The Multilevel Monte Carlo Method: basic concepts and further developments

Alexey Chernov

Institute for Mathematics
Carl von Ossietzky University Oldenburg
alexey. chernov@uni-oldenburg.de

Oberseminar Computerorientierte Theoretische Physik
20 December 2017

Question: Suppose X is a Random Variable, such that

- X is not available in closed form
- X is available through its i.i.d. samples X^{i}

How to compute accurately and and quickly the mean value

$$
\mu=\mathbb{E}[X]=\int_{\Omega} X(\omega) \mathrm{d} \mathbb{P}(\omega)
$$

Monte Carlo: Use sample average:

How good is this approximation?

Question: Suppose X is a Random Variable, such that

- X is not available in closed form
- X is available through its i.i.d. samples X^{i}

How to compute accurately and and quickly the mean value

$$
\mu=\mathbb{E}[X]=\int_{\Omega} X(\omega) \mathrm{d} \mathbb{P}(\omega)
$$

Monte Carlo: Use sample average:

$$
E_{M}[X]:=\frac{1}{M} \sum_{i=1}^{M} X^{i}
$$

How good is this approximation?
$Z:=E_{M}[X]-\mu=?$

Question: Suppose X is a Random Variable, such that

- X is not available in closed form
- X is available through its i.i.d. samples X^{i}

How to compute accurately and and quickly the mean value

$$
\mu=\mathbb{E}[X]=\int_{\Omega} X(\omega) \mathrm{d} \mathbb{P}(\omega)
$$

Monte Carlo: Use sample average:

$$
E_{M}[X]:=\frac{1}{M} \sum_{i=1}^{M} X^{i}
$$

How good is this approximation?

$$
Z:=E_{M}[X]-\mu=?
$$

Error measure \rightarrow mean square error (MSE):

$$
\mathrm{MSE}=\mathbb{E}\left[Z^{2}\right], \quad Z=E_{M}[X]-\mu
$$

Theorem

$$
\mathrm{MSE}=\frac{1}{M} \operatorname{Var}[X]
$$

Drawbacks:

- Very slow (Root-MSE
- Usually not realistic: approximate samples of $X_{N} \approx X$.

Here N is a "discretization parameter", e.g.

- \# particles in a MD-Simulation
- \# dof in a Finite Element / Finite Difference approximation

Error measure \rightarrow mean square error (MSE):

$$
\mathrm{MSE}=\mathbb{E}\left[Z^{2}\right], \quad Z=E_{M}[X]-\mu
$$

Theorem

$$
\mathrm{MSE}=\frac{1}{M} \operatorname{Var}[X]
$$

Drawbacks:

- Very slow (Root-MSE $\sim \frac{1}{\sqrt{M}}$)
- Usually not realistic: approximate samples of $X_{N} \approx X$.

Here N is a „discretization parameter", e.g.

- \# particles in a MD-Simulation
- \# dof in a Finite Element / Finite Difference approximation - . . .

Error measure \rightarrow mean square error (MSE):

$$
\mathrm{MSE}=\mathbb{E}\left[Z^{2}\right], \quad Z=E_{M}\left[X_{N}\right]-\mu
$$

Theorem

$$
\mathrm{MSE}=\underbrace{\left|\mathbb{E}\left[X_{N}-X\right]\right|^{2}}_{\text {Approx. error }}+\underbrace{\frac{1}{M} \operatorname{Var}\left[X_{N}\right]}_{\text {Statistical error }}
$$

- Still very slow and expensive (halving the bias \leftrightarrow quadrupling M)
- In particular, if - Approx. error $\sim N^{-\alpha}$

Then RMSE $\sim \varepsilon$ for the Cost

Error measure \rightarrow mean square error (MSE):

$$
\mathrm{MSE}=\mathbb{E}\left[Z^{2}\right], \quad Z=E_{M}\left[X_{N}\right]-\mu
$$

Theorem

$$
\mathrm{MSE}=\underbrace{\left|\mathbb{E}\left[X_{N}-X\right]\right|^{2}}_{\text {Approx. error }}+\underbrace{\frac{1}{M} \operatorname{Var}\left[X_{N}\right]}_{\text {Statistical error }}
$$

- Still very slow and expensive (halving the bias \leftrightarrow quadrupling M)
- In particular, if
- Approx. error $\sim N^{-\alpha}$
- $\operatorname{Cost}\left(X_{N}\right) \sim N^{\gamma}$

Then RMSE $\sim \varepsilon$ for the Cost $\sim \varepsilon^{-2-\frac{\gamma}{\alpha}}$.

$$
E^{M L}[X]:=E_{M}\left[X_{N}-X_{n}\right]+E_{M}\left[X_{n}\right], \quad n<N .
$$

Error measure \rightarrow mean square error (MSE):

$$
\operatorname{MSE}=\mathbb{E}\left[Z^{2}\right], \quad Z=E^{M L}[X]-\mu .
$$

Theorem

Extension to multiple levels

Two-Level Monte Carlo

$$
E^{M L}[X]:=E_{M}\left[X_{N}-X_{n}\right]+E_{M}\left[X_{n}\right], \quad n<N .
$$

Error measure \rightarrow mean square error (MSE):

$$
\operatorname{MSE}=\mathbb{E}\left[Z^{2}\right], \quad Z=E^{M L}[X]-\mu .
$$

Theorem

$$
\text { MSE }=\underbrace{\left|\mathbb{E}\left[X_{N}-X\right]\right|}_{\text {Approx. error }}{ }^{2}+\underbrace{\frac{1}{M} \operatorname{Var}\left[X_{N}-X_{n}\right]+\frac{1}{M} \operatorname{Var}\left[X_{n}\right]}_{\text {Statistical error }}
$$

($m<M$: faster sampling for the same accuracy)

Extension to multiple levels

Two-Level Monte Carlo

$$
E^{M L}[X]:=E_{m}\left[X_{N}-X_{n}\right]+E_{M}\left[X_{n}\right], \quad n<N .
$$

Error measure \rightarrow mean square error (MSE):

$$
\operatorname{MSE}=\mathbb{E}\left[Z^{2}\right], \quad Z=E^{M L}[X]-\mu .
$$

Theorem

$$
\text { MSE }=\underbrace{\left|\mathbb{E}\left[X_{N}-X\right]\right|^{2}}_{\text {Approx. error }}+\underbrace{\frac{1}{m} \operatorname{Var}\left[X_{N}-X_{n}\right]+\frac{1}{M} \operatorname{Var}\left[X_{n}\right]}_{\text {Statistical error }}
$$

$$
\text { (} m<M \text { : faster sampling for the same accuracy) }
$$

Extension to multiple levels
 Multilevel Monte Carlo

$$
E^{M L}[X]:=E_{m}\left[X_{N}-X_{n}\right]+E_{M}\left[X_{n}\right], \quad n<N .
$$

Error measure \rightarrow mean square error (MSE):

$$
\operatorname{MSE}=\mathbb{E}\left[Z^{2}\right], \quad Z=E^{M L}[X]-\mu .
$$

Theorem

$$
\text { MSE }=\left.\underbrace{\left|\mathbb{E}\left[X_{N}-X\right]\right|}_{\text {Approx. error }}\right|^{2}+\underbrace{\frac{1}{m} \operatorname{Var}\left[X_{N}-X_{n}\right]+\frac{1}{M} \operatorname{Var}\left[X_{n}\right]}_{\text {Statistical error }}
$$

($m<M$: faster sampling for the same accuracy)
Extension to multiple levels $\quad \Rightarrow \quad$ Multilevel Monte Carlo

$$
E^{M L}[X]:=\sum_{\ell=1}^{L} E_{M_{\ell}}\left[X_{\ell}-X_{\ell-1}\right], \quad X_{0}=0
$$

Main idea: Equidistrib. of the comput. cost over FE levels

1. Heinrich, J. Complexity (1998)
2. Giles, Oper. Res. (2008)
3. Barth, Schwab, Zollinger, Numer. Math. (2011)
4. Cliffe, Giles, Scheichl, Teckentrup, Comput. Vis. Sci. (2011)

Our work [Bierig/Chernov'15+]:

- Multilevel MC approx. of the variance and higher order moments

$$
\mu^{k}=\mathbb{E}(X-\mathbb{E}[X])^{k}=\int_{-\infty}^{\infty}(x-\mu)^{k} f_{X}(x) d x
$$

- Approximation of Probability Density Functions f_{X} via Max. Entropy Method

$$
f_{X} \approx \operatorname{argmin}\left\{\int \rho \ln \rho: \mu^{k}=\int(x-\mu)^{k} \rho(x) d x\right\}
$$

- Application to the contact with rough random obstacles.

Multilevel Monte Carlo sample mean estimator:

$$
\mathbb{E}[X] \approx E^{M L}[X]=\sum_{\ell=1}^{L} E_{M_{\ell}}\left[X_{\ell}-X_{\ell-1}\right], \quad x_{0}=0
$$

Theorem (Accuracy / Cost relation, simplified)

Assume that
a) $\left|\mathbb{E}\left[X-X_{\ell}\right]\right| \lesssim N_{\ell}^{-\alpha}$,
b) $\operatorname{Var}\left[X_{\ell}-X_{\ell-1}\right] \lesssim N_{\ell}^{-\beta}$,
c) $\operatorname{Cost}\left(X_{\ell}\right) \lesssim N_{\ell}^{\gamma}$, then there exist M_{ℓ}, s.t. $\quad \operatorname{RMSE}\left(E_{M}\right)<\varepsilon$ and $\operatorname{RMSE}\left(E^{M L}\right)<\varepsilon$ $\operatorname{Cost}\left(E_{M}\right) \lesssim \varepsilon^{-2-\frac{\gamma}{\alpha}}, \quad \operatorname{Cost}\left(E^{M L}\right) \lesssim \varepsilon^{-2-\frac{\gamma}{\alpha}+\frac{\min (2 \alpha, \beta, \gamma)}{\alpha}}$. $(\gamma \neq \beta)$

Proof (sketch for the case $2 \alpha>\min _{L}(\beta, \gamma)$):

- $\operatorname{MSE}\left(E^{M L}\right)=\left|\mathbb{E}\left[X_{L}-X\right]\right|^{2}+\sum_{\ell=1}^{L} \frac{1}{M_{\ell}} \operatorname{Var}\left[X_{\ell}-X_{\ell-1}\right] \sim \varepsilon^{2}$

Proof (sketch for the case $2 \alpha>\min _{L}(\beta, \gamma)$):

- $\operatorname{MSE}\left(E^{M L}\right)=\left|\mathbb{E}\left[X_{L}-X\right]\right|^{2}+\sum_{\ell=1}^{L} \frac{1}{M_{\ell}} \operatorname{Var}\left[X_{\ell}-X_{\ell-1}\right] \sim \varepsilon^{2}$
- Balancing the summands: $\quad N_{L}^{-2 \alpha} \sim \varepsilon^{2}$ and $\sum_{\ell=1}^{L} \frac{N_{\ell}^{\beta}}{M_{\ell}} \sim \varepsilon^{2}$
- Finding M_{ℓ}

Proof (sketch for the case $2 \alpha>\min _{L}(\beta, \gamma)$):

- $\operatorname{MSE}\left(E^{M L}\right)=\left|\mathbb{E}\left[X_{L}-X\right]\right|^{2}+\sum_{\ell=1}^{L} \frac{1}{M_{\ell}} \operatorname{Var}\left[X_{\ell}-X_{\ell-1}\right] \sim \varepsilon^{2}$
- Balancing the summands: $N_{L}^{-2 \alpha} \sim \varepsilon^{2}$ and $\sum_{\ell=1}^{L} \frac{N_{\ell}^{\beta}}{M_{\ell}} \sim \varepsilon^{2}$
- Finding M_{ℓ} : Minimize $\operatorname{Cost}\left(E^{M L}\right)$ under constraints

- Optimal choice:

Proof (sketch for the case $2 \alpha>\min _{L}(\beta, \gamma)$):

- $\operatorname{MSE}\left(E^{M L}\right)=\left|\mathbb{E}\left[X_{L}-X\right]\right|^{2}+\sum_{\ell=1}^{L} \frac{1}{M_{\ell}} \operatorname{Var}\left[X_{\ell}-X_{\ell-1}\right] \sim \varepsilon^{2}$
- Balancing the summands: $N_{L}^{-2 \alpha} \sim \varepsilon^{2} \quad$ and $\sum_{\ell=1}^{L} \frac{N_{\ell}^{\beta}}{M_{\ell}} \sim \varepsilon^{2}$
- Finding M_{ℓ} :

Minimize $\operatorname{Cost}\left(E^{M L}\right)$ under constraints

$$
\operatorname{Cost}\left(E^{M L}\right) \sim \sum_{\ell=1}^{L} M_{\ell} \cdot \operatorname{Cost}\left(X_{\ell}\right)
$$

Proof (sketch for the case $2 \alpha>\min _{L}(\beta, \gamma)$):

- $\operatorname{MSE}\left(E^{M L}\right)=\left|\mathbb{E}\left[X_{L}-X\right]\right|^{2}+\sum_{\ell=1}^{L} \frac{1}{M_{\ell}} \operatorname{Var}\left[X_{\ell}-X_{\ell-1}\right] \sim \varepsilon^{2}$
- Balancing the summands: $N_{L}^{-2 \alpha} \sim \varepsilon^{2} \quad$ and $\sum_{\ell=1}^{L} \frac{N_{\ell}^{\beta}}{M_{\ell}} \sim \varepsilon^{2}$
- Finding M_{ℓ} : Minimize $\operatorname{Cost}\left(E^{M L}\right)$ under constraints \uparrow

$$
\operatorname{Cost}\left(E^{M L}\right) \sim \sum_{\ell=1}^{L} M_{\ell} \cdot N_{\ell}^{\gamma}
$$

Proof (sketch for the case $2 \alpha>\min _{L}(\beta, \gamma)$):

- $\operatorname{MSE}\left(E^{M L}\right)=\left|\mathbb{E}\left[X_{L}-X\right]\right|^{2}+\sum_{\ell=1}^{L} \frac{1}{M_{\ell}} \operatorname{Var}\left[X_{\ell}-X_{\ell-1}\right] \sim \varepsilon^{2}$
- Balancing the summands: $N_{L}^{-2 \alpha} \sim \varepsilon^{2} \quad$ and $\sum_{\ell=1}^{L} \frac{N_{\ell}^{\beta}}{M_{\ell}} \sim \varepsilon^{2}$
- Finding M_{ℓ} : Minimize $\operatorname{Cost}\left(E^{M L}\right)$ under constraints

$$
\operatorname{Cost}\left(E^{M L}\right) \sim \sum_{\ell=1}^{L} M_{\ell} \cdot N_{\ell}^{\gamma}
$$

- Optimal choice: $\quad M_{\ell} \sim N_{\ell}^{-\frac{\beta+\gamma}{2}} \Rightarrow \operatorname{Cost}\left(E^{M L}\right) \sim \sum_{\ell=1}^{L} N_{\ell}^{\frac{\gamma-\beta}{2}}$

Proof (sketch for the case $2 \alpha>\min _{L}(\beta, \gamma)$):

- $\operatorname{MSE}\left(E^{M L}\right)=\left|\mathbb{E}\left[X_{L}-X\right]\right|^{2}+\sum_{\ell=1}^{L} \frac{1}{M_{\ell}} \operatorname{Var}\left[X_{\ell}-X_{\ell-1}\right] \sim \varepsilon^{2}$
- Balancing the summands: $N_{L}^{-2 \alpha} \sim \varepsilon^{2}$ and $\sum_{\ell=1}^{L} \frac{N_{\ell}^{\beta}}{M_{\ell}} \sim \varepsilon^{2}$
- Finding M_{ℓ} : Minimize $\operatorname{Cost}\left(E^{M L}\right)$ under constraints

$$
\operatorname{Cost}\left(E^{M L}\right) \sim \sum_{\ell=1}^{L} M_{\ell} \cdot N_{\ell}^{\gamma}
$$

- Optimal choice: $M_{\ell} \sim N_{\ell}^{-\frac{\beta+\gamma}{2}} \Rightarrow \operatorname{Cost}\left(E^{M L}\right) \sim \sum_{\ell=1}^{L} N_{\ell}^{\frac{\gamma-\beta}{2}}$
$\rightarrow \beta>\gamma \Rightarrow \ell=1$ is dominating $\Rightarrow \operatorname{Cost}\left(E^{M L}\right) \sim M_{0} N_{0}^{\gamma} \sim \varepsilon^{-2}$,

Proof (sketch for the case $2 \alpha>\min _{L}(\beta, \gamma)$):

- $\operatorname{MSE}\left(E^{M L}\right)=\left|\mathbb{E}\left[X_{L}-X\right]\right|^{2}+\sum_{\ell=1}^{L} \frac{1}{M_{\ell}} \operatorname{Var}\left[X_{\ell}-X_{\ell-1}\right] \sim \varepsilon^{2}$
- Balancing the summands: $\quad N_{L}^{-2 \alpha} \sim \varepsilon^{2}$ and $\sum_{\ell=1}^{L} \frac{N_{\ell}^{\beta}}{M_{\ell}} \sim \varepsilon^{2}$
- Finding M_{ℓ} : Minimize $\operatorname{Cost}\left(E^{M L}\right)$ under constraints

$$
\operatorname{Cost}\left(E^{M L}\right) \sim \sum_{\ell=1}^{L} M_{\ell} \cdot N_{\ell}^{\gamma}
$$

- Optimal choice: $M_{\ell} \sim N_{\ell}^{-\frac{\beta+\gamma}{2}} \Rightarrow \operatorname{Cost}\left(E^{M L}\right) \sim \sum_{\ell=1}^{L} N_{\ell}^{\frac{\gamma-\beta}{2}}$
$\rightarrow \beta>\gamma \Rightarrow \ell=1$ is dominating $\Rightarrow \operatorname{Cost}\left(E^{M L}\right) \sim M_{0} N_{0}^{\gamma} \sim \varepsilon^{-2}$,
$\rightarrow \beta<\gamma \Rightarrow \ell=L$ is dominating $\Rightarrow \operatorname{Cost}\left(E^{M L}\right) \sim M_{L} N_{L}^{\gamma} \sim \varepsilon^{-\frac{\gamma}{\alpha}}$

Proof (sketch for the case $2 \alpha>\min _{L}(\beta, \gamma)$):

- $\operatorname{MSE}\left(E^{M L}\right)=\left|\mathbb{E}\left[X_{L}-X\right]\right|^{2}+\sum_{\ell=1}^{L} \frac{1}{M_{\ell}} \operatorname{Var}\left[X_{\ell}-X_{\ell-1}\right] \sim \varepsilon^{2}$
- Balancing the summands: $\quad N_{L}^{-2 \alpha} \sim \varepsilon^{2}$ and $\sum_{\ell=1}^{L} \frac{N_{\ell}^{\beta}}{M_{\ell}} \sim \varepsilon^{2}$
- Finding M_{ℓ} : Minimize $\operatorname{Cost}\left(E^{M L}\right)$ under constraints

$$
\operatorname{Cost}\left(E^{M L}\right) \sim \sum_{\ell=1}^{L} M_{\ell} \cdot N_{\ell}^{\gamma}
$$

- Optimal choice: $M_{\ell} \sim N_{\ell}^{-\frac{\beta+\gamma}{2}} \Rightarrow \operatorname{Cost}\left(E^{M L}\right) \sim \sum_{\ell=1}^{L} N_{\ell}^{\frac{\gamma-\beta}{2}}$
$\rightarrow \beta>\gamma \Rightarrow \ell=1$ is dominating $\Rightarrow \operatorname{Cost}\left(E^{M L}\right) \sim M_{0} N_{0}^{\gamma} \sim \varepsilon^{-2}$,

$$
\rightarrow \beta<\gamma \Rightarrow \ell=L \text { is dominating } \Rightarrow \operatorname{Cost}\left(E^{M L}\right) \sim M_{L} N_{L}^{\gamma} \sim \varepsilon^{-\frac{\gamma}{\alpha}}
$$

Homework: complete this proof.

Examples

Model:
Wire rope (e.g. overhead power line) in equilibrium

$$
\begin{array}{rlrl}
-u^{\prime \prime}(x) & =f, & \text { for } \quad 0<x<1 & f \\
u(0) & =0, & & \\
u(1) & =0 . & &
\end{array}
$$

Exact solution:

$$
u(x)=\frac{f\left(x-x^{2}\right)}{2}
$$

Model: \quad Wire rope (e.g. overhead power line) in equilibrium

$$
\begin{aligned}
-\left(E u^{\prime}\right)^{\prime}(x) & =f, \quad \text { for } 0<x<1 \quad & & f=\text { gravitation force (const.) } \\
u(0) & =0, & & u=\text { vertical displacement } \\
u(1) & =0 . & & E=\text { Young's Modulus }
\end{aligned}
$$

Exact solution:

$$
u(x)=\frac{f\left(x-x^{2}\right)}{2 E}
$$

Model: \quad Wire rope (e.g. overhead power line) in equilibrium

$$
\begin{aligned}
-\left(E u^{\prime}\right)^{\prime}(x) & =f, \quad \text { for } 0<x<1 \quad & & f=\text { gravitation force (const.) } \\
u(0) & =0, & & u=\text { vertical displacement } \\
u(1) & =0 . & & E=\text { Young's Modulus }
\end{aligned}
$$

Exact solution:

$$
u(x)=\frac{f\left(x-x^{2}\right)}{2 E}
$$

When E is variable...

Model: \quad Wire rope (e.g. overhead power line) in equilibrium

$$
\begin{aligned}
-\left(E u^{\prime}\right)^{\prime}(x) & =f, \quad \text { for } 0<x<1 \quad & & f=\text { gravitation force (const.) } \\
u(0) & =0, & & u=\text { vertical displacement } \\
u(1) & =0 . & & E=\text { Young's Modulus }
\end{aligned}
$$

Exact solution:

$$
u(x)=\frac{f\left(x-x^{2}\right)}{2 E}
$$

When E is variable...

Model:
Wire rope (e.g. overhead power line) in equilibrium

$$
\begin{aligned}
-\left(E u^{\prime}\right)^{\prime}(x) & =f, \quad \text { for } 0<x<1 \quad & & f=\text { gravitation force (const.) } \\
u(0) & =0, & & u=\text { vertical displacement } \\
u(1) & =0 . & & E=\text { Young's Modulus }
\end{aligned}
$$

Exact solution:

$$
u(x)=\frac{f\left(x-x^{2}\right)}{2 E}
$$

When E is variable...

Model:
Wire rope (e.g. overhead power line) in equilibrium

$$
\begin{aligned}
-\left(E u^{\prime}\right)^{\prime}(x) & =f, \quad \text { for } 0<x<1 & & f=\text { gravitation force (const.) } \\
u(0) & =0, & & u=\text { vertical displacement } \\
u(1) & =0 . & & E=\text { Young's Modulus }
\end{aligned}
$$

Exact solution:

$$
u(x)=\frac{f\left(x-x^{2}\right)}{2 E}
$$

When E is variable...

Model:
Wire rope (e.g. overhead power line) in equilibrium

$$
\begin{aligned}
-\left(E u^{\prime}\right)^{\prime}(x) & =f, \quad \text { for } 0<x<1 & & f=\text { gravitation force (const.) } \\
u(0) & =0, & & u=\text { vertical displacement } \\
u(1) & =0 . & & E=\text { Young's Modulus }
\end{aligned}
$$

Exact solution:

$$
u(x)=\frac{f\left(x-x^{2}\right)}{2 E}
$$

When E is variable...

Model:
Wire rope (e.g. overhead power line) in equilibrium

$$
\begin{aligned}
-\left(E u^{\prime}\right)^{\prime}(x) & =f, \quad \text { for } 0<x<1 & & f=\text { gravitation force (const.) } \\
u(0) & =0, & & u=\text { vertical displacement } \\
u(1) & =0 . & & E=\text { Young's Modulus }
\end{aligned}
$$

Exact solution:

$$
u(x)=\frac{f\left(x-x^{2}\right)}{2 E}
$$

When E is variable...

Model:
Wire rope (e.g. overhead power line) in equilibrium

$$
\begin{aligned}
-\left(E u^{\prime}\right)^{\prime}(x) & =f, \quad \text { for } 0<x<1 \quad & & f=\text { gravitation force (const.) } \\
u(0) & =0, & & u=\text { vertical displacement } \\
u(1) & =0 . & & E=\text { Young's Modulus }
\end{aligned}
$$

Exact solution:

$$
u(x, E)=\frac{f\left(x-x^{2}\right)}{2 E}
$$

When E is variable, u can be viewed as a function of x and E.

The variation of E describes e.g. different materials.
Example: Wire rope (conductor) in the electrical overhead line:

- Aluminium
- Steel
- Copper
- Alloys (Aldrey: $99 \% \mathrm{Al}+0.5 \% \mathrm{Mg}+0.5 \% \mathrm{Si}$)

Variations of the proportion $\quad \Rightarrow \quad$ Variations of E.

Typical problem in forward uncertainty propagation
Assuming that statistical variations of E can be estimatec in the fabrication process, is it possible to find probabilistic properties of
(we have the exact solution after all!)

The variation of E describes e.g. different materials.
Example: Wire rope (conductor) in the electrical overhead line:

- Aluminium
- Steel
- Copper
- Alloys (Aldrey: $99 \% \mathrm{Al}+0.5 \% \mathrm{Mg}+0.5 \% \mathrm{Si}$)

Variations of the proportion $\quad \Rightarrow \quad$ Variations of E.

Typical problem in forward uncertainty propagation

Assuming that statistical variations of E can be estimated in the fabrication process, is it possible to find probabilistic properties of the wire rope?

$$
\begin{gathered}
\text { Yes! } \\
\text { (we have the exact solution after all!) }
\end{gathered}
$$

Example: $\quad 1 \leq E \leq 2$, uniformly distributed, i.e. $\quad E \sim \mathcal{U}(1,2)$.

$$
u(x, E)=\frac{x^{2}-x}{2 E}
$$

$$
\text { (here } f=-1 \text { is assumed) }
$$

Example: $\quad 1 \leq E \leq 2$, uniformly distributed, i.e. $\quad E \sim \mathcal{U}(1,2)$.

$$
u(x, E)=\frac{x^{2}-x}{2 E}
$$

$$
\text { (here } f=-1 \text { is assumed) }
$$

Homework:
check these relations!

Mean value: $\quad \mathbb{E}[u](x)=\frac{x^{2}-x}{2} \int_{1}^{2} \frac{d E}{E}=\frac{x^{2}-x}{2} \ln 2$,

Example: $\quad 1 \leq E \leq 2$, uniformly distributed, i.e. $\quad E \sim \mathcal{U}(1,2)$.

$$
u(x, E)=\frac{x^{2}-x}{2 E}
$$

$$
\text { (here } f=-1 \text { is assumed) }
$$

Mean value: $\quad \mathbb{E}[u](x)=\frac{x^{2}-x}{2} \int_{1}^{2} \frac{d E}{E}=\frac{x^{2}-x}{2} \ln 2$,
$\mathbb{E}\left[u^{2}\right](x)=\left(\frac{x^{2}-x}{2}\right)^{2} \int_{1}^{2} \frac{d E}{E^{2}}=\left(\frac{x^{2}-x}{2}\right)^{2} \frac{1}{2}$,

Example: $\quad 1 \leq E \leq 2$, uniformly distributed, i.e. $\quad E \sim \mathcal{U}(1,2)$.

$u(x, E)=\frac{x^{2}-x}{2 E}$
(here $f=-1$ is assumed)

Mean value: $\quad \mathbb{E}[u](x)=\frac{x^{2}-x}{2} \int_{1}^{2} \frac{d E}{E}=\frac{x^{2}-x}{2} \ln 2$,

$$
\mathbb{E}\left[u^{2}\right](x)=\left(\frac{x^{2}-x}{2}\right)^{2} \int_{1}^{2} \frac{d E}{E^{2}}=\left(\frac{x^{2}-x}{2}\right)^{2} \frac{1}{2}
$$

Variance: $\quad \operatorname{Var}[u](x)=\left(\frac{x^{2}-x}{2}\right)^{2}\left(\frac{1}{2}-(\ln 2)^{2}\right)=: \sigma(x)^{2}$,

Example: $\quad 1 \leq E \leq 2$, uniformly distributed, i.e. $\quad E \sim \mathcal{U}(1,2)$.

$$
u(x, E)=\frac{x^{2}-x}{2 E}
$$

$$
\text { (here } f=-1 \text { is assumed) }
$$

Autocorrelation: $\quad \operatorname{Cov}[u](x, y)=\frac{x^{2}-x}{2} \frac{y^{2}-y}{2}\left(\frac{1}{2}-(\ln 2)^{2}\right)$,

Correl. Coefficient:
$r(x, y)=\frac{\operatorname{Cov}[u](x, y)}{\sigma(x) \sigma(y)}=1, \quad$ (perfect Correlation)

Example: $\quad 1 \leq E \leq 2$, uniformly distributed, i.e. $\quad E \sim \mathcal{U}(1,2)$.

$$
u(x, E)=\frac{x^{2}-x}{2 E}
$$

$$
\text { (here } f=-1 \text { is assumed) }
$$

Homework:
check these relations!

Autocorrelation: $\quad \operatorname{Cov}[u](x, y)=\frac{x^{2}-x}{2} \frac{y^{2}-y}{2}\left(\frac{1}{2}-(\ln 2)^{2}\right)$,
Correl. Coefficient: $\quad r(x, y)=\frac{\operatorname{Cov}[u](x, y)}{\sigma(x) \sigma(y)}=1, \quad$ (perfect Correlation)

Example: $\quad 1 \leq E \leq 2$, uniformly distributed, i.e. $\quad E \sim \mathcal{U}(1,2)$.

$$
u(x, E)=\frac{x^{2}-x}{2 E}
$$

$$
\text { (here } f=-1 \text { is assumed) }
$$

Homework:

Autocorrelation: $\quad \operatorname{Cov}[u](x, y)=\frac{x^{2}-x}{2} \frac{y^{2}-y}{2}\left(\frac{1}{2}-(\ln 2)^{2}\right)$,
Correl. Coefficient: $\quad r(x, y)=\frac{\operatorname{Cov}[u](x, y)}{\sigma(x) \sigma(y)}=1, \quad($ perfect Correlation)
Probability Density Function: $\quad \rho_{u(x)}(t) \propto \frac{1}{t^{2}}, \quad \frac{1}{2} \leq t \leq 1$.

Example: $\quad 1 \leq E \leq 2$, uniformly distributed, i.e. $\quad E \sim \mathcal{U}(1,2)$.

$$
\begin{gathered}
u(x, E)=\frac{x^{2}-x}{2 E} \\
\text { (here } f=-1 \text { is assumed) }
\end{gathered}
$$

Homework: check these relations!

Autocorrelation: $\quad \operatorname{Cov}[u](x, y)=\frac{x^{2}-x}{2} \frac{y^{2}-y}{2}\left(\frac{1}{2}-(\ln 2)^{2}\right)$,
Correl. Coefficient: $\quad r(x, y)=\frac{\operatorname{Cov}[u](x, y)}{\sigma(x) \sigma(y)}=1, \quad$ (perfect Correlation)
Probability Density Function: $\quad \rho_{u(x)}(t) \propto \frac{1}{t^{2}}, \quad \frac{1}{2} \leq t \leq 1$.

Why was it possible to find probabilistic properties of the wire rope?

Why was it possible to find probabilistic properties of the wire rope?
Because we have an exact solution! $u(x, E)=\frac{x^{2}-x}{2 E}$

Why was it possible to find probabilistic properties of the wire rope?

Because we have an exact solution!

$$
u(x, E)=\frac{x^{2}-x}{2 E}
$$

... more precisely ...

We know the mapping
$E \mapsto u(x, E)$
in closed form.

Why was it possible to find probabilistic properties of the wire rope?

Because we have an exact solution!

$$
u(x, E)=\frac{x^{2}-x}{2 E}
$$

... more precisely ...

We know the mapping $\quad S:\left\{\begin{aligned} \mathbb{R}_{+} & \rightarrow C^{2}(0,1) \\ E & \mapsto u(\cdot, E)\end{aligned} \quad\right.$ in closed form.
(S is called the solution operator, $f \in C^{0}(0,1)$)

Why was it possible to find probabilistic properties of the wire rope?

Because we have an exact solution!

$$
u(x, E)=\frac{x^{2}-x}{2 E}
$$

... more precisely ...

We know the mapping $\quad S:\left\{\begin{aligned} \mathbb{R}_{+} & \rightarrow C^{2}(0,1) \\ E & \mapsto u(\cdot, E)\end{aligned} \quad\right.$ in closed form.
(S is called the solution operator, $f \in C^{0}(0,1)$)
This is very rare in praxis! The model problem was just too simple:

- The physical domain $D=(0,1)$ was one-dimensional;
- E was homogeneous. What if $E=E(x, \omega)$ varies in space?
- The material law was very simple;
- The solution operator was smooth ...

In practical applications exact evaluation of $u(x, E)$ is out of reach.
Computer approximations:

$$
u(x, E) \approx u_{N}(x, E)=S_{N}(E)
$$

Is it still possible to approximately compute probabilistic properties of the exact solution $u(x, E)$?

Yes, but it is not so easy anymore...

In practical applications exact evaluation of $u(x, E)$ is out of reach.
Computer approximations:

$$
u(x, E) \approx u_{N}(x, E)=S_{N}(E)
$$

Is it still possible to approximately compute probabilistic properties of the exact solution $u(x, E)$?

> Yes, but it is not so easy anymore..

In practical applications exact evaluation of $u(x, E)$ is out of reach.
Computer approximations:

$$
u(x, E) \approx u_{N}(x, E)=S_{N}(E)
$$

Is it still possible to approximately compute probabilistic properties of the exact solution $u(x, E)$?

Yes, but it is not so easy anymore...

Examples of uncertain parameters in applications

1) Pollution in groundwater flow model:

$$
\left\{\begin{aligned}
\mathbf{q} & =-K \nabla p & & \text { Darcy's law } \\
\nabla \cdot \mathbf{u} & =0 & & \text { Mass conservation } \\
\mathbf{q} & =\phi \mathbf{u} & &
\end{aligned}\right.
$$

\mathbf{q} : Darcy flux, $\quad K$: conductivity, $\quad p$: pressure
\mathbf{u} : pore velocity, ϕ : porosity, $\quad \mathbf{x}$: position

Particle transport

$$
\left\{\begin{aligned}
\frac{d \mathbf{x}}{d t} & =\mathbf{u}(\mathbf{x}) \\
\mathbf{x}(\mathbf{0}) & =\mathbf{x}_{0}
\end{aligned}\right.
$$

Examples of uncertain parameters in applications

1) Pollution in groundwater flow model:

$$
\left\{\begin{aligned}
\mathbf{q} & =-K \nabla p & & \text { Darcy's law } \\
\nabla \cdot \mathbf{u} & =0 & & \text { Mass conservation } \\
\mathbf{q} & =\phi \mathbf{u} & &
\end{aligned}\right.
$$

\mathbf{q} : Darcy flux, $\quad K$: conductivity, p : pressure
\mathbf{u} : pore velocity, ϕ : porosity, $\quad \mathbf{x}$: position

Particle transport

$$
\left\{\begin{aligned}
\frac{d \mathbf{x}}{d t} & =\mathbf{u}(\mathbf{x}) \\
\mathbf{x}(\mathbf{0}) & =\mathbf{x}_{0}
\end{aligned}\right.
$$

Random conductivity

$$
K=K(\mathbf{x}, \omega)
$$

Qty of interest:

$$
T(\omega)=\max \{t: \mathbf{x}(\omega) \in \mathbf{D}\}
$$

(particle travel time), $\mathbb{E}[T], \mathbb{V}[T]$

Examples of uncertain parameters in applications

2) Elastic deformation of random media

$$
\left\{\begin{aligned}
\operatorname{div} \sigma+\vec{f} & =0 & & \text { Equilibrium eq. } \\
\sigma_{i j} & =\frac{E}{1+\nu}\left(\frac{\nu \delta_{i j} \varepsilon_{k k}}{1-2 \nu}+\varepsilon_{i j}\right) & & \text { Constitutive eq. } \\
\varepsilon & =\frac{1}{2}\left(\nabla \mathbf{u}+(\nabla \mathbf{u})^{\top}\right) & &
\end{aligned}\right.
$$

σ : stress,
ε : strain,
\mathbf{u} : displacement,
\vec{f} : volume forces, $\quad E$: Young's Modulus, $\quad \nu$: Poisson's ratio
Random material parameters:
Qty of interest:
$E=E(\mathbf{x}, \omega), \quad \nu=\nu(\mathbf{x}, \omega)$,

$$
\sigma_{\max }(\omega)=\max _{x \in D}\left\{\|\operatorname{dev} \sigma\|_{F}\right\}
$$

Examples of uncertain parameters in applications

2) Elastic deformation of random media

$$
\left\{\begin{aligned}
\operatorname{div} \sigma+\vec{f} & =0 & & \text { Equilibrium eq. } \\
\sigma_{i j} & =\frac{E}{1+\nu}\left(\frac{\nu \delta_{i j} \varepsilon_{k k}}{1-2 \nu}+\varepsilon_{i j}\right) & & \text { Constitutive eq. } \\
\varepsilon & =\frac{1}{2}\left(\nabla \mathbf{u}+(\nabla \mathbf{u})^{\top}\right) & &
\end{aligned}\right.
$$

σ : stress,
ε : strain,
\mathbf{u} : displacement,
\vec{f} : volume forces, $\quad E$: Young's Modulus, $\quad \nu$: Poisson's ratio
3) + elasto-plastic deformations: $\quad f_{p l}=\|\operatorname{dev} \sigma\|_{F}-\sqrt{\frac{2}{3}} \sigma_{Y} \leq 0$

Random yield stress:

$$
\sigma_{Y}=\sigma_{Y}(\mathbf{x}, \omega)
$$

Qty of interest:

$$
\operatorname{Vol}\left\{f_{p l}=0\right\}
$$

Examples of uncertain parameters in applications

4) Acoustic scattering of objects having uncertain shape

$$
\begin{aligned}
& \left\{\begin{array}{l}
\Delta u+k^{2} u=0 \quad \text { in } \mathbb{R}^{3} \backslash D \\
\frac{\partial u}{\partial n}-\mathrm{i} k u=g \quad \text { on } \Gamma:=\partial D
\end{array}\right. \\
& u: \text { pressure, } k: \text { wave number }
\end{aligned}
$$

Uncertain shape:

$$
\Gamma=\Gamma(\omega)
$$

Qty of interest:

$$
U_{0}(\omega)=u(\mathbf{x}, \omega) .
$$

(Source: BEM++, T. Betcke et al., www.bempp.org)
5) Rolling tire on the road: Contact with rough surfaces

Courtesy: Prof. Udo Nackenhorst, IBNM, Univ. Hannover

Input parameter: $\quad \psi(x)$ is the road surface profile. (irregular microstructure)

Rough Surface Contact

- The road surface $\psi(x)$ has an irregular microstructure;
- The actual contact zone is a union of a few spots;
- The local microstructure changes as the tire rolls.

Approximation with Polynomials

Free wire rope

Wire rope with an obstacle

Approximation with Polynomials

Free wire rope

Wire rope with an obstacle

Approximation with Polynomials

Free wire rope

Wire rope with an obstacle

Approximation with Polynomials

Free wire rope

Wire rope with an obstacle

Approximation with Polynomials

Free wire rope

Wire rope with an obstacle

Approximation with Polynomials

Free wire rope

Wire rope with an obstacle

Approximation with Polynomials

Free wire rope

Wire rope with an obstacle

Approximation with Polynomials

Free wire rope

Wire rope with an obstacle

Approximation with Polynomials

Free wire rope

Wire rope with an obstacle

Approximation with Polynomials

Free wire rope

Wire rope with an obstacle

Approximation with Polynomials

Example: Contact of an elastic membrane with a rough surface (2d)

$$
\begin{array}{cc}
\left.\begin{array}{c}
-\Delta u \geq f, \quad u \geq \psi, \\
(\Delta u+f)(u-\psi)=0,
\end{array}\right\} & \text { in } D, \\
u=0 & \text { on } \partial D .
\end{array}
$$

Qol: Deformation $u(x, \omega)$; Contact Area $\Lambda(\omega)=\{x: u(x, \omega)=\psi(x, \omega)\}$.

One realization of the obstacle surface $\psi=\psi(x)$:

Obstacle surface
Deformation
Contact set

Obstacle surfaces of variable/random roughness $\psi=\psi(x, \omega)$:

$D_{1}=\Lambda\left(\omega_{2}\right) \cup N\left(\omega_{2}\right)$

Example: Rough obstacle models

 Power spectrum [Persson et al.'05]:$$
\psi(x)=\sum_{q_{0} \leq|q| \leq q_{s}} B_{q}(H) \cos \left(q \cdot x+\varphi_{q}\right)
$$

where $B_{q}(H)=\frac{\pi}{5}\left(2 \pi \max \left(|q|, q_{l}\right)\right)^{-H-1} \rightarrow$

Many materials in Nature and technics obey this law for amplitudes.
$H \sim \mathcal{U}(0,1)$ random roughness $\varphi_{q} \sim \mathcal{U}(0,2 \pi) \quad$ random phase

Forward solver:

Own implementation of MMG (TNNM) [Kornhuber'94,...]

Approximation of $\mathbb{E}[u]$ and $\operatorname{Var}[u]$ of the deform. field $u(x, \omega)$

A realization of the obstacle $\psi^{i}(x)$ and the deformation profile $u_{h}^{i}(x)$

The mean deformation profile $E^{M L}[u]$

The variance of the deformation profile $V^{M L}[u]$

Approximation of $\mathbb{E}[u]$ and $\operatorname{Var}[u]$ of the deform. field $u(x, \omega)$

total error vs. runtime

Approximation of $\mathbb{E}[X]$ and $\operatorname{Var}[X]$ of the contact area $X=|\Lambda|$ bias of the estimator

Estimators for the Variance:
Recall the mean estimator

$$
\begin{aligned}
& E^{M L}[X]:=\sum_{\ell=1}^{L} E_{M_{\ell}}\left[X_{\ell}-X_{\ell-1}\right] \\
& \text { where } \quad E_{M}\left[X_{\ell}\right]:=\frac{1}{M} \sum_{i=1}^{M} X_{\ell}^{i} .
\end{aligned}
$$

Benefits:

Estimators for the Variance:
Recall the mean estimator

$$
\begin{aligned}
& E^{M L}[X]:=\sum_{\ell=1}^{L} E_{M_{\ell}}\left[X_{\ell}\right]-E_{M_{\ell}}\left[X_{\ell-1}\right] \\
& \text { where } \quad E_{M}\left[X_{\ell}\right]:=\frac{1}{M} \sum_{i=1}^{M} X_{\ell}^{i}
\end{aligned}
$$

Benefits:

Estimators for the Variance:

... then define the variance estimator by

$$
\begin{gathered}
V^{M L}[X]:=\sum_{\ell=1}^{L} V_{M_{\ell}}\left[X_{\ell}\right]-V_{M_{\ell}}\left[X_{\ell-1}\right] \\
\text { where } \quad V_{M}\left[X_{\ell}\right]:=\frac{1}{M-1} \sum_{i=1}^{M}\left(X_{\ell}^{i}-E_{M}\left[X_{\ell}\right]\right)^{2} . \\
\end{gathered}
$$

Benefits:

Estimators for the Variance:

... then define the variance estimator by

$$
\begin{gathered}
V^{M L}[X]:=\sum_{\ell=1}^{L} V_{M_{\ell}}\left[X_{\ell}\right]-V_{M_{\ell}}\left[X_{\ell-1}\right] \\
\text { where } \quad V_{M}\left[X_{\ell}\right]:=\frac{1}{M-1} \sum_{i=1}^{M}\left(X_{\ell}^{i}-E_{M}\left[X_{\ell}\right]\right)^{2} . \\
\end{gathered}
$$

Benefits:

- $V^{M L}[X]$ is unbiased, i.e. $\quad \mathbb{E}\left[V^{M L}[X]-\mathbb{V}\left[X_{L}\right]\right]=0$
- Fast one pass stable evaluation formulae (single level in [Pebay'08])

Theorem (a priori estim.: random obstacle problem, [Bierig/AC'15])

Suppose: $\psi \in L^{\infty}\left(\Omega, W^{2, r}\right)$ for some $r>2$
Deterministic fwd solver: $\left\|u_{\ell}-u\right\|_{H^{1}} \lesssim h_{\ell}, \quad$ pw. lin. FE with the Total Work $\sim \ell^{\nu} N_{\ell} \quad\left(N_{\ell} \sim h_{\ell}^{-2}\right.$, i.e. lin. cost $)$.

Then: MLMC with the optimal choice $M_{\ell}:=\left(h_{\ell} / h_{L}\right)^{2}$ satisfies

$$
\left.\begin{array}{rl}
\left\|E^{M L}[u]-\mathbb{E}[u]\right\|_{L^{2}\left(\Omega, H^{1}\right)} \\
\left\|V^{M L}[u]-\mathbb{V}[u]\right\|_{L^{2}\left(\Omega, H^{1}\right)}
\end{array}\right\} \lesssim h_{L} \sqrt{\left|\log h_{L}\right|},
$$

Almost linear complexity for MLMC + MMG.
(Sampling is asymptotically almost for free!)

Theorem (a priori estim.: random obstacle problem, [Bierig/AC'15])

Suppose: $\psi \in L^{2 q}\left(\Omega, W^{2,2}\right)$ and $\frac{1}{p}+\frac{1}{q}=1$
Deterministic fwd solver: $\left\|u_{\ell}-u\right\|_{H^{1}} \lesssim h_{\ell}, \quad$ pw. lin. FE with the Total Work $\sim \ell^{\nu} N_{\ell} \quad\left(N_{\ell} \sim h_{\ell}^{-2}\right.$, i.e. lin. cost $)$.

Then: MLMC with the optimal choice $M_{\ell}:=\left(h_{\ell} / h_{L}\right)^{2}$ satisfies

$$
\begin{aligned}
\left\|E^{M L}[u]-\mathbb{E}[u]\right\|_{L^{2}\left(\Omega, H^{1}\right)} & \lesssim h_{L} \sqrt{\left|\log h_{L}\right|}, \\
\left\|V^{M L}[u]-\mathbb{V}[u]\right\|_{L^{2}\left(\Omega, H^{1}\right)} & \lesssim h_{L}^{\frac{1}{p}}, \quad \text { (using inv. ineq.) } \\
\text { with the Total Work } & \sim L^{\nu+1} N_{L} .
\end{aligned}
$$

Almost linear complexity for MLMC + MMG.
(Sampling is asymptotically almost for free!)

Extension to higher order moments: $\quad \mathcal{M}^{k}[X]:=\mathbb{E}\left[(X-\mathbb{E}[X])^{k}\right]$

$$
\begin{aligned}
& S_{M}^{3}[X]:=\frac{M}{(M-1)(M-2)} \sum_{i=1}^{M}\left(X_{i}-E_{M}[X]\right)^{3} \quad \text { (unbiased) } \\
& S_{M}^{k}[X]:=\quad \frac{1}{M} \quad \sum_{i=1}^{M}\left(X_{i}-E_{M}[X]\right)^{k} \quad \text { (small bias) }
\end{aligned}
$$

$X=|\Lambda|$, contact area
Notice:

$$
|\Lambda| \leq|D|
$$

[Bierig, Chernov, JSPDE'16]

Estimation of the PDF ρ_{X} of the contact area $X=|\Lambda|$ by the Maximum Entropy method

The peak(s) corresponds to ca. 28.2% of the membrane in contact with the surface
More experiments and rigorous error analysis in [Bierig/Chernov, JCP'16]

Estimation of the PDF ρ_{X} of the contact area $X=|\Lambda|$ by the Maximum Entropy method

The peak(s) corresponds to ca. 28.2% of the membrane in contact with the surface
More experiments and rigorous error analysis in [Bierig/Chernov, JCP'16]

Estimation of the PDF ρ_{X} of the contact area $X=|\Lambda|$ by the Maximum Entropy method

The peak(s) corresponds to ca. 28.2% of the membrane in contact with the surface More experiments and rigorous error analysis in [Bierig/Chernov, JCP'16]

Towards adaptivity - adaptive selection of

- the number of moments R
- the interval of approximation $[a, b]$

Test example:
Log-normal distribution with $\mu=0$ and variable σ ($=0.5$ and 0.2)
Estimation of moments μ_{1}, \ldots, μ_{R} by MC with 10^{8} samples
Stopping parameters for the Newton Method:

- $\Delta \lambda \leq 10^{-9}$ (convergence)
- $\Delta \lambda \geq 10^{3}$ (no convergence)
- \#iter ≥ 1000 (no convergence)

Legendre Moments:

Legendre Moments:

- Stable for $R \leq 8$
- Entropy is may decrease even when the Newton Method does not converge

Legendre Moments: - Stable for $R \leq 8$

- Entropy is may decrease even when the Newton Method does not converge

Monomial Moments:

Monomial Moments:

Monomial Moments:

Monomial Moments:

Monomial Moments:

- Unstable for $R \geq 5$

Monomial Moments:

- Unstable for $R \geq 5$

Fourier Moments:

- Stable
- Entropy is monotonously decreasing

Fourier Moments:

- Stable
- Entropy is monotonously decreasing

- Stable
- Entropy is monotonously decreasing

Fourier Moments:

- Stable
- Entropy is monotonously decreasing

Fourier Moments:

- Stable
- Entropy is monotonously decreasing

- Stable
- Entropy is monotonously decreasing

Fourier Moments:

- Stable
- Entropy is monotonously decreasing

Breaking convergence for the Fourier basis by choosing a more concentrated density!
e.g. log-normal with $\mu=0, \sigma=0.2$

Fourier Moments ($\sigma=0.2,[a, b]=[0,12]$):

- Remain stable even without convergence!
- Entropy is still monotonously decreasing!

Fourier Moments ($\sigma=0.2,[a, b]=[0,12]$):

- Remain stable even without convergence!
- Entropy is still monotonously decreasing!

Fourier Moments ($\sigma=0.2,[a, b]=[0,12]$):

- Remain stable even without convergence!
- Entropy is still monotonously decreasing!

Fourier Moments ($\sigma=0.2,[a, b]=[0,12]$):

- Remain stable even without convergence!
- Entropy is still monotonously decreasing!

Fourier Moments ($\sigma=0.2,[a, b]=[0,12]$):

- Remain stable even without convergence!
- Entropy is still monotonously decreasing!

Fourier Moments ($\sigma=0.2,[a, b]=[0,12]$):

- Remain stable even without convergence!
- Entropy is still monotonously decreasing!

Fourier Moments ($\sigma=0.2,[a, b]=[0,12]$):

- Remain stable even without convergence!
- Entropy is still monotonously decreasing!

Fourier Moments ($\sigma=0.2,[a, b]=[0,12]$):

- Remain stable even without convergence!
- Entropy is still monotonously decreasing!

Fourier Moments ($\sigma=0.2,[a, b]=[0,12]$):

- Remain stable even without convergence!
- Entropy is still monotonously decreasing!

Fourier Moments ($\sigma=0.2,[a, b]=[0,12]$):

- Remain stable even without convergence!
- Entropy is still monotonously decreasing!

Fourier Moments ($\sigma=0.2,[a, b]=[0,12]$):

- Remain stable even without convergence!
- Entropy is still monotonously decreasing!

Fourier Moments ($\sigma=0.2,[a, b]=[0,12]$):

- Remain stable even without convergence!
- Entropy is still monotonously decreasing!

Regain stability of the Legendre basis by choosing a smaller approximation interval!

$$
\text { e.g. }[a, b]=[0,4]
$$

Legendre Moments ($\sigma=0.2,[a, b]=[0,4]$):

- Still quite stable even without convergence!
- Entropy is still monotonously decreasing!

- Still quite stable even without convergence!
- Entropy is still monotonously decreasing!

- Still quite stable even without convergence!
- Entropy is still monotonously decreasing!

- Still quite stable even without convergence!
- Entropy is still monotonously decreasing!

- Still quite stable even without convergence!
- Entropy is still monotonously decreasing!

- Still quite stable even without convergence!
- Entropy is still monotonously decreasing!

- Still quite stable even without convergence!
- Entropy is still monotonously decreasing!

- Still quite stable even without convergence!
- Entropy is still monotonously decreasing!

- Still quite stable even without convergence!
- Entropy is still monotonously decreasing!

- Still quite stable even without convergence!
- Entropy is still monotonously decreasing!

- Still quite stable even without convergence!
- Entropy is still monotonously decreasing!

- Still quite stable even without convergence!
- Entropy is still monotonously decreasing!

Legendre Moments ($\sigma=0.2,[a, b]=[0,4]$, semilog):

- Oscillations in the negative domain
- \Rightarrow stability of the density

Legendre Moments ($\sigma=0.2,[a, b]=[0,4]$, semilog):

- Oscillations in the negative domain

- \Rightarrow stability of the density

Legendre Moments ($\sigma=0.2,[a, b]=[0,4]$, semilog):

- Oscillations in the negative domain

- \Rightarrow stability of the density

Legendre Moments ($\sigma=0.2,[a, b]=[0,4]$, semilog):

- Oscillations in the negative domain

- \Rightarrow stability of the density

Legendre Moments ($\sigma=0.2,[a, b]=[0,4]$, semilog):

- Oscillations in the negative domain

- \Rightarrow stability of the density

Legendre Moments ($\sigma=0.2,[a, b]=[0,4]$, semilog):

- Oscillations in the negative domain

- \Rightarrow stability of the density

Legendre Moments ($\sigma=0.2,[a, b]=[0,4]$, semilog):

- Oscillations in the negative domain

- \Rightarrow stability of the density

Legendre Moments ($\sigma=0.2,[a, b]=[0,4]$, semilog):

- Oscillations in the negative domain

- \Rightarrow stability of the density

Legendre Moments ($\sigma=0.2,[a, b]=[0,4]$, semilog):

- Oscillations in the negative domain

- \Rightarrow stability of the density

Legendre Moments ($\sigma=0.2,[a, b]=[0,4]$, semilog):

- Oscillations in the negative domain
- \Rightarrow stability of the density

Legendre Moments ($\sigma=0.2,[a, b]=[0,4]$, semilog):

- Oscillations in the negative domain
- \Rightarrow stability of the density

Legendre Moments ($\sigma=0.2,[a, b]=[0,4]$, semilog):

- Oscillations in the negative domain
- \Rightarrow stability of the density

Legendre Moments ($\sigma=0.2,[a, b]=[0,4]$, semilog):

- Oscillations in the negative domain
- \Rightarrow stability of the density

Legendre Moments ($\sigma=0.2,[a, b]=[0,4]$, semilog):

- Oscillations in the negative domain
- \Rightarrow stability of the density

Legendre Moments ($\sigma=0.2,[a, b]=[0,4]$, semilog):

- Oscillations in the negative domain
- \Rightarrow stability of the density

Legendre Moments ($\sigma=0.2,[a, b]=[0.3,3]$):

- Is stable and convergent for a bigger range $R \leq 14$!

Legendre Moments ($\sigma=0.2,[a, b]=[0.3,3]$):

- Is stable and convergent for a bigger range $R \leq 14$!

Legendre Moments ($\sigma=0.2,[a, b]=[0.3,3]$):

- Is stable and convergent for a bigger range $R \leq 14$!

Legendre Moments ($\sigma=0.2,[a, b]=[0.3,3]$):

- Is stable and convergent for a bigger range $R \leq 14$!

Legendre Moments ($\sigma=0.2,[a, b]=[0.3,3]$):

- Is stable and convergent for a bigger range $R \leq 14$!

Legendre Moments ($\sigma=0.2,[a, b]=[0.3,3]$):

- Is stable and convergent for a bigger range $R \leq 14$!

Legendre Moments ($\sigma=0.2,[a, b]=[0.3,3]$):

- Is stable and convergent for a bigger range $R \leq 14$!

Legendre Moments ($\sigma=0.2,[a, b]=[0.3,3]$):

- Is stable and convergent for a bigger range $R \leq 14$!

Legendre Moments ($\sigma=0.2,[a, b]=[0.3,3]$):

- Is stable and convergent for a bigger range $R \leq 14$!

Legendre Moments ($\sigma=0.2,[a, b]=[0.3,3]$):

- Is stable and convergent for a bigger range $R \leq 14$!
- Entropy is monoton. decr. (stat. accuracy of MC is reached?)

Legendre Moments ($\sigma=0.2,[a, b]=[0.3,3]$):

- Is stable and convergent for a bigger range $R \leq 14$!
- Entropy is monoton. decr. (stat. accuracy of MC is reached?)

Legendre Moments ($\sigma=0.2$, $[a, b]=[0.3,3]$):

- Is stable and convergent for a bigger range $R \leq 14$!
- Entropy is monoton. decr. (stat. accuracy of MC is reached?)

Legendre Moments ($\sigma=0.2,[a, b]=[0.3,3]$):

- Is stable and convergent for a bigger range $R \leq 14$!
- Entropy is monoton. decr. (stat. accuracy of MC is reached?)

Legendre Moments ($\sigma=0.2,[a, b]=[0.3,3]$):

- Is stable and convergent for a bigger range $R \leq 14$!
- Entropy is monoton. decr. (stat. accuracy of MC is reached?)

1. C. Bierig and A. Chernov, Convergence analysis of multilevel Monte Carlo variance estimators and application for random obstacle problems. Numer. Math. 130 (2015), no. 4, 579-613
2. C. Bierig and A. Chernov, Estimation of arbitrary order central statistical moments by the multilevel Monte Carlo Method. Stoch. Partial Differ. Equ. Anal. Comput. 4 (2016), no. 1, 3-40
3. C. Bierig and A. Chernov, Approximation of probability density functions by the Multilevel Monte Carlo Maximum Entropy method. J. Comput. Physics 314 (2016), 661-681
4. C. Bierig, Approximation of central moments and PDFs by the multilevel Monte Carlo method with applications to variational inequalities. Dissertation, Univ. Oldenburg, 2016

Many open questions...

1. C. Bierig and A. Chernov, Convergence analysis of multilevel Monte Carlo variance estimators and application for random obstacle problems. Numer. Math. 130 (2015), no. 4, 579-613
2. C. Bierig and A. Chernov, Estimation of arbitrary order central statistical moments by the multilevel Monte Carlo Method. Stoch. Partial Differ. Equ. Anal. Comput. 4 (2016), no. 1, 3-40
3. C. Bierig and A. Chernov, Approximation of probability density functions by the Multilevel Monte Carlo Maximum Entropy method. J. Comput. Physics 314 (2016), 661-681
4. C. Bierig, Approximation of central moments and PDFs by the multilevel Monte Carlo method with applications to variational inequalities. Dissertation, Univ. Oldenburg, 2016

Many open questions...

Thank you for your attention!

