independent

of the Monte Carlo algorithm used and of the problem
investigated and might be useful for other types of Monte
Carlo simulations.

E. Technicalities

For the Monte Carlo simulations we want to always get
the same stability for the same network. We therefore fix
the seeds of the random number generator for the pertur-
bances to always draw the same L sets of nodes Bj (see
Sec. III A) and to always get the same values θi i ∈ Bj
for the initial conditions. Note that the initial distance
to the fixed point ∆θi(0) of the nodes i ∈ Bj varies, since
the fixed point is dependent on the grid realization.

To find the fixed point of Eq. (1), we use a Newton-
Raphson algorithm (modified version from Ref. 60). To
check if a stable61,62 fixed point was found, we then check
if all eigenvalues are smaller than 0. If not, we try dif-
ferent starting points for Newton-Raphson. For example
the solution of the linearized equations or by using a few
Runge-Kutta steps. If no fixed point could be found using
this method, the corresponding network was discarded,
since the basin stability could not be calculated.

To integrate the equations, we use a Runge-
Kutta60,63–67 algorithm of fifth order with step size ∆t =
0.07. At the end, one calculates the fraction of trajecto-
ries, which are sufficiently close to the fixed point after a
fixed amount of time tf .

F. Measurable quantities for correlation

Since we are interested in finding properties of ex-
tremely stable or unstable networks, we measure also
other properties of the grids we encounter during the
large-deviation simulations, i.e., each time we wrote Sm
to a file, we also wrote the values for all other quantities.
We are interested in those properties which correlate with
the stability (or instability). They could also serve as de-
sign guidelines to create stable networks. Next we give
short, where necessary also more detailed, definitions of
the quantities we have investigated.

1. Diameter

For two nodes i, j which are connected in a network
having N nodes and M edges, there exists at least one,
possibly many, paths connecting them. The shortest
among them, measured in terms of number of edges, is
the shortest path, sometimes called geodesic path.33 It can
be obtained conveniently by breadth-first search, which
can be done for a connected graph68 in time O(M). For
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a given network, the longest geodesic path among all
pairs i, j is called the diameter d. Correspondingly, it
can be obtained by repeated breadth-first search, i.e., in
O(NM).

2. Flow backup capacity

The backup capacity PF is a measurable quantity that
was investigated in an earlier work on the stability of net-
works with a power-flow model.17 The redundant capac-
ity Kred

ab defined later on by Witthaut et al.24 is related
to the backup capacity.

To define the backup capacity we transform Eq. (1)
to the power-flow model, which describes the stationary
state. This is achieved by setting θ̇i = θ̈i = 0, with the
argument of being interested only in the fixed points of
Eq. (1). Together with a linearization of the sine, that
leads to

Wi = −K
∑
j

Aij (θj − θi) . (11)

Since only the phase differences are of interest, one can
choose one phase θ0 = 0. The linearized equations can
be solved for θi by standard Gaussian elimination.69

The power flow Kflow
ij between connected nodes can be

calculated as

Kflow
ij = |KAij sin (θj − θi)| . (12)

To simulate a failure, the transmission line with highest
load Kflow

ij is removed and the resulting new power flows

K̃flow
ij are calculated.
The backup capacity is defined as a N − 1 stability

measure, i.e., the grid should provide enough additional
capacity to take care of the increased flow

PF = max
i,j

(
K̃flow
ij −Kflow

ij

)
. (13)

If the removal of the line with highest load discon-
nected the network PF =∞.

3. Power-sign ratio

The power-sign ratio υ± is a measurable quantity that
was investigated in an earlier work on the stability of
networks with a power-flow model.17 It is defined as the
fraction of edges that connect Wi with opposite signs and
the total number of edges in the network.

4. Universal order parameter

The universal order parameter70 runi describes the
phase coherence of the oscillators,

runi =
1∑
i ki

∑
i,j

Aij 〈cos (θi − θj)〉t (14)

where 〈. . .〉t denotes a suitable time average. We are

interested in the fixed points of the grid, where θ̈i = θ̇i =
0. We therefore simplify the equation

runi =
1∑
i ki

∑
i,j

Aij cos
(
θfix
i − θfix

j

)
. (15)

This order parameter is closely related to the complex
order parameter r(t) exp(iΨ(t)) = N−1

∑
j exp(iθj) for

the Kuramoto model.20,71,72

5. Biconnected component

The biconnected component (bicomponent) of a net-
work is defined as the maximal subset of nodes, where ev-
ery node can be reached by at least two node-independent
paths from each other node of the subset.33 Large-
deviation properties of the biconnected component for
the ensemble of Erdős-Rényi random graphs were stud-
ied in Ref. 51 We investigate the size Nbi, measured in
terms of the number of nodes, of the largest biconnected
component.

“Algorithm 447” is an efficient73 way to calculate the
biconnected component and thus used in this study.

6. Transitivity and clustering coefficient

The transitivity CT is a standard property measured
for graphs and describes the relative abundance of tri-
angles74 (small loops) in a graph. It is defined as the
number of closed paths of length three divided by the
total number of paths of length two.33

The transitivity was proposed by Newman, Watts and
Strogatz75 in 2002, though it seems they thought it
was just an alternative description for the average lo-
cal clustering coefficient Cl that was defined by Watts
and Strogatz39 in 1998. However CT and Cl are different
quantities,76,77 although they are very similar.

7. Two core

The two core K2 of a graph, see e.g., Ref. 78, is the
subset of nodes which is obtained by iteratively remov-
ing all nodes i which have a degree ki smaller than two.
Note that through removal of a node another node will
decrease its degree such that it may become eligible for
removal as well. Hence, the iteration stops if all nodes
have degree two or more.
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7

8. Degree count

The number of nodes Nk with degree k can easily be
obtained by

Nk =
∑
i

δki,k . (16)

IV. RESULTS

Next, we present the results of our simulations. First,
we show the results of an Erdős-Rényi ensemble and sec-
ond for a small world ensemble.

A. Erdős-Rényi

The Erdős-Rényi model is the most simple model for
random networks because it makes no assumption about
the topology except the average number of neighbors.
Therefore, it serves as a useful null model for any inves-
tigation of networks.

1. Simulation details

For the Erdős-Rényi grids we chose K = 8, N = 50,
and c = 2.7 in Eq. (4) restricted to the subset of con-
nected networks, i.e., which exhibit just one connected
component. Furthermore, we chose α = 0.035 and
Wi = ±1. These are similar parameters to the ones used
in Ref. 25, though they used N = 100 and α = 0.1 in-
stead. We have chosen to study a smaller value of the
dampening α since for α = 0.1 most networks are stable
and thus the results less interesting.

For the calculation of the basin stability we used L =
200 different sets each exhibiting m = 5 nodes. Since
this means, that the basin stability Sm can only assume
201 values in this particular case, we will use these values
to define the bins needed for the large-deviation simula-
tions. For the Runge-Kutta algorithm we used a duration
of tf = 180 time units (and the ∆t value mentioned in
Sec. III A.

As mentioned in Sec. III E, a given (trial) grid encoun-
tered during simple sampling, the Wang-Landau simula-
tion or the entropic sampling was discarded if no fixed
point of Eq. (1) could be found. The frequency of not
finding the fixed point were 2.7 · 10−6 during the sim-
ple sampling, 3.5 · 10−5 during WL and 2.5 · 10−5 during
entropic sampling.

For WL and entropic sampling four intervals covering
80% of the support, i.e., Sm ∈ [0, 0.8], were used. Each
entropic sampling interval visited the left and right bor-
der alternatingly for at least 12 times, which means that
the simulation is well “equilibrated”.

2. Probability density function

The pdf for the basin stability of the ER grids is shown
in Fig. 2. By using the large-deviation approach, we were
able to obtain the pdf over a large range of its support,
extending over eight decades in probability. For compar-
ison, we also show the simple sampling results of 3.75·105

independently generated grids. For the simple sampling
to achieve a good statistics, a bin had to be visited at
least 100 times to be shown in the plot. This means,
by applying the large-deviation approach, we were able
to observe P (S5) with good statistical quality over five
more decades in probability as compared to simple sam-
pling. For larger values of N , this advantage of the large-
deviation algorithm would likely be even higher. Note
that we evaluated about 3.4 · 106 grids during the large-
deviation simulations, i.e., roughly one decode as many
grids as we evaluated for the simple sampling approach.
This means the computational advantage corresponds to
five minus one equals four decades.

10−7

10−6

10−5

10−4

10−3

10−2

10−1

100
101
102

0 0.2 0.4 0.6 0.8 1

P
(S

5
)

S5

entropic
simple

Figure 2. P (S5) for ER grids measured with entropic sam-
pling and, for comparison, simple sampling.

As one can see, typical graphs exhibit a stability of
about S5 ≈ 0.5 for these parameters. The most unlikely
grids are the most stable ones. Note that grids which
exhibit basin stability S5 = 0 appear with a probability
of P (0) ≈ 10−2 far more often than grids which rareley
but sometimes find back to the fixed point.

3. Correlations

As mentioned above, we are interested in finding which
grid properties are in particular determining the stabil-
ity of the grid. Thus, we measured various quantities Q
during our sampling.

To analyze the results, we display two-dimensional
“heatmaps” Q versus Sm, binned according to the values
of Sm, with a color code which displays the probabil-
ity p(Q|Sm) to find a certain value of Q conditioned to
a value of Sm. Note that p(Q|S5) is normalized, i.e.,∫
Q
p(Q|S5)dQ = 1. The respective figure also shows the
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8

average Q(S5) :=
∫
Q
Q p(Q|S5)dQ for each bin.

For the analysis we always used the data set we ob-
tained from entropic sampling. Furthermore, in addition
to the heatmaps we always computed the linear corre-
lation coefficient RQ = RQ,Sm between Q and Sm such
that each bin contributes the same number of points as
well as the correlation RQ = RQ,Sm

between the aver-

age Q and Sm (which neglects fluctuations and leads to
higher values).

In Fig. 3 we show the heatmap for the number N1

of nodes with degree 1, also called leafs. For values
Sm > 0.3 a clear correspondence between a strong sta-
bility and a small number of leafs is visible, while for less
stable grids no clear influence could be observed. This is
reflected by the linear correlation coefficients RN1

= −0.8
and RN1

= −0.94. Thus, the more stable the power grid
is, the less leafs its network exhibits, although the least
stable grids cannot be explained by N1 alone. The gen-
eral result supports the findings of Refs. 25 and 38, who
concluded from a simple-sampling simulation, which is
the range with the strongest correlation for our results
as well, that tree-shaped structures and dead-ends should
be avoided for the creation of stable grids.

0 0.2 0.4 0.6 0.8

S5

0

5

10

15

20

25

N
1

0.0

0.1

0.2

0.3

0.4

p(N1|S5)simple
sampling

N1

Figure 3. Heatmap indicating the probability p(N1|S5) for
a power grid to exhibit N1 nodes with degree 1, i.e., leafs,
conditioned to a stability S5. The average N1 as a function
of S5 is also shown. The range easily reachable with simple
sampling is indicated by the bar above the figure.

These rules of thumb of Refs. 25 and 38. are even more
supported by the result for the size Nbi of the biggest bi-
connected component, i.e., a structure of the graph which
is not tree like. The heatmap is shown in Fig. 4. Here
the correspondence between stability and component size
seems to be even stronger than for the case of N1. For
very small stabilities of S5 < 0.04 a smaller Nbi seems to
correlate with a more stable grid, though this might be
a finite-size effect.79 Generally speaking the more stable
the grid is, the larger is its largest biconnected compo-
nent. Thus not only the leafs, but in particular the nodes
which are located on single paths to the leafs are a major
reason for less-stable grids. We measured linear correla-
tion coefficients of RNbi

= 0.85 and RNbi
= 0.98.

We found a very similar pattern (not shown) for the
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p(Nbi|S5)simple
sampling

Nbi

Figure 4. Heatmap indicating the probability p(Nbi|S5)
for the largest biconnected component Nbi of a power grid
conditioned to a value S5. For reference the average Nbi as a
function of S5 is also shown. The range easily reachable with
simple sampling is indicated above.

two core, which is for ER random graphs very similar to
the biconnected component.51 Here we measured slightly
smaller linear correlation coefficients of RK2

= 0.83 and
RK2

= 0.96.

In Fig. 5 we show the heatmap for the diameter d, for
which in previous works15,17 of static grid models a no-
table correlation was found. Here we also see that smaller
diameters lead to more stable grids. For small stabili-
ties, however, there seems to be a reversal of this corre-
lation. This might be a finite-size effect or it could be
an occurrence of Braess’s paradox,80 i.e., adding an edge
might not decrease but instead increase the load on other
edges, which in turn can destabilize the system.81 We
measured linear correlation coefficients of Rd = −0.83
and Rd = −0.97.

0 0.2 0.4 0.6 0.8

S5
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10
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20

25

d

0.0

0.2

0.4

0.6

p(d|S5)simple
sampling

d

Figure 5. Heatmap indicating the conditional probability
p(d|S5) for a grid with stability S5 to exhibit the diameter d.
For reference the average d as a function of S5 is also shown.
The range easily reachable with simple sampling is indicated
above.

We also measured the stability measure used in Ref.
17, the flow backup capacity PF and show the resulting
heatmap in Fig. 6. We were able to observe a good cor-
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relation for S5 > 0.4. Here, especially for S5 < 0.4, it
happened frequently that the investigated networks were
connected, as required, but the line with the highest load
was not part of the biconnected component, which means
PF = ∞. Thus, we had to exclude these grids from our
statistics. Overall this effected about half of the grids en-
countered during the entropic sampling simulation, which
resulted in very bad statistics for S5 < 0.4 for this cor-
relation. We measured the linear correlation coefficients
of RPF

= −0.83 and RPF
= −0.94, though they are ef-

fected by the bad statistics. Nonetheless the correlation
with the basin stability indicates, that a low backup ca-
pacity is preferable for the creation of stable grids.

So far we have used linear correlation coefficient to
quantify the dependence between some parameters and
the basin stability. Nevertheless, as in particular visible
for the flow backup capacity, the dependence sometimes
deviates considerably from the linear behavior. For this
reason we assume a more complicated dependency here.
We used a heuristic approach to fit a curve through the
average PF . It allows for a sigmoidal shape as well as
non-horizontal behavior in the left part (this is in par-
ticular motivated by the result for the small-world grids
as shown in the next section). We therefore used a hy-
perbolic tangent multiplied with a function approaching
1 for large Sm and arrived at the function

h(Sm) = β1 (β2 + tanh(−β3(Sm + β4))) (1 + e−Smβ5) .
(17)

The obtained fit parameters are β1 = 1.31(8), β2 =
1.4(1), β3 = 5.9(5), β4 = −0.25(2) and β5 = 0.4(7). Vi-
sually the fit works well, however the error for β5 is sig-
nificantly large, probably due to bad statistics for small
values of S5.
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Figure 6. Heatmap indicating the conditional probability
p(PF |S5) for a grid with stability S5 to exhibit the backup
capacity PF . For reference the average PF as a function of S5

is also shown. The yellow line was fitted to the average using
Eq. (17). The range easily reachable with simple sampling is
indicated above.

The measurement of the power-sign ratio υ± (not
shown here), which in a past work17 exhibited a strong
correlation to the static stability, resulted in linear cor-
relation coefficients of Rυ± = 0.41 and Rυ± = 0.90. A

larger basin stability is correlated to a larger power-sign
ratio, but it seems like, on average, a power-sign ratio of
about υ± ≈ 0.5 is enough for the creation of very stable
grids and there seems no benefit in having a larger υ±,
which is similar to the results17 for the static stability
measure. Overall the correlation is visible, but not as
strong as in the study of the static grids.

We also looked at the transitivity CT and the local
clustering coefficient Cl (no heatmaps shown here). In
general we observed strong fluctuations, correspondingly,
we found rather small linear correlation coefficients of
RCT

= 0.068 and RCl
= 0.22. Thus, the transitivity

seems to be less correlated with the basin stability than
the local clustering coefficient. The same can be seen
for the correlation coefficients of the averages where we
obtained RCT

= 0.72 and RCl
= 0.94. Overall small

triangles do not seem to matter much for the stability of
grids from the Erdős-Rényi ensemble we investigated.

Finally, in Fig. 7 we show the heatmap for the universal
order parameter runi. Note that a small, but for the aver-
age significant, amount of grids, e.g., 1.1% for S5 = 0.1,
exhibits vastly smaller values runi ≤ 0.6. These values
are not visible in the chosen range of the heatmap.
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Figure 7. Heatmap indicating the probability p(runi|S5). For
reference the average runi as a function of S5 is also shown.
The yellow line was fitted to the average using Eq. (18).
The range easily reachable with simple sampling is indicated
above.

The parameter runi does not change much for S5 > 0.4,
though the correlation is clearly visible for S5 < 0.4. We
measured linear correlation coefficients of Rruni = 0.41
and Rruni = 0.85. Anyway, over the measured range of
values of S5, the result for runi is rather large, indicat-
ing the the grids in this ensemble are well synchronized
and S5 indeed is a qualitatively different measure of the
behavior, beyond the steady-state operation (which is ad-
dressed by runi). Nevertheless, the fact that the universal
order parameter is in particular close to one for Sm > 0.4,
indicates that high phase coherence is indeed necessary
for the most stable grids regarding the basin of attrac-
tion.

Looking at runi in Fig. 7 it seems like, excluding S5 = 0,
one could describe the behavior of the average with a
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function like

f(Sm) = κ1 − κ2e
−Smκ3 . (18)

We therefore used Eq. (18) to fit a curve through the
average and show the results in the heatmap. The fit
parameter were κ1 = 0.9984(2), κ2 = 0.0702(6) and κ3 =
6.5(1).

B. Small-world

Secondly a widely studied model of networks is consid-
ered here, the small-world (SW) ensemble.39,43,44 This
ensemble was found to represent the U.S. power grid
well.12,39,43 Due to the construction process of the small-
world networks (see Sec. II B), every node i has at least
degree k = 2. This means, that the examined ensemble
does not allow for dead ends or tree shaped structures,
hence, as we have seen in the previous section and as
it was shown in previous works25,38 a major source of
dynamic instability is avoided. We are therefore able to
observe better the correlation between basin stability and
other measurable quantities independent from the impact
of dead ends or trees.

1. Simulation details

For the small-world grids we chose the same parame-
ter as used for the ER ensemble, i.e., K = 8, N = 50,
α = 0.035 and Wi = ±1. For the calculation of the basin
stability we used L = 200 different sets each exhibit-
ing m = 5 nodes. For Runge-Kutta we used a duration
of tf = 180 time units (and the ∆t value mentioned in
Sec. III A).

As for the ER networks, a given grid was discarded
if no fixed point could be found. The fractions of not
finding the fixed point were 2.3 · 10−5 during the simple
sampling, 3.9 · 10−5 during WL and 1.6 · 10−5 during
entropic sampling.

For WL and entropic sampling we performed the simu-
lations for 8 intervals covering the range of Sm ∈ [0, 0.81].
Entropic sampling visited the left and right border alter-
natingly at least 10 times, which means that the simula-
tion is well enough “equilibrated”.

2. Probability density function

The measured pdf P (Sm) of the basin stability for the
small-world ensemble can be found in Fig. 8. For the sim-
ple sampling, which is included for comparison, we mea-
sured about 3 · 105 independent grids. To achieve good
statistics every bin had to be visited at least 100 times
to be used in the plot. This covers about 40% of the sup-
port, i.e., Sm ∈ [0.4, 0.8]. By using the large-deviation
approach, we are able to double this range, allowing us to

study very stable and very unstable grids, which are oth-
erwise out of reach. Note that during the large-deviation
sampling we evaluated about 3.2 · 106 grids, i.e., roughly
ten times as much as during our simple sampling. Since
the large-deviation sampling allowed us to study P (Sm)
over five more decades in probability, this results in a
computaional advantage of four decades.
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Figure 8. P (S5) for small-world graphs with N = 50 nodes
and 4 neighbors on average, measured with entropic sampling
and, for comparison, simple sampling.

In comparison to the result for ER graphs shown in
Fig. 2, the most probable grids exhibit a slightly larger
stability. This was expected, because networks from the
small-world ensemble do not exhibit leafs and have a
higher number of neighbors (4) on average compared to
the ER case. The correlations between the basin stability
Sm and other measurable quantities Q are also different
here to some extend.

3. Correlations

Trivially, since the small-world networks exhibit only
nodes with degree at least two, it does not make (much)
sense to study the correlation of Sm with the number of
degree-one nodes, the size of the two-core or the size of
the largest biconnected component.

Thus, we proceed with the diameter d. In Fig. 9 we
show the heatmap p(d|Sm) for the SW ensemble. As
previously, the grids exhibiting the largest stability come
with the smallest diameter. We measured linear corre-
lation coefficients of Rd = −0.6 and Rd = −0.83. Com-
pared to the correlations observed in Fig. 5 this is not
only significantly less, but we also observe a partial re-
versal of the behavior. Although for values Sm > 0.36 we
observe that a smaller diameter correlates with a more
stable power grid, for stabilites Sm < 0.36 the reverse
seems to be true, on a smaller scale. This might have to
do with the fact that the SW ensemble does not exhibit
leafs here and therefore a larger diameter does not lead
to more leafs, which would have a high impact on the sta-
bility. Thus, here the influence of other grid properties
on the stability come into play.
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Figure 9. Heatmap indicating the probability p(d|S5) for a
grid with stability S5 to exhibit the Diameter d. For reference
the average d as a function of S5 is also shown. The range
easily reachable with simple sampling is indicated above.

In Fig. 10 we show the heatmap for the universal order
parameter runi. Note that here in the range Sm < 0.4
a small but significant fraction of grids exhibit rather
small values runi ≤ 0.6 (not visible in the plot with the
chosen range). For this reason the average runi is here
located slightly below the most probable values of the
order parameter. The behavior is similar to the behav-
ior seen in Fig. 7. We measured linear correlation coeffi-
cients of Rruni

= 0.27 and Rruni
= 0.95. The dependency

is monotonous and the grids exhibiting the smallest sta-
bilities go along with the on average smallest values for
runi. Thus, although the correlation, i.e., the influence of
this order parameter on the stability, is in general weaker
than the influence of the diameter, it is more important
to explain the behavior of the very unstable grids exhibit-
ing Sm < 0.1.
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Figure 10. Heatmap indicating the probability p(runi|S5).
For reference the average runi as a function of S5 is also shown.
The yellow line was fitted to the average using Eq. (18).
The range easily reachable with simple sampling is indicated
above.

Since we used Eq. (18) to fit a curve to the average
runi for the ER ensemble, we used the same fit here. The
fit parameter were κ1 = 1.009(2), κ2 = 0.041(3) and

κ3 = 2.0(2). This time the fit does not work well, but at
least captures somehow the linear dependency for small
stability values followed by a decrease of slope.

Next, we compare the (dynamic) basin stability with
the (static) N −1 stability criterion of the backup capac-
ity. Since the SW ensemble exhibits usually biconnected
graphs, the case PF =∞ is not as problematic as before
and we can obtain the correlations with good statistics
using the large-deviation approach everywhere. In Fig. 11
we show the heatmap for the backup capacity PF . We
measured linear correlation coefficients of RPF

= −0.9
and RPF

= −0.95. We see a clear and strong correlation
especially for the unstable grids. This is particularly in-
teresting since the backup capacity was already studied
with a large-deviation approach.17 Evidently for the well
connected SW ensemble static and dynamic stability go
well along with each other.

Again we investigated the correspondence going be-
yond linear correlations by fitting to Eq. (17). The ob-
tained fit parameter corresponding to Fig. 11 are β1 =
0.800(3), β2 = 1.62(1), β3 = 18.9(5), β4 = −0.4089(8)
and β5 = 1.65(5).
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2

4

6

P
F

0.0
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0.2

0.3

p(PF |S5)simple
sampling

PF

Figure 11. Heatmap indicating the probability p(PF |S5)
for a grid with stability S5 to exhibit the backup capacity
PF . For reference the average of PF as a function of S5 is
also shown. The yellow line was fitted to the average using
Eq. (17). The range easily reachable with simple sampling is
indicated above.

For the case of the static N−1 stability concerning the
power flow a very strong correlation between the backup
capacity PF and the power-sign ratio υ± was found.17

Thus, we show here in Fig. 12 the heatmap for υ±. A
very clear correspondence is visible. We measured linear
correlation coefficients of Rυ± = 0.71 and Rυ± = 0.95.
Thus, as a rule of thump, attempting a power-sign ra-
tio of υ± ≈ 0.5 seems to be preferable for the construc-
tion of dynamically stable grids. In particular, as the
results from range Sm < 0.5 show, which we obtained
only through the large-deviation approach, low power-
sign rations smaller than 0.5 should be avoided.

Finally, we tried to investigate whether the presence of
small loops, i.e., triangles, has an influence. In Fig. 13 we
show the heatmap for the transitivity CT . A significant
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Figure 12. Heatmap for the probability p(υ±|S5) for a grid
conditioned to the stability S5 to exhibit the power-sign ratio
υ±. For reference the average υ± as a function of S5 is also
shown. The range easily reachable with simple sampling is
indicated above.

negative correlation is visible. We measured linear corre-
lation coefficients of RCT

= −0.60 and RCT
= −0.92. In-

terestingly we measured the same correlation coefficients
for the clustering coefficient Cl (no heatmap shown), i.e.,
RCl

= −0.60 and RCl
= −0.92.
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Figure 13. Heatmap showing the probability p(CT |S5) to
exhibit the transitivity CT for a grid conditioned to the sta-
bility S5. For reference the average CT as a function of S5 is
also shown. The range easily reachable with simple sampling
is indicated above.

The correlation is surprising, considering we noticed no
noteworthy correlation for the Erdős-Rényi ensemble. It
should be noted that the underlying regular ring network
of the SW ensemble exhibits many triangles. Thus, the
rerouting of links to create long-range connections, which
leads to smaller diameter and thus more stable grids,
will inevitably reduce the fraction of triangles. Thus, it
appears likely to us, that the correlation we observe here
is rather an indirect result of the appearance of many
long-range links for grids exhibiting a high basin stability.

V. SUMMARY

We investigated the basin stability Sm, which mea-
sures the dynamic resilience of oscillator networks against
random perturbations, for a dynamic oscillator model of
energy grids. In particular we considered for the topol-
ogy the two ensembles Erdős-Rényi and small world net-
works. By using large-deviation methods we were able to
measure the distribution of Sm over large ranges of the
support, down to small probabilities, which are more dif-
ficult or even impossible to access using standard simple
sampling, i.e., just repeated simulations. To learn about
conditions for high stability, in particular we investigated
how Sm correlates with other measurable quantities of
power grids or networks.

We found, that for a stable network, a smaller diameter
is very preferable, but for smaller stabilities the correla-
tion is not too strong and might be even influenced by
the occurrence of the Braess paradox. Also we found that
the number of leafs anticorrelates well with a high sta-
bility, which corresponds also to the correlation of the
size of the two core and of the size of largest bicon-
nected component. Thus tree-like structures should be
avoided to create stable grids. Also the universal or-
der parameter, describing the degree of synchronization,
should be large and correlates strongly in the range of
instable power grids. Furthermore the backup capacity
and the power-sign ratio correlate well with the basin
stability, supporting the results obtained previously us-
ing a large-deviation approach for a static power-flow grid
model by investigating the N − 1 stability.

On the other hand, for the transitivity, we did not find
a notable correlation for ER networks and the observed
high correlation for SW networks is probably only due to
a side effect created by the existence of many long-range
links. This leads to small diameters, i.e. high stabilities.
The creation of long-range links decreases the number
of triangles, which is naturally high in SW networks for
small values of the model parameter p.

For further studies, it could be interesting to treat more
realistic ensembles of networks, like networks based on
two-dimensional real spaces. Furthermore, in the present
study only few small perturbations were used to measure
the stability. In real modern power grids, not only the
consumption, but also the energy productions does con-
stantly and strongly fluctuate. Here, more refined sta-
bility measures have to be used, and maybe even to be
developed. Also the growth of the importance of renew-
able energies has to be accompanied by providing more
energy storage in grids, which should be considered in
models as well. Finally, the dynamic model used here
does include only phases, but not amplitudes. Here, the
model introduced in Refs. 28 and 29, which is close to
the detailed modeling usually done in electrical engineer-
ing, could be a good choice. For all these cases, again,
by using a large-deviation approach for random ensem-
bles, the most stable and most unstable grids can be
explored, to learn about conditions for stable networks.
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Finally, it could also be interesting to look at the data
from a more mathematical viewpoint, by studying the
scaling behavior for different system sizes and obtaining
the so called (finite-size) large-deviation rate function.31

If a covergence is observed, this would mean that the dis-
tribution has a special finite-size dependence and follows
the large-deviation principle.
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