Negative-weight percolation

O. Melchert, A.K. Hartmann

Institut für Physik Universität Oldenburg

Introduction

- Percolation problem
- Results

Summary

- L \times L lattice, fully periodic boundary conditions
- Undirected edges, weight (cost) distribution:

$$P(\omega) = \rho (2\pi)^{-1/2} \exp(-\omega^2/2) + (1-\rho) \delta(\omega-1)$$

- Allows for loops \mathcal{L} with negative weight $\omega_{\mathcal{L}}$
- Agent on lattice edges: pay/receive resources
- **Configuration** C of loops, with

$${m {\cal E}}\equiv \sum_{{\cal L}\in {\cal C}}\omega_{{\cal L}}\stackrel{!}{=}{\sf min}$$

Obtain C through mapping to minimum weight perfect matching problem

d(i) = min_{j \in N(i)}(d(j) +
$$\omega(i, j)$$
) not fulfilled

d(i) = min_{j \in N(i)}(d(j) +
$$\omega(i, j)$$
) not fulfilled

d
$$(i) = \min_{j \in N(i)} (d(j) + \omega(i, j))$$
 not fulfilled

- d(i) = min_{j \in N(i)}(d(j) + $\omega(i, j)$) not fulfilled
- Standard minimum-weight path algorithms, e.g.
 Dijkstra, Bellman-Ford, Floyd-Warshall, don't work

Loop percolation

 $(L = 64 \text{ at } \rho = 0.335, \ 0.340, \ 0.750)$

- Solution Observe system spanning loops above critical ρ
- Disorder induced, geometric transition
- Characterize loops using observables from percolation theory (finite-size scaling (FSS) analysis)

Percolation probability

S = "quality" of the scaling assumption

Similar scaling for mean number of spanning loops

Percolation strength

Probability $P_L^{\infty} \equiv \langle \ell \rangle / L^d$ that edge belongs to percolating loop, finite-size suszeptibility $\chi \equiv L^{-d} (\langle \ell^2 \rangle - \langle \ell \rangle^2)$

Percolation strength

Probability $P_L^{\infty} \equiv \langle \ell \rangle / L^d$ that edge belongs to percolating loop, finite-size suszeptibility $\chi \equiv L^{-d}(\langle \ell^2 \rangle - \langle \ell \rangle^2)$

Scaling relations $d_f = d - \beta/\nu$ and $\gamma + 2\beta = d\nu$ are fulfilled

Non-percolating loops

Scaling properties of the small loops: Consistent with percolating loops $\langle v \rangle \sim R^2$ (loop spanning lenght *R*) $\langle \omega \rangle \sim \ell$

Distribution n_{ℓ} of the loop lengths ℓ at ρ_c for L = 256

Expected FSS:

$$n_\ell \sim \ell^{-\tau}$$

au= 2.59(3) Consistent with au= 1+ d/d_f

More results

Туре	ρ_{c}	ν	β	γ	τ	d _f
P±J 2d sq	0.1032(5)	1.43(6)	1.03(3)	0.76(5)	2.51(4)	1.268(1)
L \pm J 2d sq	0.1028(3)	1.49(9)	1.09(8)	0.75(8)	2.58(6)	1.260(2)
L±J 2d hex	0.1583(6)	1.47(9)	1.07(9)	0.76(8)	2.59(2)	1.264(3)
L-GI 2d sq	0.340(1)	1.49(7)	1.07(6)	0.77(7)	2.59(3)	1.266(2)
L±J 3d cu	0.0286(1)	1.02(3)	1.80(8)	_	3.5(3)	1.30(1)

- Exponents seem to be universal in 2d
- Random bond Ising model at T = 0:

$$\rho_c = 0.103(1), \nu = 1.55(1), \beta = 0.9(1)$$

[Amoruso & Hartmann, PRB 2004]

- Negative-weight percolation of loops
- Distinct from random bond/site percolation
- 2d: critical exponents close to RBIM
- More details: arXiv:0711.4069

- Negative-weight percolation of loops
- Distinct from random bond/site percolation
- 2d: critical exponents close to RBIM
- More details: arXiv:0711.4069

