The Multilevel Monte Carlo Method: basic concepts and further developments

Alexey Chernov

Institute for Mathematics Carl von Ossietzky University Oldenburg

alexey.chernov@uni-oldenburg.de

Oberseminar Computerorientierte Theoretische Physik 20 December 2017

The Monte Carlo Method

Question: Suppose X is a Random Variable, such that

- X is not available in closed form
- X is available through its i.i.d. samples Xⁱ

How to compute accurately and and quickly the mean value

$$\mu = \mathbb{E}[X] = \int_{\Omega} X(\omega) \,\mathrm{d}\mathbb{P}(\omega)$$
 ?

Monte Carlo: Use sample average:

$$E_M[X] := \frac{1}{M} \sum_{i=1}^M X^i.$$

How good is this approximation? $Z := E_M[X]$

The Monte Carlo Method

Question: Suppose X is a Random Variable, such that

- X is not available in closed form
- X is available through its i.i.d. samples Xⁱ

How to compute accurately and and quickly the mean value

$$\mu = \mathbb{E}[X] = \int_{\Omega} X(\omega) \,\mathrm{d}\mathbb{P}(\omega)$$
 ?

Monte Carlo: Use sample average:

$$E_M[X] := \frac{1}{M} \sum_{i=1}^M X^i.$$

How good is this approximation? $Z := E_M[X] - \mu = ?$

The Monte Carlo Method

Question: Suppose X is a Random Variable, such that

- X is not available in closed form
- X is available through its i.i.d. samples Xⁱ

How to compute accurately and and quickly the mean value

$$\mu = \mathbb{E}[X] = \int_{\Omega} X(\omega) \,\mathrm{d}\mathbb{P}(\omega)$$
 ?

Monte Carlo: Use sample average:

$$\mathsf{E}_{\mathsf{M}}[X] := \frac{1}{\mathsf{M}} \sum_{i=1}^{\mathsf{M}} X^{i}.$$

How good is this approximation? $Z := E_M[X] - \mu = ?$

$$MSE = \mathbb{E}[Z^2], \qquad Z = E_M[X] - \mu.$$

Theorem

$$MSE = \frac{1}{M} \operatorname{Var}[X].$$

Drawbacks:

• Very slow (Root-MSE
$$\sim \frac{1}{\sqrt{M}}$$
)

• Usually not realistic: approximate samples of $X_N \approx X$.

Here N is a "discretization parameter", e.g.

- # particles in a MD-Simulation
- # dof in a Finite Element / Finite Difference approximation

• . . .

$$MSE = \mathbb{E}[Z^2], \qquad Z = E_M[X] - \mu.$$

Theorem

$$MSE = \frac{1}{M} \operatorname{Var}[X].$$

Drawbacks:

- Very slow (Root-MSE $\sim \frac{1}{\sqrt{M}}$)
- Usually not realistic: approximate samples of $X_N \approx X$.

Here N is a "discretization parameter", e.g.

- # particles in a MD-Simulation
- # dof in a Finite Element / Finite Difference approximation

• . . .

$$MSE = \mathbb{E}[Z^2], \qquad Z = E_M[X_N] - \mu.$$

• Still very slow and expensive (halving the bias \leftrightarrow quadrupling M)

In particular, if

• Approx. error $\sim N^{-\alpha}$

• $\operatorname{Cost}(X_N) \sim N^{\gamma}$

Then $\mathrm{RMSE}\simarepsilon$ for the $\mathrm{Cost}\simarepsilon^{-2-rac{\gamma}{lpha}}.$

$$MSE = \mathbb{E}[Z^2], \qquad Z = E_M[X_N] - \mu.$$

• Still very slow and expensive (halving the bias \leftrightarrow quadrupling M)

• In particular, if

• Approx. error $\sim N^{-lpha}$

• $\operatorname{Cost}(X_N) \sim N^{\gamma}$

Then RMSE ~ ε for the Cost ~ $\varepsilon^{-2-\frac{\gamma}{\alpha}}$.

$$E^{ML}[X] := E_M[X_N - X_n] + E_M[X_n], \qquad n < N.$$

$$MSE = \mathbb{E}[Z^2], \qquad Z = E^{ML}[X] - \mu.$$

Extension to multiple levels \Rightarrow Mult

Multilevel Monte Carlo

$$E^{ML}[X] := \sum_{\ell=1}^{L} E_{M_{\ell}}[X_{\ell} - X_{\ell-1}], \qquad X_0 = 0.$$

$$E^{ML}[X] := E_M[X_N - X_n] + E_M[X_n], \qquad n < N.$$

$$MSE = \mathbb{E}[Z^2], \qquad Z = E^{ML}[X] - \mu.$$

Extension to multiple levels

Multilevel Monte Carlo

$$E^{ML}[X] := \sum_{\ell=1}^{L} E_{M_{\ell}}[X_{\ell} - X_{\ell-1}], \qquad X_0 = 0.$$

$$E^{ML}[X] := E_m[X_N - X_n] + E_M[X_n], \qquad n < N.$$

$$MSE = \mathbb{E}[Z^2], \qquad Z = E^{ML}[X] - \mu.$$

Extension to multiple levels

Multilevel Monte Carlo

$$E^{ML}[X] := \sum_{\ell=1}^{L} E_{M_{\ell}}[X_{\ell} - X_{\ell-1}], \qquad X_0 = 0.$$

$$E^{ML}[X] := E_m[X_N - X_n] + E_M[X_n], \qquad n < N.$$

$$MSE = \mathbb{E}[Z^2], \qquad Z = E^{ML}[X] - \mu.$$

Extension to multiple levels

Multilevel Monte Carlo

$$E^{ML}[X] := \sum_{\ell=1}^{L} E_{M_{\ell}}[X_{\ell} - X_{\ell-1}], \qquad X_0 = 0.$$

 \Rightarrow

Main idea: Equidistrib. of the comput. cost over FE levels

- 1. HEINRICH, J. Complexity (1998)
- 2. GILES, Oper. Res. (2008)
- 3. BARTH, SCHWAB, ZOLLINGER, Numer. Math. (2011)
- 4. CLIFFE, GILES, SCHEICHL, TECKENTRUP, Comput. Vis. Sci. (2011)

Our work [BIERIG/CHERNOV'15+]:

Multilevel MC approx. of the variance and higher order moments

$$\mu^k = \mathbb{E}(X - \mathbb{E}[X])^k = \int_{-\infty}^{\infty} (x - \mu)^k f_X(x) \, dx,$$

• Approximation of Probability Density Functions f_X via Max. Entropy Method

$$f_X pprox \operatorname{argmin}\left\{\int
ho \ln
ho \ : \ \mu^k = \int (x-\mu)^k
ho(x) \, dx
ight\}$$

Application to the contact with rough random obstacles.

Multilevel Monte Carlo sample mean estimator:

$$\mathbb{E}[X] \approx E^{ML}[X] = \sum_{\ell=1}^{L} E_{M_{\ell}}[X_{\ell} - X_{\ell-1}], \qquad X_0 = 0.$$

Theorem (Accuracy / Cost relation, simplified)

Assume that

a) $|\mathbb{E}[X - X_{\ell}]| \lesssim N_{\ell}^{-\alpha}$, b) $\operatorname{Var}[X_{\ell} - X_{\ell-1}] \lesssim N_{\ell}^{-\beta}$, c) $\operatorname{Cost}(X_{\ell}) \lesssim N_{\ell}^{\gamma}$, then there exist M_{ℓ} , s.t. $\operatorname{RMSE}(E_M) < \varepsilon$ and $\operatorname{RMSE}(E^{ML}) < \varepsilon$ $\operatorname{Cost}(E_M) \lesssim \varepsilon^{-2 - \frac{\gamma}{\alpha}}$, $\operatorname{Cost}(E^{ML}) \lesssim \varepsilon^{-2 - \frac{\gamma}{\alpha} + \frac{\min(2\alpha, \beta, \gamma)}{\alpha}}$. $(\gamma \neq \beta)$ **Proof** (sketch for the case $2\alpha > \min(\beta, \gamma)$): • $\operatorname{MSE}(E^{ML}) = |\mathbb{E}[X_L - X]|^2 + \sum_{\ell=1}^{L} \frac{1}{M_\ell} \operatorname{Var}[X_\ell - X_{\ell-1}] \sim \varepsilon^2$

• Balancing the summands:
$$N_L^{-2\alpha} \sim \varepsilon^2$$
 and $\sum_{\ell=1}^{L} \frac{N_\ell^0}{M_\ell} \sim \varepsilon^2$
• Finding M_ℓ : Minimize $\operatorname{Cost}(E^{ML})$ under constraints \uparrow
 $\operatorname{Cost}(E^{ML}) \sim \sum_{\ell=1}^{L} M_\ell \cdot \operatorname{Cost}(X_\ell)$

• Optimal choice: $M_{\ell} \sim N_{\ell}^{-\frac{\beta+\gamma}{2}} \Rightarrow \operatorname{Cost}(E^{ML}) \sim \sum_{\ell=1}^{L} N_{\ell}^{\frac{\gamma-\beta}{2}}$

 $egin{array}{lll}
ightarrow eta > \gamma &\Rightarrow \ell = 1 ext{ is dominating } \Rightarrow ext{Cost}(E^{ML}) \sim M_0 N_0^{\gamma} \sim arepsilon^{-2}, \
ightarrow eta < \gamma &\Rightarrow \ell = L ext{ is dominating } \Rightarrow ext{Cost}(E^{ML}) \sim M_L N_L^{\gamma} \sim arepsilon^{-\frac{\gamma}{\alpha}}. \end{array}$

Proof (sketch for the case
$$2\alpha > \min(\beta, \gamma)$$
):
• MSE $(E^{ML}) = |\mathbb{E}[X_L - X]|^2 + \sum_{\ell=1}^{L} \frac{1}{M_\ell} Var[X_\ell - X_{\ell-1}] \sim \varepsilon^2$
• Balancing the summands: $N_L^{-2\alpha} \sim \varepsilon^2$ and $\sum_{\ell=1}^{L} \frac{N_\ell^\beta}{M_\ell} \sim \varepsilon^2$
• Finding M_ℓ : Minimize $\operatorname{Cost}(E^{ML})$ under constraints
 $\operatorname{Cost}(E^{ML}) \sim \sum_{\ell=1}^{L} M_\ell \cdot \operatorname{Cost}(X_\ell)$
• Optimal choice: $M_\ell \sim N_\ell^{-\frac{\beta+\gamma}{2}} \Rightarrow \operatorname{Cost}(E^{ML}) \sim \sum_{\ell=1}^{L} N_\ell^{\frac{\gamma-\beta}{2}}$
 $\Rightarrow \beta > \gamma \Rightarrow \ell = 1$ is dominating $\Rightarrow \operatorname{Cost}(E^{ML}) \sim M_0 N_0^{\gamma} \sim \varepsilon^2$

• MSE(
$$E^{ML}$$
) = $|\mathbb{E}[X_L - X]|^2 + \sum_{\ell=1}^{L} \frac{1}{M_\ell} \operatorname{Var}[X_\ell - X_{\ell-1}] \sim \varepsilon^2$

• Balancing the summands: $N_L^{-2\alpha} \sim \varepsilon^2$ and $\sum_{\ell=1}^L \frac{N_\ell^\beta}{M_\ell} \sim \varepsilon^2$

• Finding M_{ℓ} : Minimize $Cost(E^{ML})$ under constraints

$$\operatorname{Cost}(E^{ML}) \sim \sum_{\ell=1}^{L} M_{\ell} \cdot \operatorname{Cost}(X_{\ell})$$

• Optimal choice: $M_{\ell} \sim N_{\ell}^{-\frac{\beta+\gamma}{2}} \Rightarrow \operatorname{Cost}(E^{ML}) \sim \sum_{\ell=1}^{L} N_{\ell}^{\frac{\gamma-\beta}{2}}$

 $egin{array}{lll}
ightarrow eta > \gamma &\Rightarrow \ell = 1 ext{ is dominating } \Rightarrow ext{Cost}(E^{ML}) \sim M_0 N_0^{\gamma} \sim arepsilon^{-2}, \
ightarrow eta < \gamma &\Rightarrow \ell = L ext{ is dominating } \Rightarrow ext{Cost}(E^{ML}) \sim M_L N_L^{\gamma} \sim arepsilon^{-\frac{\gamma}{\alpha}}. \end{array}$

• MSE
$$(E^{ML}) = |\mathbb{E}[X_L - X]|^2 + \sum_{\ell=1}^{L} \frac{1}{M_\ell} \operatorname{Var}[X_\ell - X_{\ell-1}] \sim \varepsilon^2$$

• Balancing the summands: $N_L^{-2\alpha} \sim \varepsilon^2$ and $\sum_{\ell=1}^L \frac{N_\ell^\beta}{M_\ell} \sim \varepsilon^2$

• Finding M_{ℓ} : Minimize $\operatorname{Cost}(E^{ML})$ under constraints

$$\operatorname{Cost}(E^{ML}) \sim \sum_{\ell=1}^{L} M_{\ell} \cdot \operatorname{Cost}(X_{\ell})$$

• Optimal choice: $M_{\ell} \sim N_{\ell}^{-\frac{\beta+\gamma}{2}} \Rightarrow \operatorname{Cost}(E^{ML}) \sim \sum_{\ell=1}^{L} N_{\ell}^{\frac{\gamma-\beta}{2}}$

 $egin{array}{lll}
ightarrow eta > \gamma &\Rightarrow \ell = 1 ext{ is dominating } \Rightarrow ext{Cost}(E^{ML}) \sim M_0 N_0^{\gamma} \sim arepsilon^{-2}, \
ightarrow eta < \gamma &\Rightarrow \ell = L ext{ is dominating } \Rightarrow ext{Cost}(E^{ML}) \sim M_L N_L^{\gamma} \sim arepsilon^{-\frac{\gamma}{\alpha}}. \end{array}$

• MSE
$$(E^{ML}) = |\mathbb{E}[X_L - X]|^2 + \sum_{\ell=1}^{L} \frac{1}{M_\ell} \operatorname{Var}[X_\ell - X_{\ell-1}] \sim \varepsilon^2$$

• Balancing the summands: $N_L^{-2\alpha} \sim \varepsilon^2$ and $\sum_{\ell=1}^L \frac{N_\ell^\beta}{M_\ell} \sim \varepsilon^2$

• Finding M_{ℓ} : Minimize $\operatorname{Cost}(E^{ML})$ under constraints

$$\operatorname{Cost}(E^{ML}) \sim \sum_{\ell=1}^{L} M_{\ell} \cdot N_{\ell}^{\gamma}$$

• Optimal choice: $M_{\ell} \sim N_{\ell}^{-\frac{\beta+\gamma}{2}} \Rightarrow \operatorname{Cost}(E^{ML}) \sim \sum_{\ell=1}^{L} N_{\ell}^{\frac{\gamma-\beta}{2}}$

 $\rightarrow \beta > \gamma \quad \Rightarrow \quad \ell = 1 \text{ is dominating} \quad \Rightarrow \quad \operatorname{Cost}(E^{ML}) \sim M_0 N_0^{\gamma} \sim \epsilon^{-2},$ $\rightarrow \beta < \gamma \quad \Rightarrow \quad \ell = L \text{ is dominating} \quad \Rightarrow \quad \operatorname{Cost}(E^{ML}) \sim M_L N_L^{\gamma} \sim \epsilon^{-\frac{\gamma}{\alpha}}.$

•
$$MSE(E^{ML}) = |\mathbb{E}[X_L - X]|^2 + \sum_{\ell=1}^{L} \frac{1}{M_\ell} Var[X_\ell - X_{\ell-1}] \sim \varepsilon^2$$

• Balancing the summands: $N_L^{-2\alpha} \sim \varepsilon^2$ and $\sum_{\ell=1}^L \frac{N_\ell^\beta}{M_\ell} \sim \varepsilon^2$

• Finding M_{ℓ} : Minimize $\operatorname{Cost}(E^{ML})$ under constraints

$$\operatorname{Cost}(E^{ML}) \sim \sum_{\ell=1}^{L} M_{\ell} \cdot N_{\ell}^{\gamma}$$

• Optimal choice: $M_{\ell} \sim N_{\ell}^{-\frac{\beta+\gamma}{2}} \Rightarrow \operatorname{Cost}(E^{ML}) \sim \sum_{\ell=1}^{L} N_{\ell}^{\frac{\gamma-\beta}{2}}$

 $\begin{array}{ll} \rightarrow \ \beta > \gamma & \Rightarrow \ \ell = 1 \text{ is dominating} & \Rightarrow & \operatorname{Cost}(E^{ML}) \sim M_0 N_0^{\gamma} \sim \varepsilon^{-2}, \\ \rightarrow \ \beta < \gamma & \Rightarrow & \ell = L \text{ is dominating} & \Rightarrow & \operatorname{Cost}(E^{ML}) \sim M_L N_L^{\gamma} \sim \varepsilon^{-\frac{\gamma}{\alpha}} \end{array}$

•
$$MSE(E^{ML}) = |\mathbb{E}[X_L - X]|^2 + \sum_{\ell=1}^{L} \frac{1}{M_\ell} Var[X_\ell - X_{\ell-1}] \sim \varepsilon^2$$

• Balancing the summands: $N_L^{-2\alpha} \sim \varepsilon^2$ and $\sum_{\ell=1}^L \frac{N_\ell^\beta}{M_\ell} \sim \varepsilon^2$

• Finding M_{ℓ} : Minimize $\operatorname{Cost}(E^{ML})$ under constraints

$$\operatorname{Cost}(E^{ML}) \sim \sum_{\ell=1}^{L} M_{\ell} \cdot N_{\ell}^{\gamma}$$

• Optimal choice: $M_{\ell} \sim N_{\ell}^{-\frac{\beta+\gamma}{2}} \Rightarrow \operatorname{Cost}(E^{ML}) \sim \sum_{\ell=1}^{L} N_{\ell}^{\frac{\gamma-\beta}{2}}$

 $\begin{array}{ll} \rightarrow \ \beta > \gamma & \Rightarrow \ \ell = 1 \text{ is dominating} & \Rightarrow & \operatorname{Cost}(E^{ML}) \sim M_0 N_0^{\gamma} \sim \varepsilon^{-2}, \\ \rightarrow \ \beta < \gamma & \Rightarrow \ \ell = L \text{ is dominating} & \Rightarrow & \operatorname{Cost}(E^{ML}) \sim M_L N_L^{\gamma} \sim \varepsilon^{-\frac{\gamma}{\alpha}} \end{array}$

• MSE
$$(E^{ML}) = |\mathbb{E}[X_L - X]|^2 + \sum_{\ell=1}^{L} \frac{1}{M_\ell} \operatorname{Var}[X_\ell - X_{\ell-1}] \sim \varepsilon^2$$

• Balancing the summands: $N_L^{-2\alpha} \sim \varepsilon^2$ and $\sum_{\ell=1}^L \frac{N_\ell^\beta}{M_\ell} \sim \varepsilon^2$

• Finding M_{ℓ} : Minimize $Cost(E^{ML})$ under constraints

$$\operatorname{Cost}(E^{ML}) \sim \sum_{\ell=1}^{L} M_{\ell} \cdot N_{\ell}^{\gamma}$$

• Optimal choice: $M_{\ell} \sim N_{\ell}^{-\frac{\beta+\gamma}{2}} \Rightarrow \operatorname{Cost}(E^{ML}) \sim \sum_{\ell=1}^{L} N_{\ell}^{\frac{\gamma-\beta}{2}}$

 $\begin{array}{ll} \rightarrow \ \beta > \gamma \quad \Rightarrow \quad \ell = 1 \text{ is dominating} \quad \Rightarrow \quad \operatorname{Cost}(E^{ML}) \sim M_0 N_0^{\gamma} \sim \varepsilon^{-2}, \\ \rightarrow \ \beta < \gamma \quad \Rightarrow \quad \ell = L \text{ is dominating} \quad \Rightarrow \quad \operatorname{Cost}(E^{ML}) \sim M_L N_L^{\gamma} \sim \varepsilon^{-\frac{\gamma}{\alpha}} \end{array}$

•
$$MSE(E^{ML}) = |\mathbb{E}[X_L - X]|^2 + \sum_{\ell=1}^{L} \frac{1}{M_\ell} Var[X_\ell - X_{\ell-1}] \sim \varepsilon^2$$

• Balancing the summands: $N_L^{-2\alpha} \sim \varepsilon^2$ and $\sum_{\ell=1}^L \frac{N_\ell^\beta}{M_\ell} \sim \varepsilon^2$

• Finding M_{ℓ} : Minimize $Cost(E^{ML})$ under constraints

$$\operatorname{Cost}(E^{ML}) \sim \sum_{\ell=1}^{L} M_{\ell} \cdot N_{\ell}^{\gamma}$$

• Optimal choice: $M_{\ell} \sim N_{\ell}^{-\frac{\beta+\gamma}{2}} \Rightarrow \operatorname{Cost}(E^{ML}) \sim \sum_{\ell=1}^{L} N_{\ell}^{\frac{\gamma-\beta}{2}}$

 $\begin{array}{ll} \rightarrow \ \beta > \gamma & \Rightarrow \ \ell = 1 \text{ is dominating} \end{array} \begin{array}{l} \Rightarrow & \operatorname{Cost}(E^{ML}) \sim M_0 N_0^{\gamma} \sim \varepsilon^{-2}, \\ \rightarrow \ \beta < \gamma & \Rightarrow \ \ell = L \text{ is dominating} \end{array} \begin{array}{l} \Rightarrow & \operatorname{Cost}(E^{ML}) \sim M_L N_L^{\gamma} \sim \varepsilon^{-\frac{\gamma}{\alpha}}. \end{array}$

Homework: complete this proof.

Examples

$$-u''(x) = f$$
, for $0 < x < 1$ $f =$ gravitation force (const.)
 $u(0) = 0$, $u =$ vertical displacement
 $u(1) = 0$.

Model:

10/42

$$\begin{array}{ll} -(Eu')'(x)=f, & \mbox{ for } 0 < x < 1 & f = \mbox{ gravitation force (const.)} \\ u(0)=0, & u = \mbox{ vertical displacement} \\ u(1)=0. & E = \mbox{ Young's Modulus} \end{array}$$

Model:

 $u(x) = \frac{f(x - x^2)}{2F}$

$$-(Eu')'(x) = f$$
, for $0 < x < 1$ $f = \text{gravitation force (const.)}$
 $u(0) = 0$, $u = \text{vertical displacement}$

Model:

$$u(1) = 0.$$
 $E =$ Young's Modulus

$$-(Eu')'(x) = f$$
, for $0 < x < 1$ $f = \text{gravitation force (const.)}$
 $u(0) = 0$, $u = \text{vertical displacement}$

Model:

u(1) = 0. E =Young's Modulus

$$-(Eu')'(x) = f$$
, for $0 < x < 1$ $f = \text{gravitation force (const.)}$
 $u(0) = 0$, $u = \text{vertical displacement}$

u(1) = 0. E =Young's Modulus

Model:

$$\begin{array}{ll} -(Eu')'(x)=f, & \mbox{ for } 0 < x < 1 & f = \mbox{ gravitation force (const.)} \\ u(0)=0, & u = \mbox{ vertical displacement} \\ u(1)=0. & E = \mbox{ Young's Modulus} \end{array}$$

Model:

-(Eu')'(x) = f, for 0 < x < 1 f = gravitation force (const.) u(0) = 0, u = vertical displacement u(1) = 0. E = Young's Modulus

Model:

Exact solution:

$$u(x) = \frac{f(x-x^2)}{2E}$$

When E is variable...

$$\begin{array}{ll} -(Eu')'(x)=f, & \mbox{ for } 0 < x < 1 & f = \mbox{ gravitation force (const.)} \\ u(0)=0, & u = \mbox{ vertical displacement} \\ u(1)=0. & E = \mbox{ Young's Modulus} \end{array}$$

Model:

Exact solution:

$$u(x) = \frac{f(x-x^2)}{2E}$$

When E is variable...

$$\begin{array}{ll} -(Eu')'(x)=f, & \mbox{ for } 0 < x < 1 & f = \mbox{ gravitation force (const.)} \\ u(0)=0, & u = \mbox{ vertical displacement} \\ u(1)=0. & E = \mbox{ Young's Modulus} \end{array}$$

Model:

Exact solution:

$$u(x,E)=\frac{f(x-x^2)}{2E}$$

When E is variable, u can be viewed as a function of x and E.

The variation of E describes e.g. different materials.

Example: Wire rope (conductor) in the electrical overhead line:

- Aluminium
- Steel
- Copper
- Alloys (Aldrey: 99% Al + 0.5% Mg + 0.5% Si)

Variations of the proportion \Rightarrow Variations of *E*.

Typical problem in forward uncertainty propagation

Assuming that statistical variations of E can be estimated in the fabrication process, is it possible to find probabilistic properties of the wire rope?

Yes! (we have the exact solution after all!)

The variation of E describes e.g. different materials.

Example: Wire rope (conductor) in the electrical overhead line:

- Aluminium
- Steel
- Copper
- Alloys (Aldrey: 99% Al + 0.5% Mg + 0.5% Si)

Variations of the proportion \Rightarrow Variations of *E*.

Typical problem in forward uncertainty propagation

Assuming that statistical variations of E can be estimated in the fabrication process, is it possible to find probabilistic properties of the wire rope?

Yes! (we have the exact solution after all!)

Example: $1 \le E \le 2$, uniformly distributed, i.e. $E \sim \mathcal{U}(1,2)$.

$$u(x,E) = \frac{x^2 - x}{2E}$$

(here f = -1 is assumed)

Homework: check these relations!

Example: $1 \le E \le 2$, uniformly distributed, i.e. $E \sim U(1,2)$.

$$u(x,E) = \frac{x^2 - x}{2E}$$

Homework: check these relations!

Mean value: $\mathbb{E}[u](x) = \frac{x^2 - x}{2} \int_1^2 \frac{dE}{E} = \frac{x^2 - x}{2} \ln 2,$ $\mathbb{E}[u^2](x) = \left(\frac{x^2 - x}{2}\right)^2 \int_1^2 \frac{dE}{E^2} = \left(\frac{x^2 - x}{2}\right)^2 \frac{1}{2},$ Variance: $\operatorname{Var}[u](x) = \left(\frac{x^2 - x}{2}\right)^2 \left(\frac{1}{2} - (\ln 2)^2\right) =: \sigma(x)^2,$

Example: $1 \leq E \leq 2$, uniformly distributed, i.e. $E \sim \mathcal{U}(1,2)$.

$$u(x,E) = \frac{x^2 - x}{2E}$$

Mean

value:
$$\mathbb{E}[u](x) = \frac{x^2 - x}{2} \int_1^2 \frac{dE}{E} = \frac{x^2 - x}{2} \ln 2,$$

 $\mathbb{E}[u^2](x) = \left(\frac{x^2 - x}{2}\right)^2 \int_1^2 \frac{dE}{E^2} = \left(\frac{x^2 - x}{2}\right)^2 \frac{1}{2},$
var[u](x) = $\left(\frac{x^2 - x}{2}\right)^2 \left(\frac{1}{2} - (\ln 2)^2\right) =: \sigma(x)^2$

Example: $1 \le E \le 2$, uniformly distributed, i.e. $E \sim \mathcal{U}(1,2)$.

$$u(x,E) = \frac{x^2 - x}{2E}$$

Homework: check these relations!

Mean value:
$$\mathbb{E}[u](x) = \frac{x^2 - x}{2} \int_1^2 \frac{dE}{E} = \frac{x^2 - x}{2} \ln 2,$$

 $\mathbb{E}[u^2](x) = \left(\frac{x^2 - x}{2}\right)^2 \int_1^2 \frac{dE}{E^2} = \left(\frac{x^2 - x}{2}\right)^2 \frac{1}{2},$
Variance: $\operatorname{Var}[u](x) = \left(\frac{x^2 - x}{2}\right)^2 \left(\frac{1}{2} - (\ln 2)^2\right) =: \sigma(x)^2,$

Example: $1 \le E \le 2$, uniformly distributed, i.e. $E \sim U(1,2)$.

$$u(x,E) = \frac{x^2 - x}{2E}$$

Homework: check these relations!

Example: $1 \le E \le 2$, uniformly distributed, i.e. $E \sim \mathcal{U}(1,2)$.

 $u(x,E)=\frac{x^2-x}{2E}$

(here f = -1 is assumed)

Homework: check these relations!

Autocorrelation:
$$\operatorname{Cov}[u](x, y) = \frac{x^2 - x}{2} \frac{y^2 - y}{2} \left(\frac{1}{2} - (\ln 2)^2\right),$$

Correl. Coefficient: $r(x, y) = \frac{\operatorname{Cov}[u](x, y)}{\sigma(x)\sigma(y)} = 1,$ (perfect Correlation

Probability Density Function:

Example: $1 \le E \le 2$, uniformly distributed, i.e. $E \sim \mathcal{U}(1,2)$.

$$u(x,E) = \frac{x^2 - x}{2E}$$

Homework: check these relations!

Autocorrelation:
$$\operatorname{Cov}[u](x, y) = \frac{x^2 - x}{2} \frac{y^2 - y}{2} \left(\frac{1}{2} - (\ln 2)^2\right),$$

Correl. Coefficient: $r(x, y) = \frac{\operatorname{Cov}[u](x, y)}{\sigma(x)\sigma(y)} = 1$, (perfect Correlation)

Probability Density Function:

 $ho_{u(x)}(t) \propto rac{1}{t^2}, \qquad rac{1}{2} \leq t \leq 1.$

Example: $1 \le E \le 2$, uniformly distributed, i.e. $E \sim \mathcal{U}(1,2)$.

 $u(x,E)=\frac{x^2-x}{2E}$

(here f = -1 is assumed)

Homework: check these relations!

Autocorrelation:
$$\operatorname{Cov}[u](x, y) = \frac{x^2 - x}{2} \frac{y^2 - y}{2} \left(\frac{1}{2} - (\ln 2)^2\right),$$

Correl. Coefficient: $r(x, y) = \frac{\operatorname{Cov}[u](x, y)}{\sigma(x)\sigma(y)} = 1,$ (perfect Correlation)

Probability Density Function:

 $\rho_{u(x)}(t) \propto rac{1}{t^2}, \qquad rac{1}{2} \leq t \leq 1.$

Because we have an exact solution!

$$u(x,E) = \frac{x^2 - x}{2E}$$

$$u(x,E)=\frac{x^2-x}{2E}$$

We know the mapping E	$\mapsto u(x, E)$ in	closed form.

(S is called the solution operator, $f \in C^0(0,1)$)

Because we have an exact solution!

$$u(x,E)=\frac{x^2-x}{2E}$$

... more precisely ...

We know the mapping
$$S: \left\{ \begin{array}{ll} \mathbb{R}_+ \to C^2(0,1) \\ E\mapsto u(\cdot,E) \end{array}
ight.$$
 in closed form.

(S is called the solution operator, $f \in C^0(0,1)$)

Because we have an exact solution!

$$u(x,E)=\frac{x^2-x}{2E}$$

... more precisely ...

We know the mapping
$$S: \left\{ egin{array}{c} \mathbb{R}_+ o C^2(0,1) \ E \mapsto u(\cdot,E) \end{array}
ight.$$
 in closed form.

(S is called the solution operator, $f \in C^0(0,1)$)

This is very rare in praxis! The model problem was just too simple:

- The physical domain D = (0, 1) was one-dimensional;
- E was homogeneous. What if $E = E(x, \omega)$ varies in space?
- The material law was very simple;
- The solution operator was smooth

In practical applications exact evaluation of u(x, E) is out of reach.

Computer approximations:

$$u(x,E)\approx u_N(x,E)=S_N(E)$$

Is it still possible to **approximately** compute **probabilistic properties** of the exact solution u(x, E)?

Yes, but it is not so easy anymore...

In practical applications exact evaluation of u(x, E) is out of reach.

Computer approximations:

$$u(x, E) \approx u_N(x, E) = S_N(E)$$

Is it still possible to **approximately** compute **probabilistic properties** of the exact solution u(x, E)?

Yes, but it is not so easy anymore...

In practical applications exact evaluation of u(x, E) is out of reach.

Computer approximations:

$$u(x, E) \approx u_N(x, E) = S_N(E)$$

Is it still possible to **approximately** compute **probabilistic properties** of the exact solution u(x, E)?

Yes, but it is not so easy anymore...

1) Pollution in groundwater flow model:

$$\left\{ \begin{array}{ll} \mathbf{q} = -K \nabla p & \text{Darcy's law} \\ \nabla \cdot \mathbf{u} = 0 & \text{Mass conservation} \\ \mathbf{q} = \phi \mathbf{u} \end{array} \right.$$

Particle transport

$$\begin{cases} \frac{d\mathbf{x}}{dt} = \mathbf{u}(\mathbf{x}) \\ \mathbf{x}(\mathbf{0}) = \mathbf{x}_0 \end{cases}$$

1) Pollution in groundwater flow model:

$$\left\{ \begin{array}{ll} \mathbf{q} = -K \nabla p & \text{Darcy's law} \\ \nabla \cdot \mathbf{u} = 0 & \text{Mass conservation} \\ \mathbf{q} = \phi \mathbf{u} \end{array} \right.$$

Particle transport

$$\begin{cases} \frac{d\mathbf{x}}{dt} = \mathbf{u}(\mathbf{x}) \\ \mathbf{x}(\mathbf{0}) = \mathbf{x}_0 \end{cases}$$

Random conductivity $K = K(\mathbf{x}, \omega)$ Qty of interest: $T(\omega) = \max\{t : \mathbf{x}(\omega) \in \mathbf{D}\}$ (particle travel time), $\mathbb{E}[T], \mathbb{V}[T]$

2) Elastic deformation of random media

$$\begin{cases} \operatorname{div}\boldsymbol{\sigma} + \vec{f} = 0 & \text{Equilibrium eq.} \\ \sigma_{ij} = \frac{E}{1+\nu} \left(\frac{\nu \delta_{ij} \varepsilon_{kk}}{1-2\nu} + \varepsilon_{ij} \right) & \text{Constitutive eq.} \\ \varepsilon = \frac{1}{2} (\nabla \mathbf{u} + (\nabla \mathbf{u})^{\top}) \end{cases}$$

 σ : stress, ε : strain, **u** : displacement, \vec{f} : volume forces, E: Young's Modulus, ν : Poisson's ratio

Random material parameters:

Qty of interest:

 $E = E(\mathbf{x}, \omega), \quad \nu = \nu(\mathbf{x}, \omega), \quad \sigma_{\max}(\omega) = \max_{\mathbf{x} \in D} \{ \| \operatorname{dev} \sigma \|_{F} \}$

2) Elastic deformation of random media

$$\begin{cases} \operatorname{div}\boldsymbol{\sigma} + \boldsymbol{\vec{f}} = \boldsymbol{0} & \text{Equilibrium eq.} \\ \sigma_{ij} = \frac{E}{1+\nu} \left(\frac{\nu \delta_{ij} \varepsilon_{kk}}{1-2\nu} + \varepsilon_{ij} \right) & \text{Constitutive eq.} \\ \varepsilon = \frac{1}{2} (\nabla \mathbf{u} + (\nabla \mathbf{u})^{\top}) \end{cases}$$

 $\begin{aligned} \sigma: \mathsf{stress}, & \varepsilon: \mathsf{strain}, & \mathbf{u}: \mathsf{displacement}, \\ \vec{f}: \mathsf{volume forces}, & E: \mathsf{Young's Modulus}, & \nu: \mathsf{Poisson's ratio} \end{aligned}$

3) + elasto-plastic deformations: $f_{pl} = ||\text{dev}\sigma||_F - \sqrt{\frac{2}{3}}\sigma_Y \le 0$ Random yield stress: Qty of interest: $\sigma_Y = \sigma_Y(\mathbf{x}, \omega)$ $\text{Vol}\{f_{pl} = 0\}.$

4) Acoustic scattering of objects having uncertain shape

$$\begin{cases} \Delta u + k^2 u = 0 & \text{in } \mathbb{R}^3 \setminus D \\ \frac{\partial u}{\partial n} - iku = g & \text{on } \Gamma := \partial D \\ u : \text{ pressure, } k : \text{ wave number} \end{cases}$$

in shape: $\Gamma(\omega)$ interest: $= u(\mathbf{x}, \omega).$

ke et al., www.bempp.org)

5) Rolling tire on the road: Contact with rough surfaces

Courtesy: Prof. Udo Nackenhorst, IBNM, Univ. Hannover

Input parameter:

 $\psi(x)$ is the road surface profile. (irregular microstructure)

- The road surface $\psi(x)$ has an irregular microstructure;
- The actual contact zone is a union of a few spots;
- The local microstructure changes as the tire rolls.

Free wire rope

Wire rope with an obstacle

Free wire rope

Wire rope with an obstacle

2

0.5

1.8

х

Free wire rope

Wire rope with an obstacle

2

0.5

1.8

1.6

х

Free wire rope

Wire rope with an obstacle

0.5

1.8

1.6

х

2

Free wire rope

Wire rope with an obstacle

0.5

1.8

1.6

х

2

Free wire rope

Wire rope with an obstacle

2

0.5

1.8

1.6

х

Free wire rope

Wire rope with an obstacle

0.5

1.8

1.6

х

2

Free wire rope

Wire rope with an obstacle

0.5

1.8

1.6

х

2

Free wire rope

Wire rope with an obstacle

Free wire rope

Wire rope with an obstacle

Example: Contact of an elastic membrane with a rough surface (2d)

$$\begin{array}{l} -\Delta u \ge f, \quad u \ge \psi, \\ (\Delta u + f)(u - \psi) = 0, \end{array} \right\} \quad \text{in } D, \\ u = 0 \qquad \qquad \text{on } \partial D. \end{array}$$

Qol: Deformation $u(x, \omega)$; Contact Area $\Lambda(\omega) = \{x : u(x, \omega) = \psi(x, \omega)\}.$

One realization of the obstacle surface $\psi = \psi(x)$:

Obstacle surface

Deformation

Contact set

Example: Rough obstacle models $B_q(H), q_0 = 1, q_\ell = 10, q_s = 26$ 10 Power spectrum [Persson et al.'05]: H=0--H=0.5 $\psi(x) = \sum B_q(H) \cos(q \cdot x + \varphi_q)$ 10 ••• H=1 $a_0 < |a| < a_{\varepsilon}$ 10 where $B_q(H) = \frac{\pi}{r} (2\pi \max(|q|, q_l))^{-H-1} \rightarrow$ 10 Many materials in Nature and technics 10 10⁰ 10^{1} 10^{2} obey this law for amplitudes. $H \sim \mathcal{U}(0,1)$ random roughness 0.6 0.8 0.25 $\varphi_a \sim \mathcal{U}(0, 2\pi)$ random phase 0.4 0.6 0.8 0.05 0.15 0.2 0.25 Forward solver: Own implementation of MMG (TNNM) [Kornhuber'94,...] 02 04 0.8 0.05

Approximation of $\mathbb{E}[u]$ and $\operatorname{Var}[u]$ of the deform. field $u(x, \omega)$

A realization of the obstacle $\psi^i(x)$ and the deformation profile $u_h^i(x)$

The mean deformation profile $E^{ML}[u]$

The variance of the deformation profile $V^{ML}[u]$

Benefits:

- $V^{ML}[X]$ is <u>unbiased</u>, i.e. $\mathbb{E}\left[V^{ML}[X] \mathbb{V}[X_L]\right] = 0$
- Fast one pass stable evaluation formulae (single level in [Pebay'08])

Benefits:

• $V^{ML}[X]$ is <u>unbiased</u>, i.e. $\mathbb{E}\left[V^{ML}[X] - \mathbb{V}[X_L]\right] = 0$

• Fast one pass stable evaluation formulae (single level in [Pebay'08])

... then define the variance estimator by

$$V^{ML}[X] := \sum_{\ell=1}^{L} V_{M_{\ell}}[X_{\ell}] - V_{M_{\ell}}[X_{\ell-1}]$$
where
$$V_{M}[X_{\ell}] := \frac{1}{M-1} \sum_{i=1}^{M} (X_{\ell}^{i} - E_{M}[X_{\ell}])^{2}.$$
see BIERIG, CHERNOV, Numer. Math. (2015)

Benefits:

•
$$V^{ML}[X]$$
 is unbiased, i.e. $\mathbb{E}\left[V^{ML}[X] - \mathbb{V}[X_L]\right] = 0$

• Fast one pass stable evaluation formulae (single level in [Pebay'08])

... then define the variance estimator by

$$V^{ML}[X] := \sum_{\ell=1}^{L} V_{M_{\ell}}[X_{\ell}] - V_{M_{\ell}}[X_{\ell-1}]$$
where
$$V_{M}[X_{\ell}] := \frac{1}{M-1} \sum_{i=1}^{M} (X_{\ell}^{i} - E_{M}[X_{\ell}])^{2}.$$
see BIERIG, CHERNOV, Numer. Math. (2015)

Benefits:

Theorem (a priori estim.: random obstacle problem, [Bierig/AC'15])

Suppose: $\psi \in L^{\infty}(\Omega, W^{2,r})$ for some r > 2

Deterministic fwd solver: $\|u_{\ell} - u\|_{H^1} \leq h_{\ell}$, pw. lin. FE with the Total Work $\sim \ell^{\nu} N_{\ell}$ ($N_{\ell} \sim h_{\ell}^{-2}$, i.e. lin. cost).

Then: MLMC with the optimal choice $M_{\ell} := (h_{\ell}/h_L)^2$ satisfies

$$\left\| E^{ML}[u] - \mathbb{E}[u] \right\|_{L^2(\Omega, H^1)} \\ \| V^{ML}[u] - \mathbb{V}[u] \|_{L^2(\Omega, H^1)} \right\} \lesssim \frac{h_L \sqrt{|\log h_L|}}{|\log h_L|},$$

with the Total Work $\sim L^{\nu+1}N_L$.

Almost linear complexity for MLMC + MMG.

(Sampling is asymptotically almost for free!)

Theorem (a priori estim.: random obstacle problem, [Bierig/AC'15])

Suppose:
$$\psi \in L^{2q}(\Omega, W^{2,2})$$
 and $\frac{1}{p} + \frac{1}{q} = 1$

Deterministic fwd solver: $||u_{\ell} - u||_{H^1} \lesssim h_{\ell}$, pw. lin. FE with the Total Work $\sim \ell^{\nu} N_{\ell}$ ($N_{\ell} \sim h_{\ell}^{-2}$, i.e. lin. cost).

Then: MLMC with the optimal choice $M_{\ell} := (h_{\ell}/h_L)^2$ satisfies

$$\begin{split} \| \mathcal{E}^{ML}[u] - \mathbb{E}[u] \|_{L^2(\Omega, H^1)} \lesssim \frac{h_L \sqrt{|\log h_L|}}{h_L^p}, \\ \| \mathcal{V}^{ML}[u] - \mathbb{V}[u] \|_{L^2(\Omega, H^1)} \lesssim \frac{h_L^{\frac{1}{p}}}{h_L^p}, \qquad \text{(using inv. ineq.)} \end{split}$$

with the Total Work $\sim L^{\nu+1}N_L$.

Almost linear complexity for MLMC + MMG.

(Sampling is asymptotically almost for free!)

Extension to higher order moments: $\mathcal{M}^k[X] := \mathbb{E}[(X - \mathbb{E}[X])^k]$

$$S_{M}^{3}[X] := \frac{M}{(M-1)(M-2)} \sum_{i=1}^{M} (X_{i} - E_{M}[X])^{3} \quad \text{(unbiased)}$$

$$S_{M}^{k}[X] := \frac{1}{M} \sum_{i=1}^{M} (X_{i} - E_{M}[X])^{k} \quad \text{(small bias)}$$

$$\sum_{i=1}^{10^{-1}} (X_{i} - E_{M}[X])^{k} \quad \text{(small bias)}$$

$$X = |\Lambda|, \text{ contact area}$$

$$X = |\Lambda|, \text{ contact area}$$

$$Notice: |\Lambda| \le |D|$$

$$[BIERIG, CHERNOV, JSPDE'16]$$

time in seconds

Estimation of the PDF ρ_X of the contact area $X = |\Lambda|$ by the Maximum Entropy method

Estimation of the PDF ρ_X of the contact area $X = |\Lambda|$ by the Maximum Entropy method

Estimation of the PDF ρ_X of the contact area $X = |\Lambda|$ by the Maximum Entropy method

More experiments and rigorous error analysis in [Bierig/Chernov, JCP'16]

Towards adaptivity - adaptive selection of

- the number of moments R
- the interval of approximation [a, b]

Test example:

Log-normal distribution with $\mu = 0$ and variable σ (= 0.5 and 0.2) Estimation of moments μ_1, \ldots, μ_R by MC with 10⁸ samples

Stopping parameters for the Newton Method:

- $\Delta\lambda \leq 10^{-9}$ (convergence)
- $\Delta\lambda \ge 10^3$ (no convergence)
- $\#\texttt{iter} \geq 1000$ (no convergence)

Monomial Moments:

• Unstable for $R \ge 5$

Breaking convergence for the Fourier basis by choosing a more concentrated density!

e.g. log-normal with
$$\mu =$$
 0, $\sigma =$ 0.2

Fourier Moments ($\sigma = 0.2$, [a, b] = [0, 12]):

Remain stable even without convergence!

Entropy is still monotonously decreasing!

Fourier Moments (0 - 0.2, [a, b] - [0, 12]).

Remain stable even without convergence!

Entropy is still monotonously decreasing!

Remain stable even without convergence!

Regain stability of the Legendre basis by choosing a smaller approximation interval!

e.g. [*a*, *b*] = [0, 4]

- Still quite stable even without convergence!
- Entropy is still monotonously decreasing!

- Still quite stable even without convergence!
- Entropy is still monotonously decreasing!

- Still quite stable even without convergence!
- Entropy is still monotonously decreasing!

- Oscillations in the negative domain
- \Rightarrow stability of the density

• Oscillations in the negative domain

Legendre Moments ($\sigma = 0.2$, [a, b] = [0, 4], semilog):

- Oscillations in the negative domain
- \Rightarrow stability of the density

• Oscillations in the negative domain

• Oscillations in the negative domain

Legendre Moments ($\sigma = 0.2$, [a, b] = [0, 4], semilog):

• Oscillations in the negative domain

Legendre Moments ($\sigma = 0.2$, [a, b] = [0, 4], semilog):

• Oscillations in the negative domain

• Oscillations in the negative domain

Legendre Moments ($\sigma = 0.2$, [a, b] = [0, 4], semilog):

- Oscillations in the negative domain
- \Rightarrow stability of the density

- Oscillations in the negative domain
- \Rightarrow stability of the density

- Oscillations in the negative domain
- \Rightarrow stability of the density

- Oscillations in the negative domain
- \Rightarrow stability of the density

- Oscillations in the negative domain
- \Rightarrow stability of the density

- Oscillations in the negative domain
- \Rightarrow stability of the density

- Oscillations in the negative domain
- \Rightarrow stability of the density

- Is stable and convergent for a bigger range $R \leq 14!$
- Entropy is monoton. decr. (stat. accuracy of MC is reached?)

- Is stable and convergent for a bigger range $R \leq 14!$
- Entropy is monoton. decr. (stat. accuracy of MC is reached?)

- Is stable and convergent for a bigger range $R \leq 14!$
- Entropy is monoton. decr. (stat. accuracy of MC is reached?)

- Is stable and convergent for a bigger range $R \leq 14!$
- Entropy is monoton. decr. (stat. accuracy of MC is reached?)

- Is stable and convergent for a bigger range $R \leq 14!$
- Entropy is monoton. decr. (stat. accuracy of MC is reached?)

- Is stable and convergent for a bigger range $R \leq 14!$
- Entropy is monoton. decr. (stat. accuracy of MC is reached?)

- Is stable and convergent for a bigger range $R \leq 14!$
- Entropy is monoton. decr. (stat. accuracy of MC is reached?)

- Is stable and convergent for a bigger range $R \leq 14!$
- Entropy is monoton. decr. (stat. accuracy of MC is reached?)

- Is stable and convergent for a bigger range $R \leq 14!$
- Entropy is monoton. decr. (stat. accuracy of MC is reached?)

- Is stable and convergent for a bigger range $R \leq 14!$
- Entropy is monoton. decr. (stat. accuracy of MC is reached?)

- Is stable and convergent for a bigger range $R \leq 14!$
- Entropy is monoton. decr. (stat. accuracy of MC is reached?)

- Is stable and convergent for a bigger range $R \leq 14!$
- Entropy is monoton. decr. (stat. accuracy of MC is reached?)

- Is stable and convergent for a bigger range $R \leq 14!$
- Entropy is monoton. decr. (stat. accuracy of MC is reached?)

- Is stable and convergent for a bigger range $R \leq 14!$
- Entropy is monoton. decr. (stat. accuracy of MC is reached?)

- 1. C. BIERIG AND A. CHERNOV, Convergence analysis of multilevel Monte Carlo variance estimators and application for random obstacle problems. *Numer. Math.* 130 (2015), no. 4, 579–613
- C. BIERIG AND A. CHERNOV, Estimation of arbitrary order central statistical moments by the multilevel Monte Carlo Method. *Stoch. Partial Differ. Equ. Anal. Comput.* 4 (2016), no. 1, 3–40
- 3. C. BIERIG AND A. CHERNOV, Approximation of probability density functions by the Multilevel Monte Carlo Maximum Entropy method. *J. Comput. Physics* 314 (2016), 661–681
- 4. C. BIERIG, Approximation of central moments and PDFs by the multilevel Monte Carlo method with applications to variational inequalities. *Dissertation*, Univ. Oldenburg, 2016

Many open questions...

Thank you for your attention!

- C. BIERIG AND A. CHERNOV, Convergence analysis of multilevel Monte Carlo variance estimators and application for random obstacle problems. *Numer. Math.* 130 (2015), no. 4, 579–613
- C. BIERIG AND A. CHERNOV, Estimation of arbitrary order central statistical moments by the multilevel Monte Carlo Method. *Stoch. Partial Differ. Equ. Anal. Comput.* 4 (2016), no. 1, 3–40
- 3. C. BIERIG AND A. CHERNOV, Approximation of probability density functions by the Multilevel Monte Carlo Maximum Entropy method. *J. Comput. Physics* 314 (2016), 661–681
- 4. C. BIERIG, Approximation of central moments and PDFs by the multilevel Monte Carlo method with applications to variational inequalities. *Dissertation*, Univ. Oldenburg, 2016

Many open questions...

Thank you for your attention!