
A bottom-up approach to the
Kardar-Parisi-Zhang equation for interface

growth : recent developments

Alexandre Krajenbrink

École Normale Supérieure, Paris

Oldenburg, April 26th, 2018



Introduction

The Kardar-Parisi-Zhang (KPZ) equation describes
an interface growth with a height field h(x , t)

∂th(x , t) = ∂2
xxh(x , t) + (∂xh(x , t))2 +

√
2ξ(x , t)

ξ is a unit white noise E
[
ξ(x , t)ξ(y , t ′)

]
= δ(x − y)δ(t − t ′)

This describes an out-of-equilibrium physics problem.
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My work

My interest lies in the connexions between asymptotic random
matrix ensemble distributions, non-interacting fermions at finite
temperature in quantum mechanics and solutions of the KPZ
equation.

I want to extract information on the distribution of the solution of
the KPZ equation and especially the large deviations away from its
typical behavior.

This research is made within the group of Pierre Le Doussal (ENS),
Satya N. Majumdar and Gregory Schehr (Orsay).
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Plan of the talk

1. Physics motivation and some experimental observations
2. Mapping to the directed polymer, the replica method, the

quantum delta Bose gas
3. Exact solutions of the KPZ equation at all times and Fredholm

determinants
4. Exact solutions at short time and the matching with high

precision simulations

⇓
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Physics motivation

Since its birth in 1986, the KPZ equation was applied to describe

I Growth of interfaces
I Burgers turbulence
I Directed polymers in random media
I Chemical reaction fronts
I Slow combustion
I Coffee stains
I Conductance fluctuations in Anderson localization
I Bose Einstein superfluids
I Quantum entanglement growth
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Physics motivation - experiment on liquid-crystal turbulence

K. Takeuchi, M. Sano, Evidence for Geometry-Dependent Univer-
sal Fluctuations of the Kardar-Parisi-Zhang Interfaces in Liquid-
Crystal Turbulence J. Stat. Phys. (2012)

(videos on youtube)
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Physics motivation - experiment on liquid-crystal turbulence

Define the temporal fluctuations
W (t) =

√
〈[h(x , t)− 〈h〉]2〉 ∝ t1/3

Similarly, take the roughness
C (`, t) =

√
〈[h(x + `, t)− h(x , t)]2〉 ∝ `1/2

The scaling exponents for the 1D KPZ equation are
δh ∝ t1/3 ∝ x1/2

The large time limit is h(x , t) =t�1 v∞t + χt1/3, where χ is a
random variable
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Physics motivation - experiment on liquid-crystal turbulence

χ is called a Tracy-Widom random variable, it describes the dis-
tribution of the largest eigenvalue of a class of random matrices.
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Initial conditions

Full-space:
x ∈ R

I Flat, h(x , t = 0) = 0
I Droplet (wedge), h(x , t = 0) = −w |x |+ log(w2 ), w � 1
I Brownian, h(x , t = 0) = B(x)

Half-space:
x ∈ R+ with the b.c. ∂xh(x , t) |x=0= A, ∀t > 0.
It corresponds to the presence of a wall at the origin.
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Cole-Hopf mapping

Defining Z (x , t) the partition function as

Z (x , t) = exp
(
h(x , t)

)
It verifies in the Ito sense the stochastic heat equation

∂tZ (x , t) = ∂2
xxZ (x , t) +

√
2Z (x , t)ξ(x , t)
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Directed polymer mapping I

Take a polymer on a rotated square lattice with coordinates (y , t).

The allowed moves are
I (y , t)→ (y ± 1, t + 1)

Define random site variables
Vx ,t , a temperature T and
the associated Boltzmann
weight exp(−Vx,t

T ).

Take one path γ : (0, 0)→ (xf , L), its weight is defined by

wγ =
∏

(x ,t)∈γ

e−
Vx,t
T

Define the partition sum for all such paths γ, Zxf ,L =
∑

γ wγ

Discretized version of the SHE
Zx ,t+1 =

(
Zx−1,t + Zx+1,t

)
e−βVx,t+1
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Directed polymer mapping II

The algorithmic method to solve this problem is called the transfer
matrix method.

If we want to compute the partition sum up to time t, the
complexity is of order O(t2).

At zero temperature, T → 0, defining the free energy
Fx ,t = −T logZx ,t we have

Fx ,t+1 = min(Fx−1,t ,Fx+1,t) + Vx ,t+1

which in the math literature is sometimes referred to as the
Bellman equation or Dijkstra’s algorithm.
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High temperature limit of the polymer

In the high temperature regime,
T →∞, we obtain the continuum
polymer using the mapping

x̃ =
4xf
T 2 t̃ =

2L
T 4

According how you choose your end
points, you obtain the solution of the
stochastic heat equation for different
initial conditions.

For a fixed end point xf , Zxf ,L → Z (x̃ , t̃), solution of the SHE for
droplet initial condition (point to point polymer).

Stat. mech. problem at equilibrium at temperature T in the
canonical ensemble ⇒ out-of-equilibrium problem
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The replica method

We define the n-th replica at equal time as

Zn(x1, . . . , xn, t) = E

 n∏
i=1

Z (xi , t)


where the average is taken over the KPZ white noise and initial
condition (if random).
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What do we call solving the KPZ equation ?

Taking the replica at equal position, we obtain the n-th moment of
the partition function

Zn(x , . . . , x , t) = E
[
Zn(x , t)

]
Formally, we can define the generating function of Z as

gt(z) = 1 +
∞∑
n=1

(−z)n

n!
E
[
Zn(x , t)

]
= E

[
exp
(
−zZ (x , t)

)]
= E

[
exp
(
−zeh(x ,t)

)]

From gt(z) one can in principle obtain the distribution of h(x , t)
by doing an inverse Laplace transform.
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Lieb-Liniger equation I

Using Ito formalism, the n-th replica verifies an imaginary time
Schrödinger equation

∂tZn = −HnZn

Hn = −
n∑

i=1

∂2

∂x2
i

− 2
∑

1≤i<j≤n
δ(xi − xj)

This is called the attractive delta Bose gas model or attractive
Lieb-Liniger model.

Because the interaction is attractive, particles want to form bound
states, clusters. In momentum space, the structures formed are
called strings.
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Lieb-Liniger equation II

Each string has a certain number of particles and a momentum kj .
Ground state (ns = 1) is Ψ(x1, . . . , xn) ∝ exp(−1

2
∑

i<j |xi − xj |)

ns

1

2

3

k1

k1

k

k2

k2 k3

Fixed number of particles → fixed number of strings

E[Zn]→ Z̃ns
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Lieb-Liniger equation III

For some initial conditions

Z̃ns =

∫
· · ·
∫

dv1 . . . dvns det
[
K̄t,z(vi , vj)

]ns
i ,j=1

Then the moment generating function becomes

gt(z) = 1 +
∞∑
n=1

(−z)n

n!
E
[
Zn(x , t)

]
→ 1 +

∞∑
ns=1

(−1)ns

ns !
Z̃ns

= 1 +
∞∑

ns=1

(−1)ns

ns !

∫
dv1 . . .

∫
dvns det

[
K̄t,z(vi , vj)

]ns
i ,j=1

= Det
[
I − K̄t,z

]
⇒ FREDHOLM DETERMINANT
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Applications and evaluation of Fredholm determinants

Fredholm determinants appear in
I Random matrix theory
I One dimensional path integrals in field theory
I Partition functions in string theory
I Fermionic systems at finite temperature in quantum mechanics
I Determinantal process in probability
I ... the KPZ equation.

F. Bornemann On the numerical evaluation of Fredholm determi-
nants Mathematics of Computation (2010)

Introduces a Matlab toolbox to evaluate Fredholm determinants.
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Known results for all times

1. Full-space problem :
Droplet Sasamoto, Spohn (’10), Calabrese, Le Doussal (’10),

Dotsenko (’10), Amir, Corwin, Quastel (’10)
Flat Calabrese, Le Doussal (’11)
Brownian Imamura, Sasamoto (’12)

2. Half-space problem : only Droplet initial condition
A =∞ Gueudré, Le Doussal (’12)
A = 0 Borodin, Bufetov, Corwin (’15)
A = −1

2 Barraquand, Borodin, Corwin, Wheeler (’17)
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Example : droplet initial condition in full-space

Take H(t) = h(0, t)− 〈h(0, t)〉, the moment generating function of
eH(t) is given by

EKPZ

[
exp
(
−zeH(t)

)]
= Det

[
I − K̄t,z

]
The Fredholm determinant is associated to the kernel

K̄t,z(u, u′) = σt,z(u)KAi(u, u
′)

defined in terms of the Airy kernel and the weight function

KAi(u, u
′) =

∫ +∞

0
dr Ai(r + u)Ai(r + u′)

σt,z(u) =
z

z + e−t
1/3u
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Determinantal point process : quantum mechanics 101

Take a simple problem in quantum mechanics where you consider n
fermionic particles. If the eigenfunctions of the one particle
Hamiltonian are ψj(x) for j ≥ 1, then the ground state of the
n-particles problem is

Ψ(x1, . . . , xn) =
1√
n!

det
(
ψi (xj)

)n
i ,j=1

The probability density is then

|Ψ(x1, . . . , xn)|2 =
1
n!

det
[
K (xi , xj)

]n
i ,j=1

where

K (x , y) =
n∑

j=1

ψj(x)ψ∗j (y)

Note the determinantal structure!
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Duality between KPZ and determinantal point process

From the theory of determinantal processes

EK

 n∏
i=1

[
1− σ(xi )

] = Det [1− σK ]

Specifying to σ = σt,z and K = KAi, we have

EKPZ

[
exp
(
−zeH(t)

)]
= EKAi

 ∞∏
i=1

[
1− σt,z(xi )

]

This duality is at the core of the link between the KPZ equa-
tion, fermions in quantum mechanics. The eigenvalues of ran-
dom matrices also form a determinantal process, so there is also
a connexion.
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Known results for short times

Take H(t) = h(0, t)− 〈h(0, t)〉, then for all known initial
conditions, the probability density function is given by a Large
Deviation Principle at short time t � 1

P(H, t) ∼ exp(−Φ(H)√
t

)

where the rate function Φ has the universal properties

Φ(H) '


c−|H|5/2,H → −∞
c2 H

2, |H| � 1
c+H

3/2, H → +∞

the coefficients c−, c2, c+ depend on the initial condition.
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Cumulant expansion

I For a random variable X

logE[ezX ] =
∞∑
n=1

κn
zn

n!
κ1 = E[X ], κ2 = E[X 2]− E[X ]2

I For a determinantal point process {ai}i∈N with kernel K

logEK [e−λ
∑∞

i=1 ϕ(xi )] =
∞∑
n=1

κn(ϕ)
tn

n!

κ1(ϕ) = −Tr(ϕK ), κ2(ϕ) = Tr(ϕ2K )− Tr(ϕKϕK )

where the trace is defined as Tr(ϕK ) =
∫

dv ϕ(v)K (v , v)
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First cumulant approximation

At short time, we find for all studied initial conditions

κ1(ϕ) = O(
1√
t

), κ2(ϕ) = O(1), . . .

The higher the cumulant, the higher the power in time, therefore
we truncate the sum at the first cumulant

logEK [e−
∑∞

i=1 ϕ(xi )] '
t�1

κ1(ϕ)

For example, for droplet initial condition,

κ1(ϕ) = −
Li5/2(−z)
√
4πt

+O(1)
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Final expression of the rate function

The rate function of the droplet IC is given by
I For H ≤ Hc = log ζ(3

2)

Φ(H) = − 1√
4π

min
z∈[−1,+∞[

[zeH + Li5/2(−z)]

I for H ≥ Hc

Φ(H) = − 1√
4π

min
z∈[−1,0[

[zeH +Li5/2(−z)− 8
√
π

3
[− log(−z)]3/2]

Φ(H) is analytic, the left tail is Φ(H) 'H→−∞
4

15π |H|
5/2 and the

right tail is Φ(H) 'H→+∞
4
3H

3/2.
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Recent progress on numerics for droplet IC

A. K. Hartmann, P. Le Doussal, S. N. Majumdar, A. Rosso, G.
Schehr, High-precision simulation of the height distribution for
the KPZ equation arXiv:1802.02106

Simulation of a directed
polymer on a square lattice of
size L at temperature
T 4 = 2L

t using importance
sampling.

H(x = 0, t) = log(
Z0,L
Z̄

)
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Recent progress on numerics for droplet IC

Figure: Details of the left and right tails compared to the analytical
prediction at short time.
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Exact short-time height distribution for the Brownian IC

The distribution of H(t) at x = 0, time t is given by

P(H, t) ∼ exp
(
−Φ(H)√

t

)

Φ(H) '


4

15π |H|
5/2,H → −∞

√
π

4 H2, |H| � 1
c+H

3/2,H → +∞

where c+ = 4
3 (resp. c+ = 2

3) for
the analytic (resp. non-analytic)
branch.

Hc = 2 ln(2e − I)− 1, with
I = 1

π

∫∞
0 dy

[
1 + 1

y

] √
y

e−1+yey
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Note that for the flat:
Φflat(H) = 2−3/2Φbrown−analytic(2H)
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Singularity and dynamical phase transition
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H

Φ
′ (H

)

Figure: The function Φ′(H). The blue line corresponds to the H < 0
solution, the red line to the first continuation for 0 < H < Hc , the green
line to the analytic branch Hc < H and the brown line to the non-analytic
branch for Hc < H. Note the singularity for the brown line.
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Bonus
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Physics motivation - experiment on chemical reaction fronts

S. Atis, A. K. Dubey, D. Salin, L. Talon, P. Le Doussal, K. J.
Wiese, Experimental Evidence for Three Universality Classes for
Reaction Fronts in Disordered Flows Phys. Rev. Lett. (2015)

(videos on the PRL webpage)
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Physics motivation - experiment on chemical reaction fronts

Figure: For the above video, F = 4

Define the temporal fluctuations
w(∆t) =

√
〈[h(x , t)− 〈h〉]2〉 ∝ ∆t1/3

Similarly, take the roughness
w(∆x) =

√
〈[h(x + ∆x , t)− h(x , t)]2〉 ∝ ∆x1/2
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How to obtain the cumulant expansion ?

logEK [e−λ
∑∞

i=1 ϕ(xi )] = logDet[I − (1− e−λϕ)K ]

= Tr log[I − (1− e−λϕ)K ]

Expand the logarithm and the exponential as a series.

The n-th cumulant κn(ϕ) is defined as n! times the term of order
λn in this expansion.
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