Complex dynamical systems and our brain

Claudius Gros Dimitrije Marković, Mathias Linkerhand, Rodrigo Echeveste, Guillermo Ludueña

Institute for Theoretical Physics Goethe University Frankfurt, Germany

dynamical systems and physics _

classical mechanics / the brain

$$\dot{x}_i = f_i(x_1, \dots, x_N | \gamma_1, \dots, \gamma_M)$$

dynamical variables: x_i
 parameters: y_j

• Newton: $\dot{x} = v$ $\dot{v} = F/m$

tranjectories in phase space: $(\phi, \dot{\phi})$ pendulum $\ddot{\phi} = -\gamma \dot{\phi} - \sin \phi$

the brain as a complex dynamical system

- slow & fast dynamical variables
- diffusive emotional control

generating functional for dynamical networks

- polyhomeostasis / synaptic flux optimization
- transient state dynamics

perspective

complexity barriers in the sciences

100 billion neurons ____

≈ 10⁴ inputs (synapses) per neuron input (dentrites)
output (axon)

output signal: soliton along axon (spike)

[Wikipedia]

neural information processing_

- * neural spike
- neural firing rate y_i(t)
 number of spikes per time

states of the mind

- * perception / thoughts / actions
- * consciousness

*

. . .

» emerging from the interaction of billions of neurons «

neural constraints _

energy : (20 - 40)% of body

- resources : proteins, ions ▷ transport from soma
- connectivity : space/resource limited > high turnover (50 - 80)% (daily)
- computing power : neurons are slow ▷ massively parallel ▷ docisons within 100
 - ▷ decisons within 100 cycles

multitude of time scales _____

neural time scales

individual spikes : (2 - 5) ms firing rate : (1 - 100) Hz synaptic plasticity : ms-days neuromodulation : 100 ms-min

neural memory

short/long-term memory : modification of of synaptic strengths

> working memory : transiently stable neural firing patters (attractors)

episodic memory : through the Hippocampus (subcortical)

neural working regimes _

stabilization of working regimes

- slow adaption of parameter (metalearning)
- necessary for any complex dynamical system

(neuro-)transmitters and modulators ____

trans-synaptic information transmission is chemical

GABA: inhibitory glutamate: excitatory

neuromodulator_

modulating

synaptic plasticity

neural thresholds, gains, . . .

- ★ norepinephrine
- ★ dopamine
- \star serotonin
- ★ choline, oxytocin, ...

[Physiological Reviews]

no direct cognitive information processing - diffusive control

diffusive volume control ____

dopamine neurons

- activated by other neurons 'cognitively'
- have vast projections
 '200.000 synapses'
- no individual target neurons 'volume control'
- encoding reward, surprise, ...

[Frontiers in Computational Neuroscience]

neuromodulation $\stackrel{\circ}{=}$ diffusive control/signaling

working regime stablization selection

neuromodulator & emotions _

qualia of emotions proprioceptional?

» diffusive emotional control «

the brain as a dynamical system

modern view

- * internal dynamics modulated (and not driven) by sensory input
- neuromodulation provides a very highy flexibility of working regimes in higher cortical areas

the brain as a complex dynamical system

- slow & fast dynamical variables
- diffusive emotional control

generating functional for dynamical networks

- polyhomeostasis / synaptic flux optimization
- transient state dynamics

perspective

complexity barriers in the sciences

the control problem _

model building for complex systems

- * potentially large numbers of control parameters
- * high dimensional phase space

generating equations of motion ____

objective function / generating functional F

$$\dot{x} \sim -\frac{\partial F}{\partial x}$$
 $\dot{\gamma} \sim -\frac{\partial F}{\partial \gamma}$

* dimensional reduction of control problem

self-organization vs. control ____

classical self-organization

colony of Paenibacillus vortex bacteria

[Wikipedia]

guided self-organization

- guiding/controlling self-organizing processes
- ▷ here: using generating functionals

polyhomeostatic optimization _

homeostasis

• a single scalar quantity

blood-sugar level hormonal levels body temperature

airplane velocity furnace temperature

polyhomeostasis

. . . .

multiple scalar quantities

» keep in balance «

» keep in relative balance «

allocation & polyhomeostasis _

time allocation

individual target distribution functions

- e.g. 60% working
 20% socializing
 20% eating / drinking
- dynamical process
 - $\hat{=}$ time allocation
 - optimization of target distribution function

time allocation of neural activity _

neural firing rate

 achieve maximal information content transmission

firing-rate distribution

$$p(y) = \frac{1}{T} \int_0^T \delta(y - y(t - \tau)) d\tau$$

Shannon (information) entropy

$$H[p] = -\int dy p(y) \log p(y) \ge 0$$

maximal information distribution __

maximal Shannon entropy H[p]

no constraints $\rightarrow p(y) \sim \text{const.}$ given mean $\rightarrow p_{\mu}(y) \sim \exp(-y/\mu)$,

$$\mu = \int y \, p(y) \, dy$$

target firing-rate distribution

(polyhomeostasis)

Kullback-Leibler divergence

$$D(p, p_{\mu}) = \int p(y) \log \left(\frac{p(y)}{p_{\mu}(y)}\right) dy \ge 0$$

 asymmetric measure for the distance of two probability distribution functions

intrinsic plasticity_

adaption of internal neural parameters

input

output

via non-linear neural transfer function

intrinsic parameters ____

minimization of Kullback-Leibler divergence

$$D_{a,b}(p,p_{\mu}) = \int p(y) \log \left(\frac{p(y)}{p_{\mu}(y)}\right) dy \qquad y(x) = \frac{1}{e^{-a(x-b)} + 1}$$

• mimimisation of D with respect to a, b

stochastic adaption rules ____

functional dependence on input statistics

• distributions of input / output p(x) / p(y)

$$D = \int p(y) \log \left(\frac{p(y)}{p_{\mu}(y)}\right) dy \equiv \int p(x) d(x) dx$$

with

$$p(y) dy = p(x) dx,$$
 $d(x) \equiv \log(p) - \log(\partial y / \partial x) - \log(p_{\mu})$

adaption rules for all input statistics

$$[\delta D = 0, \forall p(x)] \implies \delta d = 0$$

stochastic adaption rules_

instantaneous adaption

$$\frac{d}{dt}a = -\epsilon_a \frac{\partial d(x)}{\partial a}$$

- average over time $\hat{=}$ average over p(x)
- adaption rate ϵ_a

stochastic adaption rules

$$\frac{da}{dt} \propto (1 - 2y + y(1 - y)/\mu)(x - b) + \frac{1}{a}$$
$$\frac{db}{dt} \propto (1 - 2y + y(1 - y)/\mu)(-a)$$
[Triesch, '05]

autapse: self-coupled neuron_

polyhomeostatic optimization induces continuous, self-contained neural activity

▷ limiting cycle

network of polyhomeostatic neurons _

self-organized chaos

spontaneous intermittent bursting

'guided self-organization'

transient state dynamics ____

$$w_{ij} = \frac{1}{N_{\rho}} \sum_{\alpha} \xi_{i}^{(\alpha)} \xi_{j}^{(\alpha)}$$

for convenience
Hopfield patterns: $\xi_{i}^{(\alpha)}$
overlap firing $y_{i} - \xi_{i}^{(\alpha)}$ patterns
$$\frac{\text{Linkerhand & Gros, MMCS '13]}{100}$$

competing objective functions ____

bursting transient state dynamics

target activtiy $\mu = 0.15$ $\langle \xi_i^{(\alpha)} \rangle = 0.3$ mean activity of attractors

⇒ guiding self-organization

synaptic flux _

$$y(x) = \frac{1}{e^{-a(x-b)}+1}$$
 $x = \sum_{j} w_{j}(y_{j} - \bar{y}_{j})$

synaptic plasticity

$$\dot{w}_j = \ldots$$

- Hebbian learning $\dot{w}_i \propto y(y_i - \bar{y}_i)$
- avoid synaptic runaway growth $\sum_{j} (w_j)^2 \rightarrow \text{const.}$

Fisher information _____

$$F = \int dy p(y) \left(\frac{\partial}{\partial \theta} \log p_{\theta}(y)\right)^2$$

measures the sensibility of a probability distribution p(y) with respect to a parameter θ

synaptic flux operator

$$\frac{\partial}{\partial \theta} = \sum_{j} w_{j} \frac{\partial}{\partial w_{j}}$$

minimisation of Fisher information

 $\dot{w}_j = \epsilon_w G(x) H(x) (y_j - \bar{y}_j)$

» self-limiting Hebbian learning rule «

synaptic flux optimization _

$$\dot{w}_j = \epsilon_w G(x) H(x) (y_j - \bar{y}_j)$$

pre-synaptic Hebbian post-synaptic Hebbian post-synaptic self-limiting

$$(y_j - \bar{y}_j)$$

$$H(x) = (2y - 1) + 2x(1 - y)y$$

$$G(x) = 2 + x(1 - 2y)$$

$$\dot{w}_j \propto \begin{cases} -(2+x)(y_j - \bar{y}_j) & (y=0) \\ (2-x)(y_j - \bar{y}_j) & (y=1) \end{cases}$$

miminisation of Fisher information for synaptic flux

Hebbianself-limiting

principal component analysis _

binary classification _

the brain as a complex dynamical system

- slow & fast dynamical variables
- diffusive emotional control

generating functional for dynamical networks

- polyhomeostasis / synaptic flux optimization
- transient state dynamics

perspective

complexity barriers in the sciences

record life expectancy_

fast or slow?

- 2.4 years / decade
- revolutions:
 - hygiene
 - immunology
 - antibiotics
 - technological medicine

- . . .

complexity barrier

devoting exponentially growing resources to medical research and healthcare ...

... leads to a linear increase in life expectancy

weather forecast.

computer resources increase exponentiall

chaotic components

C. Gros, *Pushing the complexity barrier: diminishing returns in the sciences* Complex Systems **21**, 183 (2012)

C. Gros, Forschungsförderung quo vadis – Effizienz und Komplexitätsbarrieren in den Wissenschaften Forschung & Lehre, April 2013

small is beautiful ____

science funding

» smaller science projects are generically more efficient «

(law of diminishing returns)

the brain as a complex dynamical system

- slow & fast dynamical variables
- diffusive emotional control

generating functional for dynamical networks

- polyhomeostasis / synaptic flux optimization
- transient state dynamics

perspective

complexity barriers in the sciences