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The Monte Carlo Method

Question: Suppose X is a Random Variable, such that

X is not available in closed form

X is available through its i.i.d. samples X i

How to compute accurately and and quickly the mean value

µ = E[X ] =

∫
Ω
X (ω)dP(ω) ?

Monte Carlo: Use sample average:

EM [X ] :=
1

M

M∑
i=1

X i .

How good is this approximation? Z := EM [X ]− µ = ?
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Error measure → mean square error (MSE):

MSE = E
[
Z 2
]
, Z = EM [X ]− µ.

Theorem

MSE =
1

M
Var[X ].

Drawbacks:

Very slow (Root-MSE ∼ 1√
M

)

Usually not realistic: approximate samples of XN ≈ X .

Here N is a
”
discretization parameter“, e.g.

# particles in a MD-Simulation

# dof in a Finite Element / Finite Difference approximation

. . .
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Error measure → mean square error (MSE):

MSE = E
[
Z 2
]
, Z = EM [XN ]− µ.

Theorem

MSE = |E[XN − X ]|︸ ︷︷ ︸
Approx. error

2 +
1

M
Var[XN ]︸ ︷︷ ︸

Statistical error

.

Still very slow and expensive (halving the bias ↔ quadrupling M)

In particular, if
Approx. error ∼ N−α

Cost(XN) ∼ Nγ

Then RMSE ∼ ε for the Cost ∼ ε−2− γ
α .
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Two-Level Monte Carlo

EML[X ] := EM [XN − Xn] + EM [Xn], n < N.

Error measure → mean square error (MSE):

MSE = E
[
Z 2
]
, Z = EML[X ]− µ.

Theorem

MSE = |E[XN − X ]|︸ ︷︷ ︸
Approx. error

2 +
1

M
Var[XN − Xn] +

1

M
Var[Xn]︸ ︷︷ ︸

Statistical error
(m < M: faster sampling for the same accuracy)

Extension to multiple levels ⇒ Multilevel Monte Carlo

EML[X ] :=
L∑
`=1

EM`
[X` − X`−1], X0 = 0.
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Main idea: Equidistrib. of the comput. cost over FE levels

1. Heinrich, J. Complexity (1998)

2. Giles, Oper. Res. (2008)

3. Barth, Schwab, Zollinger, Numer. Math. (2011)

4. Cliffe, Giles, Scheichl, Teckentrup, Comput. Vis. Sci. (2011)

. . .

Our work [Bierig/Chernov’15+]:

Multilevel MC approx. of the variance and higher order moments

µk = E(X − E[X ])k =

∫ ∞
−∞

(x − µ)k fX (x) dx ,

Approximation of Probability Density Functions fX via Max. Entropy Method

fX ≈ argmin

{∫
ρ ln ρ : µk =

∫
(x − µ)kρ(x) dx

}
Application to the contact with rough random obstacles.
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Multilevel Monte Carlo sample mean estimator:

E[X ] ≈ EML[X ] =
L∑
`=1

EM`
[X` − X`−1], X0 = 0.

Theorem (Accuracy / Cost relation, simplified)

Assume that

a) |E[X −X`]| . N−α` , b) Var[X`−X`−1] . N−β` , c) Cost(X`) . Nγ
` ,

then there exist M`, s.t. RMSE(EM) < ε and RMSE(EML) < ε

Cost(EM) . ε−2− γ
α , Cost(EML) . ε−2− γ

α
+ min(2α,β,γ)

α . (γ 6= β)
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Proof (sketch for the case 2α > min(β, γ)):

MSE(EML) = |E[XL − X ]|2 +
L∑
`=1

1

M`
Var [X` − X`−1] ∼ ε2

Balancing the summands: N−2α
L ∼ ε2 and

L∑
`=1

Nβ
`

M`
∼ ε2

Finding M` : Minimize Cost(EML) under constraints↑
Cost(EML) ∼

L∑
`=1

M` · Cost(X`)

Optimal choice: M` ∼ N
− β+γ

2

` ⇒ Cost(EML) ∼
L∑
`=1

N
γ−β

2

`

→ β > γ ⇒ ` = 1 is dominating ⇒ Cost(EML) ∼ M0N
γ
0 ∼ ε−2,

→ β < γ ⇒ ` = L is dominating ⇒ Cost(EML) ∼ MLN
γ
L ∼ ε−

γ
α
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Examples
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Model: Wire rope (e.g. overhead power line) in equilibrium

−u′′(x) = f , for 0 < x < 1 f = gravitation force (const.)

u(0) = 0, u = vertical displacement

u(1) = 0.

Exact solution:

u(x) =
f (x − x2)

2
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The variation of E describes e.g. different materials.

Example: Wire rope (conductor) in the electrical overhead line:

Aluminium

Steel

Copper

Alloys (Aldrey: 99% Al + 0.5% Mg + 0.5% Si)

Variations of the proportion ⇒ Variations of E .

Typical problem in forward uncertainty propagation

Assuming that statistical variations of E can be estimated in the
fabrication process, is it possible to find probabilistic properties of
the wire rope?

Yes!
(we have the exact solution after all!)
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Example: 1 ≤ E ≤ 2, uniformly distributed, i.e. E ∼ U(1, 2).

u(x ,E ) =
x2 − x

2E

(here f = −1 is assumed)

Homework:
check these relations!
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Homework:
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Mean value: E[u](x) =
x2 − x

2

∫ 2

1

dE

E
=

x2 − x

2
ln 2,

E[u2](x) =

(
x2 − x

2

)2 ∫ 2

1

dE

E2
=

(
x2 − x

2

)2
1

2
,

Variance: Var[u](x) =

(
x2 − x

2

)2 (
1

2
− (ln 2)2

)
=: σ(x)2,
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Homework:
check these relations!

Autocorrelation: Cov[u](x , y) =
x2 − x

2

y2 − y

2

(
1

2
− (ln 2)2

)
,

Correl. Coefficient: r(x , y) =
Cov[u](x , y)

σ(x)σ(y)
= 1, (perfect Correlation)

Probability Density Function: ρu(x)(t) ∝
1

t2
,

1

2
≤ t ≤ 1.
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Why was it possible to find probabilistic properties of the wire rope?
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Because we have an exact solution! u(x ,E ) =
x2 − x

2E

. . . more precisely . . .

We know the mapping S :

{
R+ → C 2(0, 1)
E 7→ u(·,E )

in closed form.

(S is called the solution operator, f ∈ C0(0, 1))

This is very rare in praxis! The model problem was just too simple:

The physical domain D = (0, 1) was one-dimensional;

E was homogeneous. What if E = E (x , ω) varies in space?

The material law was very simple;

The solution operator was smooth . . .
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In practical applications exact evaluation of u(x ,E ) is out of reach.

Computer approximations:

u(x ,E ) ≈ uN(x ,E ) = SN(E )

Is it still possible to approximately compute probabilistic
properties of the exact solution u(x ,E )?

Yes, but it is not so easy anymore...
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Examples of uncertain parameters in applications

1) Pollution in groundwater flow model:
q = −K∇p Darcy’s law

∇ · u = 0 Mass conservation

q = φu

q : Darcy flux, K : conductivity, p : pressure
u : pore velocity, φ : porosity, x : position

Particle transport
dx

dt
= u(x)

x(0) = x0 Flow direction →
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1) Pollution in groundwater flow model:
q = −K∇p Darcy’s law

∇ · u = 0 Mass conservation

q = φu

q : Darcy flux, K : conductivity, p : pressure
u : pore velocity, φ : porosity, x : position

Particle transport
dx

dt
= u(x)

x(0) = x0 Flow direction →

Random conductivity
K = K (x, ω)

Qty of interest:
T (ω) = max{t : x(ω) ∈ D}

(particle travel time),
E[T ], V[T ]
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Examples of uncertain parameters in applications

2) Elastic deformation of random media

divσ + ~f = 0 Equilibrium eq.

σij =
E

1 + ν

(
νδijεkk
1− 2ν

+ εij

)
Constitutive eq.

ε =
1

2
(∇u + (∇u)>)

σ : stress, ε : strain, u : displacement,
~f : volume forces, E : Young’s Modulus, ν : Poisson’s ratio

Random material parameters:

E = E (x, ω), ν = ν(x, ω),

Qty of interest:

σmax(ω) = max
x∈D
{‖devσ‖F}
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divσ + ~f = 0 Equilibrium eq.

σij =
E

1 + ν

(
νδijεkk
1− 2ν

+ εij

)
Constitutive eq.

ε =
1

2
(∇u + (∇u)>)

σ : stress, ε : strain, u : displacement,
~f : volume forces, E : Young’s Modulus, ν : Poisson’s ratio

3) + elasto-plastic deformations: fpl = ‖devσ‖F −
√

2
3σY ≤ 0

Random yield stress:

σY = σY (x, ω)

Qty of interest:

Vol{fpl = 0}.
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Examples of uncertain parameters in applications

4) Acoustic scattering of objects having uncertain shape∆u + k2u = 0 in R3 \ D
∂u

∂n
− iku = g on Γ := ∂D

u : pressure, k : wave number

Uncertain shape:

Γ = Γ(ω)
Qty of interest:

U0(ω) = u(x, ω).

(Source: BEM++, T. Betcke et al., www.bempp.org)
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5) Rolling tire on the road: Contact with rough surfaces

ψ(x)
Courtesy: Prof. Udo Nackenhorst, IBNM, Univ. Hannover

Input parameter: ψ(x) is the road surface profile.
(irregular microstructure)
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The road surface ψ(x) has an irregular microstructure;

The actual contact zone is a union of a few spots;

The local microstructure changes as the tire rolls.

17 / 42



Approximation with Polynomials

Free wire rope Wire rope with an obstacle
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Approximation with Polynomials

Free wire rope Wire rope with an obstacle
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Approximation with Polynomials
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Example: Contact of an elastic membrane with a rough surface (2d)

−∆u ≥ f , u ≥ ψ,
(∆u + f )(u − ψ) = 0,

}
in D,

u = 0 on ∂D.

(
here

D = [−1, 1]2

)

QoI: Deformation u(x , ω); Contact Area Λ(ω) = {x : u(x , ω) = ψ(x , ω)}.
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Obstacle surface Deformation Contact set

One realization of the obstacle surface ψ = ψ(x):
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Obstacle surfaces of variable/random roughness ψ = ψ(x , ω):
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Example: Rough obstacle models

Power spectrum [Persson et al.’05]:

ψ(x) =
∑

q0≤|q|≤qs

Bq(H) cos(q · x + ϕq)

where Bq(H) =
π

5
(2πmax(|q|, ql ))−H−1 →

Many materials in Nature and technics

obey this law for amplitudes.

H ∼ U(0, 1) random roughness

ϕq ∼ U(0, 2π) random phase

Forward solver:

Own implementation of MMG (TNNM)

[Kornhuber’94,. . . ]
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Approximation of E[u] and Var[u] of the deform. field u(x , ω)

A realization of the obstacle ψi (x)
and the deformation profile uih(x)
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Approximation of E[u] and Var[u] of the deform. field u(x , ω)

bias of the estimator
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Error indicator:

[Cliffe/Giles/Scheichl/Teckentrup’11]
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Approximation of E[X ] and Var[X ] of the contact area X = |Λ|
bias of the estimator
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Estimators for the Variance:

Recall the mean estimator

EML[X ] :=
L∑
`=1

EM`
[X` − X`−1]

where EM [X`] :=
1

M

M∑
i=1

X i
` .

Benefits:

VML[X ] is unbiased, i.e. E
[
VML[X ]− V[XL]

]
= 0

Fast one pass stable evaluation formulae (single level in [Pebay’08])
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Estimators for the Variance:

. . . then define the variance estimator by

VML[X ] :=
L∑
`=1

VM`
[X`]− VM`

[X`−1]

where VM [X`] :=
1

M − 1

M∑
i=1

(X i
` − EM [X`])

2.

see Bierig, Chernov, Numer. Math. (2015)

Benefits:

VML[X ] is unbiased, i.e. E
[
VML[X ]− V[XL]

]
= 0

Fast one pass stable evaluation formulae (single level in [Pebay’08])
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Theorem (a priori estim.: random obstacle problem, [Bierig/AC’15])

Suppose: ψ ∈ L∞(Ω,W 2,r ) for some r > 2

Deterministic fwd solver: ‖u` − u‖H1 . h`, pw. lin. FE

with the Total Work ∼ `νN` (N` ∼ h−2
` , i.e. lin. cost).

Then: MLMC with the optimal choice M` := (h`/hL)2 satisfies

‖EML[u]− E[u]‖L2(Ω,H1)

‖VML[u]− V[u]‖L2(Ω,H1)

 . hL
√
| log hL|,

with the Total Work ∼ Lν+1NL.

Almost linear complexity for MLMC + MMG.

(Sampling is asymptotically almost for free!)
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Theorem (a priori estim.: random obstacle problem, [Bierig/AC’15])

Suppose: ψ ∈ L2q(Ω,W 2,2) and 1
p + 1

q = 1

Deterministic fwd solver: ‖u` − u‖H1 . h`, pw. lin. FE

with the Total Work ∼ `νN` (N` ∼ h−2
` , i.e. lin. cost).

Then: MLMC with the optimal choice M` := (h`/hL)2 satisfies

‖EML[u]− E[u]‖L2(Ω,H1) . hL
√
| log hL|,

‖VML[u]− V[u]‖L2(Ω,H1) . h
1
p

L , (using inv. ineq.)

with the Total Work ∼ Lν+1NL.

Almost linear complexity for MLMC + MMG.

(Sampling is asymptotically almost for free!)
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Extension to higher order moments: Mk [X ] := E[(X −E[X ])k ]

S3
M [X ] :=

M

(M − 1)(M − 2)

M∑
i=1

(Xi − EM [X ])3 (unbiased)

Sk
M [X ] :=

1

M

M∑
i=1

(Xi − EM [X ])k (small bias)
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X = |Λ|, contact area

Notice:
|Λ| ≤ |D|

[Bierig, Chernov,

JSPDE’16]
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Estimation of the PDF ρX of the contact area X = |Λ| by
the Maximum Entropy method
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The peak(s) corresponds to ca. 28.2% of the membrane in contact with the surface

More experiments and rigorous error analysis in [Bierig/Chernov, JCP’16] 31 / 42
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Estimation of the PDF ρX of the contact area X = |Λ| by
the Maximum Entropy method
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Towards adaptivity – adaptive selection of

the number of moments R

the interval of approximation [a, b]

Test example:

Log-normal distribution with µ = 0 and variable σ (= 0.5 and 0.2)

Estimation of moments µ1, . . . , µR by MC with 108 samples

Stopping parameters for the Newton Method:

∆λ ≤ 10−9 (convergence)

∆λ ≥ 103 (no convergence)

#iter ≥ 1000 (no convergence)
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Breaking convergence for the Fourier basis
by choosing a more concentrated density!

e.g. log-normal with µ = 0, σ = 0.2
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Regain stability of the Legendre basis
by choosing a smaller approximation interval!

e.g. [a, b] = [0, 4]
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Still quite stable even without convergence!

Entropy is still monotonously decreasing!
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