A statistical physics approach to compressed sensing or $y=A x$ revisited

Florent Krzakala ESPCI, \& CNRS

in collaboration with
Jean Barbier (ESPCI), Emmanuelle Gouillart (Saint-Gobain), Marc Mézard (ENS), François Sausset (LPTMS) Yifan Sun (ESPCI) and Lenka Zdeborová (IPhT Saclay)

Compressed sensing or $y=A x$ revisited

- What is compressed sensing?
- What is the link between statistical physics and compressed sensing?
- How can one use statistical physics to improve on compressed sensing technics?

Compressed sensing or $y=A x$ revisited

- What is compressed sensing?
- What is the link between statistical physics and compressed sensing?
- How can one use statistical physics to improve on compressed sensing technics?

What is compressed sensing?

From 10^{6} wavelet coefficients, keep 25.000
Most signal of interest are sparse in an appropriated basis
\Rightarrow Exploited for data compression (PPEG2000).

What is compressed sensing?

From 10^{6} wavelet coefficients, keep 25.000
Most signal of interest are sparse in an appropriated basis \Rightarrow Exploited for data compression (PPEG2000).

Why do we record a huge amount of data, and then keep only the important bits?

Couldn't we record only the relevant information directly?

What is compressed sensing?

Why do we record a huge amount of data, and then keep only the important bits?

Couldn't we record only the relevant information directly?

Compressed Sensing

I) Record directly in compressed form (gain of time and storage)
2) Reconstruct the original signal afterwards

What is compressed sensing?

Why do we record a huge amount of data, and then keep Google scholar compressed sensing
 - Rechercher sur le Web Rechercher les pages en Français

Scholar date indifférente \uparrow inclure les citations $\uparrow \Delta$ créer une alerte par e-mail

Conseil : Recherchez des résultats uniquement en français. Vous pouvez indiquer votre langue de recherche sur la page F

Compressed sensing

DL Donoho - Information Theory, IEEE Transactions on, 2006 - ieeexplore.ieee.org Abstract Suppose x is an unknown vector in Ropf m (a digital image or signal); we plan to measure n general linear functionals of x and then reconstruct. If x is known to be compressible by transform coding with a known transform, and we reconstruct via the ...
Cité 4384 fois - Autres articles - findit@espci - Les 46 versions

What is compressed sensing?

Why do we record a huge amount of data, and then keep Google scholar compressed sensing
 - Rechercher sur le Web Rechercher les pages en Français

Scholar date indifférente \uparrow inclure les citations $\uparrow \Delta$ Créer une alerte par e-mail

Conseil : Recherchez des résultats uniquement en français. Vous pouvez indiquer votre langue de recherche sur la page F

Compressed sensing

DL Donoho - Information Theory, IEEE Transactions on, 2006 - ieeexplore.ieee.org Abstract Suppose x is an unknown vector in Ropf m (a digital image or signal); we plan to measure n general linear functionals of x and then reconstruct. If x is known to be compressible by transform coding with a known transform, and we reconstruct via the ... Cité 4384 fois - Al res articles - findit@espci - Les 46 versions

Teaser:

An example from magnetic resonance imaging

Left: image acquired with CS Acceleration by a factor 2.5

Possible applications

- Rapid Magnetic Resonance Imaging
- Image acquisition (single-pixel camera)
- DNA microarrays
- Group testing
- Fast data compression
- Herschel spacial telescope
- Compressed Sensing Microscopes
- Sparse Principal Component Analysis
- Compressed quantum state tomography

How does compressed sensing work?

vector of size M

How does compressed sensing work?

M measurements
M linear operations on the vector

$$
\vec{y}=\left(\begin{array}{c}
y^{1} \\
\cdot \\
\cdot \\
\cdot \\
y^{M}
\end{array}\right)
$$

vector of size M

$$
M\{y=
$$

Image I

How does compressed sensing work?

M measurements
M linear operations on the vector

$$
\vec{y}=\left(\begin{array}{c}
y^{1} \\
\cdot \\
\cdot \\
\cdot \\
y^{M}
\end{array}\right)
$$

vector of size M

$$
M\{y=
$$

Image I

$$
\begin{aligned}
& \text { How does compressed sensing work? } \\
& \text { M measurements } \\
& M \text { linear operations on the vector } \\
& \vec{y}=\left(\begin{array}{c}
y^{1} \\
\cdot \\
\cdot \\
\cdot \\
y^{M}
\end{array}\right) \\
& \text { vector of size } M \\
& M\left\{\begin{array}{l}
y=\underbrace{}_{M \times N \text { matrix }}
\end{array}\right. \\
& \text { vector of size }
\end{aligned}
$$

Problem: you know y and G, how to reconstruct I ?

How does compressed sensing work?

M measurements
M linear operations on the vector

vector of size M

$$
M\left\{\begin{array}{l}
\underline{G}=\frac{\square}{M \times N \text { matrix }}
\end{array}\right.
$$

Image I

ctor of size
$N=n \times n$

Problem: you know y and G, how to reconstruct I ? If $M<N$ under-constrained system of equations

How does compressed sensing work?

M measurements
M linear operations on the vector

$$
\vec{y}=\left(\begin{array}{c}
y^{1} \\
\cdot \\
\cdot \\
\cdot \\
y^{M}
\end{array}\right)
$$

vector of size M

$$
M\{y=
$$

Image I

How does compressed sensing work?

M measurements
M linear operations on the vector

vector of size M

$$
M\left\{\begin{array}{l}
\mathrm{G} \\
\\
M \times N \text { matrix }
\end{array}\right.
$$

Image I

Compressed sensing input:
The signal is sparse in an appropriate basis

How does compressed sensing work?

How does compressed sensing work?

$$
\left.\begin{array}{l}
\text { M measurements } \\
\text { M linear operations on the vector } \\
y^{1} \\
\cdot \\
\cdot \\
\cdot \\
y^{M}
\end{array}\right)
$$

How does compressed sensing work?

M measurements
M linear operations on the vector vector of size M

$N \times N$ matrix Direct and inverse Wavelet transforms

The problem to solve is now

$$
\vec{y}=F \vec{x}
$$

with $F=G \psi$ $F=M \times N$ matrix

Image I

nxn pixels
vector of size

$$
N=n \times n
$$

$=\left(\begin{array}{c}I^{1} \\ \cdot \\ \cdot \\ \cdot \\ \cdot \\ I^{N}\end{array}\right)$

Sparse vector of size $N=n \times n$

The problem to
solve is now
$\vec{y}=F \vec{x}$
with $F=G \psi$
$F=M \times N$ matrix

- Need to find a sparse solution of an under-constrained set of linear equations
- Ideally works as long as $M>R$
- Robust to noise

The reconstruction problem:

 Inverting an underconstrained linear systemConsider a system of linear measurements

Measurements

$$
y=\left(\begin{array}{c}
y^{1} \\
\cdot \\
y^{M}
\end{array}\right)
$$

$$
F=M \times N \text { matrix }
$$

The problem: $y=F x$, find x

Generically: o if $M=N$
Unique solution obtained by inversion $\quad x=F^{-1} y$

Generically: © if $M=N$
Unique solution obtained by inversion $\quad x=F^{-1} y$

- if $M>N$ solution obtained from the inversion of a $N \times N$ submatrix of F with full rank

NB: too many equations, redundant system, but consistent because the y measurements are obtained as $y=F x$

The problem: $y=F x$, find x

Generically: © if $M<N$

Not enough measurements to determine the signal x from its linear transform y

Generically: © if $M<N$

Not enough measurements to determine the signal x from its linear transform y as number of unknowns (N)

The problem: $y=F x$, find x

- if $M<N$ but x is sparse (only R of its components

The problem: $y=F x$, find x

- if $M<N$ but x is sparse (only R of its components are $\neq 0$)

R non zero
N-R zero
- if $M<N$ but x is sparse (only R of its components are $\neq 0$)

R non zero
N-R zero

CLAIM:To invert, you need as many measurements (M) as number of unknown (R)

The problem: $y=F x$, find x

- if $M<N$ but x is sparse (only R of its components are $\neq 0$)

R non zero
N-R zero

CLAIM:To invert, you need as many measurements (M) as number of unknown (R)

If $R<M<N$: the reconstruction of the signal x from the measurement y is possible

The problem: $y=F x$, find x

- if $M<N$ but x is sparse (only R of its components are $\neq 0$)

R non zero
N-R zero

A 'simple’ solution: guess the positions where $x_{i} \neq 0$

The problem: $y=F x$, find x

- if $M<N$ but x is sparse (only R of its components

e.g.

A 'simple’ solution: guess the positions where $x_{i} \neq 0$

$$
\text { Solve : } y^{\mu}=\sum_{i=1}^{R} G^{\mu i} x_{i} \quad \mu=1, \ldots, M
$$

$R<M \Longrightarrow$ too many equations
generically inconsistent (no solution), except if the guess of locations of $x_{i} \neq 0$ was correct

The problem: $y=F x$, find x

- if $M<N$ but x is sparse (only R of its components

e.g.
$R<\Delta \begin{aligned} & \binom{N}{R} \text { possible guesses } \\ & \text { Long, but finite time... }\end{aligned}$

Compressed Sensing

One can reconstruct a N-dimensional sparse signal with R non-zero components from $N>M>R$ measurements

Compressed Sensing

One can reconstruct a N-dimensional sparse signal with R non-zero components from $N>M>R$ measurements

- Less measurements (gain of time and precision)

Compressed Sensing

One can reconstruct a N-dimensional sparse signal with R non-zero components from $N>M>R$ measurements

- Less measurenents (gain of time and precision)
- Data already compressed (gain of memory storage)

Compressed Sensing

One can reconstruct a N-dimensional sparse signal with R non-zero components from $N>M>R$ measurements

- Less measurements (gain of time and precision)
- Data already compressed (gain of memory storage)
- Price to pay: a reconstruction algorithm is needed

Compressed Sensing

One can reconstruct a N-dimensional sparse signal with R non-zero components from $N>M>R$ measurements

- Less measurements (gain of time and precision)
- Data already compressed (gain of memory storage)
- Price to pay: a reconstruction algorithm is needed

The "simple" algorithm we have presented is too slow! (need to try exponentially many cases)

Compressed Sensing

One can reconstruct a N-dimensional sparse signal with R non-zero components from $N>M>R$ measurements

- Less measurements (gain of time and precision)
- Data already compressed (gain of memory storage)
- Price to pay: a reconstruction algorithm is needed

The goal of CS theory:

Determine a sensing matrix F and a reconstruction algorithm such that the reconstruction is possible in practice

A phase diagram

State of the art in CS

- Incoherent samplings (i.e. a random matrix F)
- Reconstruction by minimizing the $L_{\text {I }}$ norm $\|\vec{x}\|_{L 1}=\sum_{i}\left|x_{i}\right|$

Candès \& Tao (2005)
Donoho and Tanner (2005)

State of the art in CS

State of the art in CS

Reconstruction limited by the Donoho-Tanner transition for the $L_{\text {I }}$ norm minimization

Example: measuring a picture

One measurement (scaling product with a random pattern)

- Each measurement touches every part of the underlying signal/image

Example: measuring a picture

Many measurements (scaling product with many random patterns)

Example: measuring a picture

Random matrix

G

Measurements

Example: measuring a picture

- Take $\boldsymbol{K}=\mathbf{9 6 0 0 0}$ incoherent measurements $\boldsymbol{y}=\mathbf{G I}$
- Solve

$$
\min \|\mathbf{x}\|_{\ell_{1}} \text { subject to } G \Psi \mathbf{x}=\boldsymbol{y}
$$

$\Psi=$ wavelet transform

original (25 k wavelets)

perfect recovery

Compressed Sensing:
 A (short!)review of the present litterature:

- Record data already in a compressed form
- Less measurements (faster, more precise)...
- ... but need for a reconstruction algorithm!
- State of the art: L_{1}-minimization and random measurements

Compressed sensing or $y=A x$ revisited

- What is compressed sensing?
- What is the link between statistical physics and compressed sensing?
- How can one use statistical physics to improve on compressed sensing technics?

A statistical-physics approach to compressed sensing

How to reconstruct \vec{x} from F, \vec{y} ?

A statistical-physics approach to compressed sensing

How to reconstruct \vec{x} from F, \vec{y} ?

Inference problem: Estimate $P(x \mid y)$, and choose x accordingly

A statistical-physics approach to compressed sensing

How to reconstruct \vec{x} from F, \vec{y} ?

Inference problem:
 Estimate $P(x \mid y)$, and choose x accordingly But how to estimate $P(x \mid y)$?

A statistical-physics approach to compressed sensing

How to reconstruct \vec{x} from F, \vec{y} ?

Inference problem:

Estimate $P(x \mid y)$, and choose x accordingly But how to estimate $\mathrm{P}(\mathrm{x} \mid \mathrm{y})$?

A statistical-physics approach to compressed sensing

How to reconstruct \vec{x} from F, \vec{y} ?
Bayes Theorem: $\square P P(\vec{x} \mid \vec{y})=\frac{P(\vec{x})}{P(\vec{y})} P(\vec{y} \mid \vec{x})=\frac{P(\vec{x}) P(\vec{y} \mid \vec{x})}{Z}$

A statistical-physics approach to compressed sensing

How to reconstruct \vec{x} from F, \vec{y} ?
Bayes Theorem: $\square P P(\vec{x} \mid \vec{y})=\frac{P(\vec{x})}{P(\vec{y})} P(\vec{y} \mid \vec{x})=\frac{P(\vec{x}) P(\vec{y} \mid \vec{x})}{Z}$
$P(\vec{x} \mid \vec{y})=\frac{1}{Z} \prod_{i=1}^{N}\left[(1-\rho) \delta\left(x_{i}\right)+\rho \phi\left(x_{i}\right)\right] \prod_{\mu=1}^{M} \delta\left(y_{\mu}-\sum_{i=1}^{N} F_{\mu i} x_{i}\right)$

A statistical-physics approach to compressed sensing

How to reconstruct \vec{x} from F, \vec{y} ?
Bayes Theorem: $\square P P(\vec{x} \mid \vec{y})=\frac{P(\vec{x})}{P(\vec{y})} P(\vec{y} \mid \vec{x})=\frac{P(\vec{x}) P(\vec{y} \mid \vec{x})}{Z}$
$P(\vec{x} \mid \vec{y})=\frac{1}{Z} \prod_{i=1}^{N}\left[(1-\rho) \delta\left(x_{i}\right)+\rho \phi\left(x_{i}\right)\right] \prod_{\mu=1}^{M} \delta\left(y_{\mu}-\sum_{i=1}^{N} F_{\mu i} x_{i}\right)$

Solution of the linear system

A statistical-physics approach to compressed sensing

How to reconstruct \vec{x} from F, \vec{y} ?
Bayes Theorem: $\square P P(\vec{x} \mid \vec{y})=\frac{P(\vec{x})}{P(\vec{y})} P(\vec{y} \mid \vec{x})=\frac{P(\vec{x}) P(\vec{y} \mid \vec{x})}{Z}$

$$
P(\vec{x} \mid \vec{y})=\frac{1}{Z} \prod_{i=1}^{N}\left[(1-\rho) \delta\left(x_{i}\right)+\rho \phi\left(x_{i}\right)\right] \prod_{\mu=1}^{M} \delta\left(y_{\mu}-\sum_{i=1}^{N} F_{\mu i} x_{i}\right)
$$

Sparse vector

Solution of the linear system

A statistical-physics approach to compressed sensing

How to reconstruct \vec{x} from F, \vec{y} ?
Bayes Theorem: \quad 济 $P(\vec{x} \mid \vec{y})=\frac{P(\vec{x})}{P(\vec{y})} P(\vec{y} \mid \vec{x})=\frac{P(\vec{x}) P(\vec{y} \mid \vec{x})}{Z}$

$$
P(\vec{x} \mid \vec{y})=\frac{1}{Z} \prod_{i=1}^{N} P\left(x_{i}\right) \prod_{\mu=1}^{M} \delta\left(y_{\mu}-\sum_{i=1}^{N} F_{\mu i} x_{i}\right) \text { with } P\left(x_{i}\right)=(1-\rho) \delta\left(x_{i}\right)+\rho \phi\left(x_{i}\right)
$$

A statistical-physics approach to compressed sensing

How to reconstruct \vec{x} from F, \vec{y} ?
Bayes Theorem: \quad 济 $P(\vec{x} \mid \vec{y})=\frac{P(\vec{x})}{P(\vec{y})} P(\vec{y} \mid \vec{x})=\frac{P(\vec{x}) P(\vec{y} \mid \vec{x})}{Z}$

$$
P(\vec{x} \mid \vec{y})=\frac{1}{Z} \prod_{i=1}^{N} P\left(x_{i}\right) \prod_{\mu=1}^{M} \delta\left(y_{\mu}-\sum_{i=1}^{N} F_{\mu i} x_{i}\right) \text { with } P\left(x_{i}\right)=(1-\rho) \delta\left(x_{i}\right)+\rho \phi\left(x_{i}\right)
$$

$$
\square P(\vec{x} \mid \vec{y})=\frac{1}{Z} e^{-\sum_{i=1}^{N} \log P\left(x_{i}\right)-\frac{1}{2 \Delta} \sum_{\mu=1}^{M}\left(y_{\mu}-\sum_{i=1}^{N} F_{\mu i} x_{i}\right)^{2}}
$$

A statistical-physics approach to compressed sensing

How to reconstruct \vec{x} from F, \vec{y} ?
Bayes Theorem: $\square P P(\vec{x} \mid \vec{y})=\frac{P(\vec{x})}{P(\vec{y})} P(\vec{y} \mid \vec{x})=\frac{P(\vec{x}) P(\vec{y} \mid \vec{x})}{Z}$
A mean-field disordered statistical physics problem

$$
P(\vec{x} \mid \vec{y})=\frac{1}{Z} e^{-\sum_{i=1}^{N} \log P\left(x_{i}\right)-\frac{1}{2 \Delta} \sum_{\mu=1}^{M}\left(y_{\mu}-\sum_{i=1}^{N} F_{\mu i} x_{i}\right)^{2}}
$$

A statistical-physics approach to compressed sensing

How to reconstruct \vec{x} from F, \vec{y} ?
Bayes Theorem: $\square P P(\vec{x} \mid \vec{y})=\frac{P(\vec{x})}{P(\vec{y})} P(\vec{y} \mid \vec{x})=\frac{P(\vec{x}) P(\vec{y} \mid \vec{x})}{Z}$
A mean-field disordered statistical physics problem

A statistical-physics approach to compressed sensing

How to reconstruct \vec{x} from F, \vec{y} ?
Bayes Theorem: $\square P P(\vec{x} \mid \vec{y})=\frac{P(\vec{x})}{P(\vec{y})} P(\vec{y} \mid \vec{x})=\frac{P(\vec{x}) P(\vec{y} \mid \vec{x})}{Z}$
A mean-field disordered statistical physics problem

Hamiltonian

A statistical-physics approach to compressed sensing

How to reconstruct \vec{x} from F, \vec{y} ?
Bayes Theorem: $\square P P(\vec{x} \mid \vec{y})=\frac{P(\vec{x})}{P(\vec{y})} P(\vec{y} \mid \vec{x})=\frac{P(\vec{x}) P(\vec{y} \mid \vec{x})}{Z}$
A mean-field disordered statistical physics problem
Disordered interaction

$$
P(\vec{x} \mid \vec{y})=\frac{1}{Z} e^{-\sum_{i=1}^{N} \log P\left(x_{i}\right)-\frac{1}{2 \Delta} \sum_{\mu=1}^{M}\left(y_{\mu}-\sum_{i=1}^{N} F_{\mu i} i_{i}\right)^{2}}
$$

A statistical-physics approach to compressed sensing

How to reconstruct \vec{x} from F, \vec{y} ?
Bayes Theorem: $\square P P(\vec{x} \mid \vec{y})=\frac{P(\vec{x})}{P(\vec{y})} P(\vec{y} \mid \vec{x})=\frac{P(\vec{x}) P(\vec{y} \mid \vec{x})}{Z}$
A mean-field disordered statistical physics problem

A statistical-physics approach to compressed sensing

Estimating the probability of each value of x is equivalent to solving a mean-field disordered statistical physics problem

$$
P(\vec{x} \mid \vec{y})=\frac{1}{Z} e^{-\sum_{i=1}^{N} \log P\left(x_{i}\right)-\frac{1}{2 \Delta} \sum_{\mu=1}^{M}\left(y_{\mu}-\sum_{i=1}^{N} F_{\mu i} x_{i}\right)^{2}}
$$

A statistical-physics approach to compressed sensing

How to reconstruct \vec{x} from F, \vec{y} ?
Bayes Theorem: \quad 济 $P(\vec{x} \mid \vec{y})=\frac{P(\vec{x})}{P(\vec{y})} P(\vec{y} \mid \vec{x})=\frac{P(\vec{x}) P(\vec{y} \mid \vec{x})}{Z}$

$$
P(\vec{x} \mid \vec{y})=\frac{1}{Z} \prod_{i=1}^{N} P\left(x_{i}\right) \prod_{\mu=1}^{M} \delta\left(y_{\mu}-\sum_{i=1}^{N} F_{\mu i} x_{i}\right) \text { with } P\left(x_{i}\right)=(1-\rho) \delta\left(x_{i}\right)+\rho \phi\left(x_{i}\right)
$$

A statistical-physics approach to compressed sensing

How to reconstruct \vec{x} from F, \vec{y} ?
Bayes Theorem:

$$
P(\vec{x} \mid \vec{y})=\frac{P(\vec{x})}{P(\vec{y})} P(\vec{y} \mid \vec{x})=\frac{P(\vec{x}) P(\vec{y} \mid \vec{x})}{Z}
$$

$P(\vec{x} \mid \vec{y})=\frac{1}{Z} \prod_{i=1}^{N} P\left(x_{i}\right) \prod_{\mu=1}^{M} \delta\left(y_{\mu}-\sum_{i=1}^{N} F_{\mu i} x_{i}\right)$ with $P\left(x_{i}\right)=(1-\rho) \delta\left(x_{i}\right)+\rho \phi\left(x_{i}\right)$
Theorem: sampling from $P(x \mid y)$ gives the correct solution as long as $\alpha>\rho_{0}$ if: a) $\Phi(x)>0 \forall x$ and b) $I>\rho>0$

The probabilistic approach is optimal, even if we do not know the correct $\Phi(x)$! In practice, we use a Gaussian distribution

A sketch of the proof

Consider the system constrained to be at distances larger than D with respect to the solution

$$
Y(D, \epsilon)=\int \prod_{i=1}^{N}\left(d x_{i}\left[(1-\rho) \delta\left(x_{i}\right)+\rho \phi\left(x_{i}\right)\right]\right) \prod_{\mu=1}^{M} \delta_{\epsilon}\left(\sum_{i} F_{\mu i}\left(x_{i}-s_{i}\right)\right) \mathbb{I}\left(\sum_{i=1}^{N}\left(x_{i}-s_{i}\right)^{2}>N D\right)
$$

I) $Y(0)$ is infinite if $\alpha>\rho_{0}$ (equivalently if $M>R$)
(just count the delta functions! $N-R+M$ deltas versus N integrals...)
2) $Y(D)$ is finite for any $D>0$
(bound by a first moment method, or "annealed" computation)

A sketch of the proof

Consider the system constrained to be at distances larger than D with respect to the solution
$Y(D, \epsilon)=\int \prod_{i=1}^{N}\left(d x_{i}\left[(1-\rho) \delta\left(x_{i}\right)+\rho \phi\left(x_{i}\right]\right) \prod_{\mu=1}^{M} \delta_{\epsilon}\left(\sum_{i} F_{\mu i}\left(x_{i}-s_{i}\right)\right) \mathbb{I}\left(\sum_{i=1}^{N}\left(x_{i}-s_{i}\right)^{2}>N D\right)\right.$
I) $Y(0)$ is infinite if $\alpha>\rho_{0}$ (equivalently if $M>R$)
(just count the delta functions! $N-R+M$ deltas versus N integrals...)
2) $Y(D)$ is finite for any $D>0$
(bound by a first moment method, or "annealed" computation)

If $\alpha>\rho_{0}$, the measure is always dominated by the solution

A sketch of the proof

Consider the system constrained to be at distances larger than D with respect to the solution

$$
Y(D, \epsilon)=\int \prod_{i=1}^{N}\left(d x_{i}\left[(1-\rho) \delta\left(x_{i}\right)+\rho \phi\left(x_{i}\right)\right]\right) \prod_{\mu=1}^{M} \delta_{\epsilon}\left(\sum_{i} F_{\mu i}\left(x_{i}-s_{i}\right)\right) \mathbb{I}\left(\sum_{i=1}^{N}\left(x_{i}-s_{i}\right)^{2}>N D\right)
$$

Compressed sensing or $y=A x$ revisited

- What is compressed sensing?
- What is the link between statistical physics and compressed sensing?
- How can one use statistical physics to improve on compressed sensing technics?

A statistical physics approach

to compressed sensing

One can use statistical physics tools for
I) Computing phase transitions analytically (reconstruction/non reconstruction, etc...) Tools: Replica method from spin glass theory, etc...
II) Develop new algorithms, and design new matrices to improve on the L_{1} state-of-the art.
Tools: Replica and Cavity method from spin glass theory, Mean field methods from stat-phys, Physics intuition, etc....

A statistical physics approach to compressed sensing

One can use statistical physics tools for
I) Computing phase transitions analytically (reconstruction/non reconstruction, etc...) Tools: Replica method from spin glass theory, etc...
II) Develop new algorithms, and design new matrices to improve on the L_{1} state-of-the art.
Tools: Replica and Cavity method from spin glass theory, Mean field methods from stat-phys, Physics intuition, etc....

Statistical physics of compressed sensing

Model with N infinite-range 1 d interacting particles with positions x_{i}

What is the phase diagram of the system?

$$
Z(y)=\int \prod_{i=1}^{N} d x_{i} P(x \mid y) \quad F(\vec{y})=-\log Z(\vec{y})
$$

Statistical physics of compressed sensing

$$
P(\vec{x} \mid \vec{y})=\frac{1}{Z} e^{-\sum_{i=1}^{N} \log P\left(x_{i}\right)-\frac{1}{2 \Delta} \sum_{\mu=1}^{M}\left(y_{\mu}-\sum_{i=1}^{N} F_{\mu i} x_{i}\right)^{2}}
$$

Model with N infinite-range 1 d interacting particles with positions x_{i}

What is the phase diagram of the system?

$$
Z(y)=\int \prod_{i=1}^{N} d x_{i} P(x \mid y) \quad F(\vec{y})=-\log Z(\vec{y})
$$

Statistical physics of compressed sensing

$$
P(\vec{x} \mid \vec{y})=\frac{1}{Z} e^{-\sum_{i=1}^{N} \log P\left(x_{i}\right)-\frac{1}{2 \Delta} \sum_{\mu=1}^{M}\left(y_{\mu}-\sum_{i=1}^{N} F_{\mu i} x_{i}\right)^{2}}
$$

Model with N infinite-range 1 d interacting particles with positions x_{i}

What is the phase diagram of the system?

$$
Z(y)=\int \prod_{i=1}^{N} d x_{i} P(x \mid y) \quad F(\vec{y})=-\log Z(\vec{y})
$$

Use a random matrix F, and Gauss-Bernoulli signal

Statistical physics of compressed sensing

$$
P(\vec{x} \mid \vec{y})=\frac{1}{Z} e^{-\sum_{i=1}^{N} \log P\left(x_{i}\right)-\frac{1}{2 \Delta} \sum_{\mu=1}^{M}\left(y_{\mu}-\sum_{i=1}^{N} F_{\mu i} x_{i}\right)^{2}}
$$

Model with N infinite-range 1 d interacting particles with positions x_{i}

What is the phase diagram of the system?

$$
Z(y)=\int \prod_{i=1}^{N} d x_{i} P(x \mid y) \quad F(\vec{y})=-\log Z(\vec{y})
$$

Use a random matrix F, and Gauss-Bernoulli signal
Averaging over disorder:
$F_{\mu i} \quad{ }_{N}$ iid Gaussian, variance $\quad 1 / N$
$y_{\mu}=\sum_{i=1}^{N} F_{\mu i} x_{i}^{0}$ where x_{i}^{0} are iid distributed from $\left(1-\rho_{0}\right) \delta\left(x_{i}^{0}\right)+\rho_{0} \phi_{0}\left(x_{i}\right)$

Statistical physics of compressed sensing

$$
P(\vec{x} \mid \vec{y})=\frac{1}{Z} e^{-\sum_{i=1}^{N} \log P\left(x_{i}\right)-\frac{1}{2 \Delta} \sum_{\mu=1}^{M}\left(y_{\mu}-\sum_{i=1}^{N} F_{\mu i} x_{i}\right)^{2}}
$$

Model with N infinite-range 1 d interacting particles with positions x_{i}

What is the phase diagram of the system?

$$
Z(y)=\int \prod_{i=1}^{N} d x_{i} P(x \mid y) \quad F(\vec{y})=-\log Z(\vec{y})
$$

Use a random matrix F, and Gauss-Bernoulli signal
Averaging over disorder:
$F_{\mu i} \quad{ }_{N}$ iid Gaussian, variance $\quad 1 / N$
$y_{\mu}=\sum_{i=1}^{N} F_{\mu i} x_{i}^{0}$ where x_{i}^{0} are iid distributed from $\left(1-\rho_{0}\right) \delta\left(x_{i}^{0}\right)+\rho_{0} \phi_{0}\left(x_{i}\right)$
Replica method

$$
\overline{\log Z}=\lim _{n \rightarrow 0} \frac{\overline{Z^{n}}-1}{n}
$$

Analytic study: cavity equations, density evolution, replicas

$$
E\left(Z^{n}\right)=\max _{Q, q, m, \hat{Q}, \hat{q}, \hat{m}} e^{N n \Phi(Q, q, m, \hat{Q}, \hat{q}, \hat{m})}
$$

$\Phi(Q, q, m, \hat{Q}, \hat{q}, \hat{m})=-\frac{1}{2 N} \sum_{\mu} \frac{q-2 m+\rho+\Delta_{\mu}}{\Delta_{\mu}+Q-q}-\frac{1}{2 N} \sum_{\mu} \log \left(\Delta_{\mu}+Q-q\right)+\frac{Q \hat{Q}}{2}-m \hat{m}+\frac{q \hat{q}}{2}$
$+\int \mathcal{D} z \int \mathrm{~d} x_{0}\left[\left(1-\rho_{0}\right) \delta\left(x_{0}\right)+\rho_{0} \phi_{0}\left(x_{0}\right)\right] \log \left\{\int \mathrm{d} x e^{\left.-\frac{\hat{\hat{q}+\hat{q}} x^{2}+\hat{m} x x_{0}+z \sqrt{\hat{q}} x}{2}[(1-\rho) \delta(x)+\rho \phi(x)]\right\}, ~(1)}\right.$
Order parameters:

$$
Q=\frac{1}{N} \sum_{i}\left\langle x_{i}^{2}\right\rangle \quad q=\frac{1}{N} \sum_{i}\left\langle x_{i}\right\rangle^{2} \quad m=\frac{1}{N} \sum_{i} x_{i}^{0}\left\langle x_{i}\right\rangle
$$

Mean square error: $\quad E=\frac{1}{N} \sum_{i}\left(\left\langle x_{i}\right\rangle-x_{i}^{0}\right)^{2}=q-2 m+\left\langle\left(x_{i}^{0}\right)^{2}\right\rangle_{0}$

Computing the free entropy

Example with $\rho_{0}=0.4$, and Φ_{0} a Gaussian distribution with zero mean and unit variance

$$
E=\frac{1}{N} \sum_{i}\left(\left\langle x_{i}\right\rangle-x_{i}^{0}\right)^{2}
$$

Computing the free entropy

Example with $\rho_{0}=0.4$, and Φ_{0} a Gaussian distribution with zero mean and unit variance

$$
E=\frac{1}{N} \sum_{i}\left(\left\langle x_{i}\right\rangle-x_{i}^{0}\right)^{2}
$$

- Maximum is at $\mathrm{E}=0$ (as long as $\alpha>\rho 0$): Equilibrium behavior dominated by the original signal

Computing the free entropy

Example with $\rho_{0}=0.4$, and Φ_{0} a Gaussian distribution with zero mean and unit variance

- Maximum is at $\mathrm{E}=0$ (as long as $\alpha>\rho 0$): Equilibrium behavior dominated by the original signal
- For $\alpha<0.58$, a secondary maximum appears (meta-stable state): spinodal point

Computing the free entropy

Example with $\rho_{0}=0.4$, and Φ_{0} a Gaussian distribution with zero mean and unit variance

- Maximum is at $\mathrm{E}=0$ (as long as $\alpha>\rho 0$): Equilibrium behavior dominated by the original signal
- For $\alpha<0.58$, a secondary maximum appears (meta-stable state): spinodal point
- A steepest ascent dynamics starting from large E would reach the signal for $\alpha>0.58$, but would stay block in the meta-stable state for $\alpha<0.58$, even if the true equilibrium is at $\mathrm{E}=0$.

Computing the free entropy

Example with $\rho_{0}=0.4$, and Φ_{0} a Gaussian distribution with zero mean and unit variance

- Maximum is at $\mathrm{E}=0$ (as long as $\alpha>\rho 0$): Equilibrium behavior dominated by the original signal - For $\alpha<0.58$, a secondary maximum appears (meta-stable state): spinodal point - A steepest ascent dynamics starting from large E would reach the signal for $\alpha>0.58$, but would stay block in the meta-stable state for $\alpha<0.58$, even if the true equilibrium is at $\mathrm{E}=0$.
- Similarity with metastable phase in first-order transition (supercooled liquids)

Computing the Phase Diagram

Computing the Phase Diagram

A steepest ascent of the free entropy should perform a perfect reconstruction until the spinodal line: This should be more efficient than L_{1}-minimization

A statistical physics approach

to compressed sensing

One can use statistical physics tools for
I) Computing phase transitions analytically (reconstruction/non reconstruction, etc...) Tools: Replica method from spin glass theory, etc...
II) Develop new algorithms, and design new matrices to improve on the L_{1} state-of-the art.
Tools: Bethe-Peirls method/Belief propagation, Mean field methods from stat-phys, Physics intuition, etc....

The Belief-Propagation algorithm (a sketchy description)

- NO averaging: work on a given problem
-Compute $f\left(\left\{\mathcal{P}_{i}\left(x_{i}\right)\right\}\right)=\log Z\left(\left\{\mathcal{P}_{i}\left(x_{i}\right)_{\xi}\right)\right.$ the potential with constrained local probabilities (marginals) for each variable.
-Derive the recursion equation for by steepest ascent/descent:

$$
\mathcal{P}_{i}^{t+1}=\nabla_{\mathcal{P}_{i}^{t}} f\left(\left\{\mathcal{P}_{i}^{t}\right\}\right)
$$

The Belief-Propagation algorithm (a sketchy description)

- NO averaging: work on a given problem
-Compute $f\left(\left\{\mathcal{P}_{i}\left(x_{i}\right)\right\}\right)=\log Z\left(\left\{\mathcal{P}_{i}\left(x_{i}\right)_{\xi}\right)\right.$ the potential with constrained local probabilities (marginals) for each variable.
-Derive the recursion equation for by steepest ascent/descent:

$$
\mathcal{P}_{i}^{t+1}=\nabla_{\mathcal{P}_{i}^{t}} f\left(\left\{\mathcal{P}_{i}^{t}\right\}\right)
$$

-This approach has been used :

- Mean-field, Curie-Weiss, TAP (Thouless-Anderson-Palmer), or Cavity Method in Physics, and can be traced to Bethe-Peierls and Onsager ('35).
- Belief Propagation in Artificial Intelligence (Pearl, '82)
- Sum-Product in Error-Correcting-Codes (Gallager, '60)

How does BP works?

Gibbs free energy approach: $\log Z=\max _{\{\mathcal{P}(\vec{x})\}} f_{\text {Gibbs }}(\{\mathcal{P}(\vec{x})\})$
With $\quad f_{G i b s s}(\{\mathcal{P}(\vec{x})\})=-\langle\log P(\vec{x} \mid \vec{y})\rangle_{\mathcal{P}(\vec{x})}-\int d \vec{x} \mathcal{P}(\vec{x}) \log \mathcal{P}(\vec{x})$

How does BP works?

Gibbs free energy approach: $\log Z=\max _{\{\mathcal{P}(\vec{x})\}} f_{\text {Gibbs }}(\{\mathcal{P}(\vec{x})\})$
With $\quad f_{\text {Gibbs }}(\{\mathcal{P}(\vec{x})\})=-\langle\log P(\vec{x} \mid \vec{y})\rangle_{\mathcal{P}(\vec{x})}-\int d \vec{x} \mathcal{P}(\vec{x}) \log \mathcal{P}(\vec{x})$

Mean-Field $\Rightarrow \mathcal{P}(\vec{x})=\prod_{i} \mathcal{P}_{i}\left(\vec{x}_{i}\right)$

How does BP works?

Gibbs free energy approach: $\log Z=\max _{\{\mathcal{P}(\vec{x})\}} f_{\text {Gibbs }}(\{\mathcal{P}(\vec{x})\})$
With $\quad f_{G i b s s}(\{\mathcal{P}(\vec{x})\})=-\langle\log P(\vec{x} \mid \vec{y})\rangle_{\mathcal{P}(\vec{x})}-\int d \vec{x} \mathcal{P}(\vec{x}) \log \mathcal{P}(\vec{x})$

Mean-Field $\Rightarrow \quad \mathcal{P}(\vec{x})=\prod_{i} \mathcal{P}_{i}\left(\vec{x}_{i}\right) \quad \begin{gathered}\text { Not correct } \\ \text { +Convergence problems }\end{gathered}$

How does BP works?

Gibbs free energy approach: $\log Z=\max _{\{\mathcal{P}(\vec{x})\}} f_{\text {Gibbs }}(\{\mathcal{P}(\vec{x})\})$
With $\quad f_{\text {Gibbs }}(\{\mathcal{P}(\vec{x})\})=-\langle\log P(\vec{x} \mid \vec{y})\rangle_{\mathcal{P}(\vec{x})}-\int d \vec{x} \mathcal{P}(\vec{x}) \log \mathcal{P}(\vec{x})$

Mean-Field $\Rightarrow \mathcal{P}(\vec{x})=\prod_{i} \mathcal{P}_{i}\left(\vec{x}_{i}\right)$
Not correct
+Convergence problems

Belief-Propagation $\Rightarrow \mathcal{P}(\vec{x})=\frac{\prod_{i j} \mathcal{P}_{i j}\left(\vec{x}_{i}, \vec{x}_{j}\right)}{\prod_{i} \mathcal{P}_{i}\left(\vec{x}_{i}\right)^{M-1}}$

How does BP works?

Gibbs free energy approach: $\log Z=\max _{\{\mathcal{P}(\vec{x})\}} f_{\text {Gibbs }}(\{\mathcal{P}(\vec{x})\})$
With $\quad f_{G i b s s}(\{\mathcal{P}(\vec{x})\})=-\langle\log P(\vec{x} \mid \vec{y})\rangle_{\mathcal{P}(\vec{x})}-\int d \vec{x} \mathcal{P}(\vec{x}) \log \mathcal{P}(\vec{x})$

Mean-Field $\Rightarrow \mathcal{P}(\vec{x})=\prod_{i} \mathcal{P}_{i}\left(\vec{x}_{i}\right)$
Not correct
+Convergence problems

Belief-Propagation $\Rightarrow \mathcal{P}(\vec{x})=\frac{\prod_{i j} \mathcal{P}_{i j}\left(\vec{x}_{i}, \vec{x}_{j}\right)}{\prod_{i} \mathcal{P}_{i}\left(\vec{x}_{i}\right)^{M-1}}$
(asymptotically) exact in CS with random matrices

How does BP works?

Simplification thanks to the dense matrix limit: Projection on first two moments is enough :

$f\left(\left\{\mathcal{P}_{i}\left(x_{i}\right), \mathcal{P}_{i j}\left(x_{i}, x_{j}\right)\right\}\right)$

$$
f\left(\left\{\left\langle x_{i}\right\rangle,\left\langle x_{i}^{2}\right\rangle\right\}\right)
$$

The Belief-Propagation algorithm

 Iterate these variables$$
\begin{array}{rlr}
U_{i}^{(t+1)}= & \frac{\alpha}{M} \sum_{\mu} \frac{1}{\Delta_{\mu}+\gamma^{(t)}} \\
V_{i}^{(t+1)}= & \sum_{\mu} F_{\mu i} \frac{\left(y_{\mu}-\alpha_{\mu}^{(t)}\right)}{\Delta_{\mu}+\gamma_{\mu}^{(t)}}+f_{a}\left(U_{i}^{(t)}, V_{i}^{(t)}\right) \frac{\alpha}{M} \sum_{\mu} \frac{1}{\Delta_{\mu}+\gamma^{(t)}} \\
\alpha_{\mu}^{(t+1)}= & \sum_{i} F_{\mu i} f_{a}\left(U_{i}^{(t+1)}, V_{i}^{(t+1)}\right)-\frac{\left(y_{\mu}-\alpha_{\mu}^{(t)}\right)}{\Delta_{\mu}+\gamma^{(t)}} \frac{1}{N} \sum_{i} \frac{\partial f_{a}}{\partial Y}\left(U_{i}^{(t+1)}, V_{i}^{(t+1)}\right) \\
\gamma^{(t+1)}= & \frac{1}{N} \sum_{i} f_{c}\left(U_{i}^{(t+1)}, V_{i}^{(t+1)}\right)
\end{array}
$$

Using these functions:

$$
\begin{aligned}
f_{a}(X, Y) & = \\
f_{c}(X, Y) & =\left[\frac{\rho Y}{(1+X)^{3 / 2}} e^{Y^{2} /(2(1+X))}\right]\left[1-\rho+\frac{\rho}{(1+X)^{1 / 2}} e^{Y^{2} /(2(1+X))}\right]^{-1} \\
(1+X)^{3 / 2} & \left.e^{Y^{2} /(2(1+X))}\left(1+\frac{Y^{2}}{1+X}\right)\right]\left[1-\rho+\frac{\rho}{(1+X)^{1 / 2}} e^{Y^{2} /(2(1+X))}\right]^{-1}-f_{a}(X, Y)^{2}
\end{aligned}
$$

And finally at the end:

$$
\left\langle x_{i}\right\rangle=f_{a}\left(U_{i}, V_{i}\right)
$$

The Belief-Propagation algorithm

Iterate these variables

$$
\begin{array}{rlrl}
U_{i}^{(t+1)} & = & \frac{\alpha}{M} \sum_{\mu} \frac{1}{\Delta_{\mu}+\gamma^{(t)}} \\
V_{i}^{(t+1)} & = & \sum_{\mu} F_{\mu i} \frac{\left(y_{\mu}-\alpha_{\mu}^{(t)}\right)}{\Delta_{\mu}+\gamma_{\mu}^{(t)}}+f_{a}\left(U_{i}^{(t)}, V_{i}^{(t)}\right) \frac{\alpha}{M} \sum_{\mu} \frac{1}{\Delta_{\mu}+\gamma^{(t)}} \\
\alpha_{\mu}^{(t+1)} & =\sum_{i} F_{\mu i} f_{a}\left(U_{i}^{(t+1)}, V_{i}^{(t+1)}\right)-\frac{\left(y_{\mu}-\alpha_{\mu}^{(t)}\right)}{\Delta_{\mu}+\gamma^{(t)}} \frac{1}{N} \sum_{i} \frac{\partial f_{a}}{\partial Y}\left(U_{i}^{(t+1)}, V_{i}^{(t+1)}\right) \\
\gamma^{(t+1)} & = & \frac{1}{N} \sum_{i} f_{c}\left(U_{i}^{(t+1)}, V_{i}^{(t+1)}\right)
\end{array}
$$

Simple

 algebraicUsing these functions:

$$
\begin{array}{lr}
f_{a}(X, Y) & =\left[\frac{\rho Y}{(1+X)^{3 / 2}} e^{Y^{2} /(2(1+X))}\right]\left[1-\rho+\frac{\rho}{(1+X)^{1 / 2}} e^{Y^{2} /(2(1+X))}\right]^{-1} \\
f_{c}(X, Y)=\left[\frac{\rho}{(1+X)^{3 / 2}} e^{Y^{2} /(2(1+X))}\left(1+\frac{Y^{2}}{1+X}\right)\right]\left[1-\rho+\frac{\rho}{(1+X)^{1 / 2}} e^{Y^{2} /(2(1+X))}\right]^{-1}-f_{a}(X, Y)^{2}
\end{array}
$$

And finally at the end:

$$
\left\langle x_{i}\right\rangle=f_{a}\left(U_{i}, V_{i}\right)
$$

The Belief-Propagation algorithm

Iterate these variables

$$
\begin{array}{rlrl}
U_{i}^{(t+1)} & = & \frac{\alpha}{M} \sum_{\mu} \frac{1}{\Delta_{\mu}+\gamma^{(t)}} \\
V_{i}^{(t+1)} & = & \sum_{\mu} F_{\mu i} \frac{\left(y_{\mu}-\alpha_{\mu}^{(t)}\right)}{\Delta_{\mu}+\gamma_{\mu}^{(t)}}+f_{a}\left(U_{i}^{(t)}, V_{i}^{(t)}\right) \frac{\alpha}{M} \sum_{\mu} \frac{1}{\Delta_{\mu}+\gamma^{(t)}} \\
\alpha_{\mu}^{(t+1)} & =\sum_{i} F_{\mu i} f_{a}\left(U_{i}^{(t+1)}, V_{i}^{(t+1)}\right)-\frac{\left(y_{\mu}-\alpha_{\mu}^{(t)}\right)}{\Delta_{\mu}+\gamma^{(t)}} \frac{1}{N} \sum_{i} \frac{\partial f_{a}}{\partial Y}\left(U_{i}^{(t+1)}, V_{i}^{(t+1)}\right) \\
\gamma^{(t+1)} & = & \frac{1}{N} \sum_{i} f_{c}\left(U_{i}^{(t+1)}, V_{i}^{(t+1)}\right)
\end{array}
$$

Simple

 algebraicUsing these functions:

$$
\begin{array}{lr}
f_{a}(X, Y)= & {\left[\frac{\rho Y}{(1+X)^{3 / 2}} e^{Y^{2} /(2(1+X))}\right]\left[1-\rho+\frac{\rho}{(1+X)^{1 / 2}} e^{Y^{2} /(2(1+X))}\right]^{-1}} \\
f_{c}(X, Y)=\left[\frac{\rho}{(1+X)^{3 / 2}} e^{Y^{2} /(2(1+X))}\left(1+\frac{Y^{2}}{1+X}\right)\right]\left[1-\rho+\frac{\rho}{(1+X)^{1 / 2}} e^{Y^{2} /(2(1+X))}\right]^{-1}-f_{a}(X, Y)^{2}
\end{array}
$$

And finally at the end:
Complexity is $\mathrm{O}\left(\mathrm{N}^{2} \times\right.$ convergence time $)$

$$
\left\langle x_{i}\right\rangle=f_{a}\left(U_{i}, V_{i}\right)
$$

The Belief-Propagation algorithm

Iterate these variables

$$
\begin{array}{rlrl}
U_{i}^{(t+1)} & = & \frac{\alpha}{M} \sum_{\mu} \frac{1}{\Delta_{\mu}+\gamma^{(t)}} \\
V_{i}^{(t+1)} & = & \sum_{\mu} F_{\mu i} \frac{\left(y_{\mu}-\alpha_{\mu}^{(t)}\right)}{\Delta_{\mu}+\gamma_{\mu}^{(t)}}+f_{a}\left(U_{i}^{(t)}, V_{i}^{(t)}\right) \frac{\alpha}{M} \sum_{\mu} \frac{1}{\Delta_{\mu}+\gamma^{(t)}} \\
\alpha_{\mu}^{(t+1)} & =\sum_{i} F_{\mu i} f_{a}\left(U_{i}^{(t+1)}, V_{i}^{(t+1)}\right)-\frac{\left(y_{\mu}-\alpha_{\mu}^{(t)}\right)}{\Delta_{\mu}+\gamma^{(t)}} \frac{1}{N} \sum_{i} \frac{\partial f_{a}}{\partial Y}\left(U_{i}^{(t+1)}, V_{i}^{(t+1)}\right) \\
\gamma^{(t+1)} & = & \frac{1}{N} \sum_{i} f_{c}\left(U_{i}^{(t+1)}, V_{i}^{(t+1)}\right)
\end{array}
$$

Simple

 algebraicUsing these functions:

$$
\begin{array}{lr}
f_{a}(X, Y)= & {\left[\frac{\rho Y}{(1+X)^{3 / 2}} e^{Y^{2} /(2(1+X))}\right]\left[1-\rho+\frac{\rho}{(1+X)^{1 / 2}} e^{Y^{2} /(2(1+X))}\right]^{-1}} \\
f_{c}(X, Y)=\left[\frac{\rho}{(1+X)^{3 / 2}} e^{Y^{2} /(2(1+X))}\left(1+\frac{Y^{2}}{1+X}\right)\right]\left[1-\rho+\frac{\rho}{(1+X)^{1 / 2}} e^{Y^{2} /(2(1+X))}\right]^{-1}-f_{a}(X, Y)^{2}
\end{array}
$$

And finally at the end:

$$
\left\langle x_{i}\right\rangle=f_{a}\left(U_{i}, V_{i}\right)
$$

Complexity is $\mathrm{O}\left(\mathrm{N}^{2} \times\right.$ convergence time $)$
 http://aspics.krzakala.org http://kl1p.sourceforge.net/home.html

Steepest ascent of the free entropy

$$
E=\frac{1}{N} \sum_{i}\left(\left\langle x_{i}\right\rangle-x_{i}^{0}\right)^{2}
$$

Steepest ascent of the free entropy

$$
E=\frac{1}{N} \sum_{i}\left(\left\langle x_{i}\right\rangle-x_{i}^{0}\right)^{2}
$$

Replica
 (lines)

VS
Algo
(points)

Thermodynamic potential

Spinodal transition

- Maximum is at $\mathrm{E}=0$ (as long as $\alpha>\rho 0$): Equilibrium behavior dominated by the original signal
- For $\alpha<0.58$, a secondary maximum appears (meta-stable state): spinodal point
- A steepest ascent dynamics starting from large E reaches the signal for $\alpha>0.58$, but stay blocked in the meta-stable state for $\alpha<0.58$, even if the true maximum is at $\mathrm{E}=0$.
- Similarity with the physics of supercooled liquids

Computing the Phase Diagram

Computing the Phase Diagram

A steepest ascent of the free entropy allows a perfect reconstruction until the spinodal line. This is more efficient than L_{1}-minimization

BP + probabilistic approach

$$
P(\vec{x} \mid \vec{y})=\frac{1}{Z} \prod_{i=1}^{N}\left[(1-\rho) \delta\left(x_{i}\right)+\rho \phi\left(x_{i}\right)\right] \prod_{\mu=1}^{M} \delta\left(y_{\mu}-\sum_{i=1}^{N} F_{\mu i} x_{i}\right)
$$

BP + probabilistic approach

- Efficient and fast

- Robust to many type of noises (measurement, matrix coefficients, etc..)
- Very flexible (more information can be put in the prior, correlated variables, etc...)
$P(\vec{x} \mid \vec{y})=\frac{1}{Z} \prod_{i=1}^{N}\left[(1-\rho) \delta\left(x_{i}\right)+\rho \phi\left(x_{i}\right)\right] \prod_{\mu=1}^{M} \delta\left(y_{\mu}-\sum_{i=1}^{N} F_{\mu i} x_{i}\right)$

BP + probabilistic approach

- Efficient and fast

- Robust to many type of noises (measurement, matrix coefficients, etc..)
- Very flexible (more information can be put in the prior, correlated variables, etc...)
$P(\vec{x} \mid \vec{y})=\frac{1}{Z} \prod_{i=1}^{N}\left[(1-\rho) \delta\left(x_{i}\right)+\rho \phi\left(x_{i}\right)\right] \prod_{\mu=1}^{M} \delta\left(y_{\mu}-\sum_{i=1}^{N} F_{\mu i} x_{i}\right)$
- Still not optimal

This is good, but not good enough

The dynamics is stuck in a metastable state, just as a liquid cooled too fast remains in a supercooled liquid state instead of crystalizing

This is good, but not good enough

How to pass the spinodal point?

The dynamics is stuck in a metastable state, just as a liquid cooled too fast remains in a supercooled liquid state instead of crystalizing

This is good, but not good enough
How to pass the spinodal point?

By nucleation!

Special design of "seeded" matrices

The dynamics is stuck in a metastable state, just as a liquid cooled too fast remains in a supercooled liquid state instead of crystalizing

A coupled one-dimensional system:

A coupled one-dimensional system:

I) Create many sub-systems

A coupled one-dimensional system:

I) Create many sub-systems

A coupled one-dimensional system:

I) Create many sub-systems

A coupled one-dimensional system:

I) Create many sub-systems

A coupled one-dimensional system:

I) Create many sub-systems

A coupled one-dimensional system:

I) Create many sub-systems

A coupled one-dimensional system:

2) Add a first neighbor coupling

A coupled one-dimensional system:

2) Add a first neighbor coupling

A coupled one-dimensional system:

3) Choose parameters such that the first system is in the region of the phase diagram where there is no metastability

A coupled one-dimensional system:

3) Choose parameters such that the first system is in the region of the phase diagram where there is no metastability

α

A coupled one-dimensional system:

3) Choose parameters such that the first system is in the region of the phase diagram where there is no metastability

A coupled one-dimensional system:

3) Choose parameters such that the first system is in the region of the phase diagram where there is no metastability

A coupled one-dimensional system:

4) The solution will appear in the first sub-system (with large α), and then propagate in the system

A coupled one-dimensional system:

4) The solution will appear in the first sub-system (with large α), and then propagate in the system

$$
\begin{aligned}
& L=8 \\
& N_{i}=N / L \\
& M_{i}=\alpha_{i} N / L
\end{aligned}
$$

$$
\begin{aligned}
\alpha_{1} & >\alpha_{B P} \\
\alpha_{j} & =\alpha^{\prime}<\alpha_{B P} \quad j \geq 2 \\
\alpha & =\frac{1}{L}\left(\alpha_{1}+(L-1) \alpha^{\prime}\right)
\end{aligned}
$$

$$
\begin{aligned}
& L=8 \\
& N_{i}=N / L \\
& M_{i}=\alpha_{i} N / L
\end{aligned}
$$

$$
\begin{aligned}
\alpha_{1} & >\alpha_{B P} \\
\alpha_{j} & =\alpha^{\prime}<\alpha_{B P} \quad j \geq 2 \\
\alpha & =\frac{1}{L}\left(\alpha_{1}+(L-1) \alpha^{\prime}\right)
\end{aligned}
$$

$$
\begin{aligned}
& L=8 \\
& N_{i}=N / L \\
& M_{i}=\alpha_{i} N / L
\end{aligned}
$$

$$
\begin{aligned}
\alpha_{1} & >\alpha_{B P} \\
\alpha_{j} & =\alpha^{\prime}<\alpha_{B P} \quad j \geq 2 \\
\alpha & =\frac{1}{L}\left(\alpha_{1}+(L-1) \alpha^{\prime}\right)
\end{aligned}
$$

$$
\begin{aligned}
& L=8 \\
& N_{i}=N / L \\
& M_{i}=\alpha_{i} N / L
\end{aligned}
$$

$$
\begin{aligned}
\alpha_{1} & >\alpha_{B P} \\
\alpha_{j} & =\alpha^{\prime}<\alpha_{B P} \quad j \geq 2 \\
\alpha & =\frac{1}{L}\left(\alpha_{1}+(L-1) \alpha^{\prime}\right)
\end{aligned}
$$

M such that the solution arise in this block...

$$
\begin{aligned}
& L=8 \\
& N_{i}=N / L \\
& M_{i}=\alpha_{i} N / L
\end{aligned}
$$

$$
\begin{aligned}
\alpha_{1} & >\alpha_{B P} \\
\alpha_{j} & =\alpha^{\prime}<\alpha_{B P} \quad j \geq 2 \\
\alpha & =\frac{1}{L}\left(\alpha_{1}+(L-1) \alpha^{\prime}\right)
\end{aligned}
$$

Block I has a large value of M such that the solution arise in this block...
\square : unit coupling
\square : coupling $/ 1$
\square : coupling $/ 2$ \ldots and then propagate in \square : no coupling (null elements) the whole system!

$$
\begin{aligned}
& L=8 \\
& N_{i}=N / L \\
& M_{i}=\alpha_{i} N / L
\end{aligned}
$$

$$
\begin{aligned}
\alpha_{1} & >\alpha_{B P} \\
\alpha_{j} & =\alpha^{\prime}<\alpha_{B P} \quad j \geq 2 \\
\alpha & =\frac{1}{L}\left(\alpha_{1}+(L-1) \alpha^{\prime}\right)
\end{aligned}
$$

Replica solution for coupled seeded matrix

The order parameters are now

$$
Q_{p} \equiv \frac{1}{N_{p}} \sum_{i \in B_{p}}\left\langle x_{i}^{2}\right\rangle, \quad q_{p} \equiv \frac{1}{N_{p}} \sum_{i \in B_{p}}\left\langle x_{i}\right\rangle^{2}, \quad m_{p} \equiv \frac{1}{N_{p}} \sum_{i \in B_{p}} s_{i}\left\langle x_{i}\right\rangle
$$

in each block $p \in\left\{1, \ldots, L_{c}\right\}$. The free entropy analogous to that in Eq. (112) becomes

$$
\begin{aligned}
& \Phi\left(\left\{Q_{p}\right\}_{p=1}^{L_{c}},\left\{q_{p}\right\}_{p=1}^{L_{c}},\left\{m_{p}\right\}_{p=1}^{L_{c}},\left\{\hat{Q}_{p}\right\}_{p=1}^{L_{c}},\left\{\hat{q}_{p}\right\}_{p=1}^{L_{c}},\left\{\hat{m}_{p}\right\}_{p=1}^{L_{c}}\right)= \\
& -\frac{1}{2} \sum_{q=1}^{L_{r}} n_{1} \alpha_{q 1}\left[\frac{\tilde{q}_{q}-2 \tilde{m}_{q}+\tilde{\rho}_{q}+\Delta_{0}}{\tilde{Q}_{q}-\tilde{q}_{q}+\Delta}+\log \left(\Delta+\tilde{Q}_{q}-\tilde{q}_{q}\right)\right]+\sum_{p=1}^{L_{c}} n_{p}\left(\frac{Q_{p} \hat{Q}_{p}}{2}-m_{p} \hat{m}_{p}+\frac{q_{p} \hat{q}_{p}}{2}\right) \\
& +\sum_{p=1}^{L_{c}} n_{p} \int \mathrm{~d} s\left[\left(1-\rho_{0}\right) \delta(s)+\rho_{0} \phi_{0}(s)\right] \int \mathcal{D} z \log \left\{\int \mathrm{~d} x e^{-\frac{\hat{Q}_{p}+\hat{q}_{p}}{2} x^{2}+x\left(\hat{m}_{p} s+z \sqrt{\hat{q}_{p}}\right)}[(1-\rho) \delta(x)+\rho \phi(x)]\right\},
\end{aligned}
$$

(after a bit of work...)

Comparing the algorithm and replica theory

BP analyzed by density evolution versus an actual test with $\mathrm{N}=40000$ (MSE in the different block versus time)

This strategy allows an Optimal reconstruction (up to $\alpha=\rho$) in the limit of large signals

Comparing the algorithm and replica theory

BP analyzed by density evolution versus an actual test with $\mathrm{N}=40000$ (MSE in the different block versus time)

This strategy allows an Optimal reconstruction (up to $\alpha=\rho$) in the limit of large signals

Generic proof for optimal reconstruction (when the prior matches the signal):
D. Donoho, A. Javanmard, \& A. Montanari, '11

Best measurement rates reached!

A combination of Statistical physics technics (Bethe-Peierls, Replica) and concepts (dynamics, nucleation and growth) has allowed to solve a major problem in signal processing theory

An example

Shepp-Logan phantom, in the Haar-wavelet representation

A more interesting example

The Lena picture in the Haar-wavelet representation

Conclusions...

- A probabilistic approach to reconstruction
- Analysis of best possible reconstruction for different class of signals
- The Belief Propagation algorithm
- Optimality achieving seeded measurements matrices

... and perspectives:

- More information in the prior (Correlated measurement, wavelets, etc...)
- Other matrices with asymptotic measurements?
- Non-random matrix (e.g. Radon operator in Tomography, Fourier, etc..)
- Additive and multiplicative noise, Quasi-sparsity, etc...?
- Calibration, and matrix/dictionary learning?
- Applications ?

SPECIAL ANNOUNCEMENTS

http://leshouches2013.krzakala.org

SPECIAL ANNOUNCEMENTS

2 Post-doc openings on these topics for 2013
If you work in Statistical physics, Information science, Signal processing, etc...

Applying Statistical Physics to Inference in Compressed Sensing http://krzakala.org

SPECIAL ANNOUNCEMENTS

2 Post-doc openings on these topics for 2013
If you work in Statistical physics, Information science, Signal processing, etc...

Project
Applying Statistical Physics to Inference in Compressed Sensing http://krzakala.org

COMING SOON: An interdisciplinary school on these topics: Les Houches, October 2013, Organizers F. Krzakala \& L. Zdeborová

http://leshouches2013.krzakala.org

