Scaling behavior of domain walls at the $T=0$ ferromagnet to spin-glass transition

O. Melchert, A.K. Hartmann

Institut für Physik
Universität Oldenburg

- Introduction
- Techniques
- Results
- Summary

Model

- $N=L \times L$ Ising spins $\sigma_{i}= \pm 1$ on square lattice
- Periodic boundary conditions in one direction
- Edwards-Anderson Hamiltonian: $\mathcal{H}(\sigma)=-\sum_{\langle i j\rangle} J_{i j} \sigma_{i} \sigma_{j}$ interaction strength: frustration:

$$
\begin{aligned}
& J_{i j}>0: \overline{\boxed{ }} 0 \\
& J_{i j}<0: \bar{Z}
\end{aligned}
$$

quenched disorder

- Here: "Gaussian-like" distributed bonds

$$
P(J)=(1-\rho) e^{-J^{2} / 2} / \sqrt{2 \pi}+\rho \delta(J-1)
$$

$\rho<\rho_{c}$: Spin-glass (SG)
$\rho>\rho_{c}$: Ferromagnet (FM)

Domain Walls (DWs)

Exact gound states (GSs) using sophisticated matching algorithms (up to $L=512$).
DWs defined relative to 2 spin configurations $\sigma^{(1) /(2)}$

- $\sigma^{(1)}$: $\sigma^{(2)}$:
- Separates regions of agreeing/disagreeing spin config.
[A.K. Hartmann and H. Rieger, Optimization Algorithms in Physics]
DW energy:

$$
\delta E=2 \sum_{\langle i j\rangle \in \mathcal{D}} J_{i j} \sigma_{i}^{(1)} \sigma_{j}^{(1)}
$$

$\mathcal{D} \equiv$ bonds satisfied by only 1 config.

Domain Walls (DWs)

Exact gound states (GSs) using sophisticated matching algorithms (up to $L=512$).

- DWs defined relative to 2 spin configurations $\sigma^{(1) /(2)}$
- $\sigma^{(1)}$: GS for periodic boundary conditions (BCs) $\sigma^{(2)}$:
— Separates regions of agreeing/disagreeing spin config.
[A.K. Hartmann and H. Rieger, Optimization Algorithms in Physics]
DW energy:

$$
\delta E=2 \sum_{\langle i j\rangle \in \mathcal{D}} J_{i j} \sigma_{i}^{(1)} \sigma_{j}^{(1)}
$$

$\mathcal{D} \equiv$ bonds satisfied by only 1 config.

Domain Walls (DWs)

Exact gound states (GSs) using sophisticated matching algorithms (up to $L=512$).

- DWs defined relative to 2 spin configurations $\sigma^{(1) /(2)}$
- $\sigma^{(1)}$: GS for periodic boundary conditions (BCs) $\sigma^{(2)}$: GS for antiperiodic BCs
- Separates regions of agreeing/disagreeing spin config.
[A.K. Hartmann and H. Rieger, Optimization Algorithms in Physics]
DW energy:

$$
\delta E=2 \sum_{\langle i j\rangle \in \mathcal{D}} J_{i j} \sigma_{i}^{(1)} \sigma_{j}^{(1)}
$$

$\mathcal{D} \equiv$ bonds satisfied by only 1 config.

Domain Walls (DWs)

Exact gound states (GSs) using sophisticated matching algorithms (up to $L=512$).

- DWs defined relative to 2 spin configurations $\sigma^{(1) /(2)}$
- $\sigma^{(1)}$: GS for periodic boundary conditions (BCs) $\sigma^{(2)}$: GS for antiperiodic BCs
- Separates regions of agreeing/disagreeing spin config.
[A.K. Hartmann and H. Rieger, Optimization Algorithms in Physics]
DW energy:

$$
\delta E=2 \sum_{\langle i j\rangle \in \mathcal{D}} J_{i j} \sigma_{i}^{(1)} \sigma_{j}^{(1)}
$$

$\mathcal{D} \equiv$ bonds satisfied by only 1 config.

Domain Walls (DWs)

Exact gound states (GSs) using sophisticated matching algorithms (up to $L=512$).

- DWs defined relative to 2 spin configurations $\sigma^{(1) /(2)}$
- $\sigma^{(1)}$: GS for periodic boundary conditions (BCs) $\sigma^{(2)}$: GS for antiperiodic BCs
- Separates regions of agreeing/disagreeing spin config.
[A.K. Hartmann and H. Rieger, Optimization Algorithms in Physics]
DW energy:

$$
\delta E=2 \sum_{\langle i j\rangle \in \mathcal{D}} J_{i j} \sigma_{i}^{(1)} \sigma_{j}^{(1)}
$$

$\mathcal{D} \equiv$ bonds satisfied by only 1 config.

Domain Walls (DWs)

Exact gound states (GSs) using sophisticated matching algorithms (up to $L=512$).

- DWs defined relative to 2 spin configurations $\sigma^{(1) /(2)}$
- $\sigma^{(1)}$: GS for periodic boundary conditions (BCs) $\sigma^{(2)}$: GS for antiperiodic BCs
- Separates regions of agreeing/disagreeing spin config.
[A.K. Hartmann and H. Rieger, Optimization Algorithms in Physics]
DW energy:

$$
\delta E=2 \sum_{\langle i j\rangle \in \mathcal{D}} J_{i j} \sigma_{i}^{(1)} \sigma_{j}^{(1)}
$$

$\mathcal{D} \equiv$ bonds satisfied by only 1 config.

Dual Graph

Construct weighted graph $G=(V, E, \omega)$ $V(G)$ elementary plaquettes (EP)
$E(G)$ connect $E P$ with common side
$\omega \quad$ energy contribution to DW

Consider GS σ for periodic BCs:
(i) Bond satisfied for σ, e.g.

$$
\uparrow-\uparrow: \omega \geq 0
$$

(ii) Bond not satisfied for σ, e.g.

$$
\uparrow \neg \uparrow: \omega \leq 0
$$

Dual Graph

- Construct weighted graph $G=(V, E, \omega)$ $V(G)$ elementary plaquettes (EP) $E(G)$ connect $E P$ with common side $\omega \quad$ energy contribution to DW

Consider GS σ for periodic BCs:
(i) Bond satisfied for σ, e.g.

$$
\uparrow-\uparrow: \omega \geq 0
$$

(ii) Bond not satisfied for σ, e.g.

$$
\uparrow-\uparrow \uparrow: \omega \leq 0
$$

Dual Graph

- Construct weighted graph $G=(V, E, \omega)$ $V(G)$ elementary plaquettes (EP) $E(G)$ connect $E P$ with common side $\omega \quad$ energy contribution to DW

no loops with negative weight:

$$
\omega(\mathcal{C})=\sum_{\langle i j\rangle \in \mathcal{C}} J_{i j} \sigma_{i} \sigma_{j} \geq 0
$$

- DW: minimum-weight (top, bottom) path

Minimum-Weight Paths

G: undirected graph, allowing for negative edge weights

- Here: standard minimum-weight path algorithms, e.g. Bellman-Ford, Floyd-Warshall, don't work
. Minimum-weight path problem on dual requires matching techniques
i) Dual graph \rightarrow auxiliary graph
ii) Find minimum-weighted perfect matching (MWPM)
iii) Interpret MWPM as min.-weight path
[R.K. Ahuja, T.L. Magnanti and J.B. Orlin, Network flows]

Previous results

Ex Excitation energy of DWs: $\langle | \delta E\left\rangle \sim L^{\theta}, \theta=-0.287(4)\right.$ [AKH and A.P. Young, PRB 2001]

- Scaling behavior of DWs:

$$
\begin{aligned}
& \langle\ell\rangle \sim L^{d_{f}}, d_{f}=1.274(2) \\
& \langle r\rangle \sim L^{d_{r}}, d_{r}=1.008(11)
\end{aligned}
$$ [OM and AKH, PRB 2007]

DWs can be described by Schramm-Loewner evolutions (SLEs) [Amoruso et. al., PRL 2006], possibility to relate exponents via

$$
d_{f}=1+3 /[4(3+\theta)]
$$

Universality: SLE scaling relation also valid for $\rho>0$?

Location of the critical point

Magnetization: $m_{L}=\sum_{i} \sigma_{i} / L^{2}$
Binder ratio: $b_{L}=\left(3-\frac{\left\langle m_{L_{2}^{4}}^{4}\right.}{\left\langle m_{L}^{2}\right\rangle^{2}}\right) / 2$

finite size scaling:

$$
\begin{aligned}
& b_{L} \sim f\left[\left(\rho-\rho_{c}\right) L^{1 / \nu}\right] \\
& \rho_{c}=0.660(1) \\
& \nu=1.49(7) \\
& S=1.3
\end{aligned}
$$

- $S=$ "quality" of the scaling assumption

Scaling behavior of DWs

- Scaling analysis up to $L=512$

ρ	d_{f}	d_{r}	θ_{2}	1.27	
0.00	1.274(2)	1.008(11)	-0.287(4)	1.22	
0.60	1.275(1)	1.003(3)	-0.28(2)	1.22	
0.64	1.275(2)	1.012(4)	-0.28(4)		
0.66	1.222(1)	1.002(2)	0.16(1)		$\begin{array}{r} \rho=0.60 \\ 0.64 \end{array}$
0.68	1.05(2)	0.74(3)	0.35(3)		
0.72	1.022(1)	0.698(6)	0.27(2)	1	0.72
where$\sigma(\delta E)=\sqrt{\left\langle\delta E^{2}\right\rangle-\langle\delta E\rangle^{2}} \sim L^{\theta_{2}}$					$\begin{gathered} 0.0050 .012 \\ 1 / L \end{gathered}$

- Spin glass phase up to ρ close to ρ_{c} : Scaling behavior of DW energy and DW length consistent with scaling relation

$$
d_{f}=1+3 /[4(3+\theta)]
$$

derived from SLE processes.

Summary

- Groundstate study on 2D Ising spin glasses with short ranged interactions
- DWs obtained via minimum-weight path approach
- Scaling behavior of DWs near SG-FM transition at $T=0$
- $\rho<\rho_{c}$: SLE scaling relation consistent with exponents found from numerical simulations

