Studying Spin Glasses via Combinatorial Optimization

Frauke Liers
Emmy Noether Junior Research Group,
Department of Computer Science, University of Cologne

Dec 11 th, 2007

What we are interested in...

- develop, improve and implement algorithms for optimization problems occuring in physics:

What we are interested in...

- develop, improve and implement algorithms for optimization problems occuring in physics: ground states of
- Ising spin glasses in different dimensions
- Potts glasses
- Potts glasses for $q \rightarrow \infty$
- etc.

What we are interested in...

- develop, improve and implement algorithms for optimization problems occuring in physics: ground states of
- Ising spin glasses in different dimensions
- Potts glasses
- Potts glasses for $q \rightarrow \infty$
- etc.
- study their physics together with physics colleagues
polynomial algorithms (matching, maximum flow algorithms. etc.)

What we are interested in...

- develop, improve and implement algorithms for optimization problems occuring in physics: ground states of
- Ising spin glasses in different dimensions
- Potts glasses
- Potts glasses for $q \rightarrow \infty$
- etc.
- study their physics together with physics colleagues

We always compute exact ground states!

What we are interested in...

- develop, improve and implement algorithms for optimization problems occuring in physics: ground states of
- Ising spin glasses in different dimensions
- Potts glasses
- Potts glasses for $q \rightarrow \infty$
- etc.
- study their physics together with physics colleagues

We always compute exact ground states! methods we use:

- polynomial algorithms (matching, maximum flow algorithms, etc.)
- branch-and-bound or branch-and-cut algorithms with exponential worst-case running time

Spin Glasses

e.g. $\mathrm{Rb}_{2} \mathrm{Cu}_{1-x} \mathrm{Co}_{x} \mathrm{~F}_{4}$
experiments (Cannella \& Mydosh 1972) reveal:
at low temperatures: \rightarrow phase transition spin glass state Edwards Anderson Model (1975)

- short-range model
- interactions randomly chosen
- $J_{i j} \in\{+1,-1\}$ or
- Gaussian distributed
- $H(S)=-\sum_{<i, j>} J_{i j} S_{i} S_{j}$, with spin variables S_{i}

ground state: $\min \{H(\underline{S}) \mid \underline{S}$ is spin configuration $\}$

Outline

(1) Hard Ising Spin Glass Instances

2 2d Ising Spin Glasses in a Field (3) Potts Glasses

Outline

(1) Hard Ising Spin Glass Instances
(2) $2 d$ Ising Spin Glasses in a Field

Outline

(1) Hard Ising Spin Glass Instances
(2) 2d Ising Spin Glasses in a Field
(3) Potts Glasses
(1) Hard Ising Spin Glass Instances
(2) $2 d$ Ising Spin Glasses in a Field
(3) Potts Glasses
(4) Potts Glasses with $q \rightarrow \infty$

Outline

(1) Hard Ising Spin Glass Instances
(2) $2 d$ Ising Spin Glasses in a Field
(3) Potts Glasses
(4) Potts Glasses with $q \rightarrow \infty$

'This is a Hard Problem' means...

- NP-hard, i.e. we cannot expect to find an algorithm that solves it in time growing polynomial in the size of the input

'This is a Hard Problem' means...

- NP-hard, i.e. we cannot expect to find an algorithm that solves it in time growing polynomial in the size of the input
- e.g., $2 d$ Ising spin glasses with an external field or $3 d$ lattices

'This is a Hard Problem' means...

- NP-hard, i.e. we cannot expect to find an algorithm that solves it in time growing polynomial in the size of the input
- e.g., $2 d$ Ising spin glasses with an external field or $3 d$ lattices
- whereas $2 d$, no field, free boundaries: 'easy'

The Exact Algorithm for Hard Instances

The Exact Algorithm for Hard Instances

The Exact Algorithm for Hard Instances

Computing Exact Ground States

$$
\begin{aligned}
H(\underline{S})+\sum_{(i, j) \in E} J_{i j}= & \sum_{(i, j) \in E} J_{i j} \underbrace{\left(1-S_{i} S_{j}\right)} \\
& = \begin{cases}2 & , \text { if } S_{i} \neq S_{j} \\
0 & , \text { otherwise }\end{cases} \\
= & 2 \sum_{S_{i} \neq S_{j}} J_{i j}
\end{aligned}
$$

Computing Exact Ground States

$$
\begin{aligned}
& H(\underline{S})+\text { const } \\
& =2 \sum_{S_{i} \neq S_{j}} J_{i j}
\end{aligned}
$$

$$
\text { cut }=\{(i, j) \in E \mid(i, j)=\bullet \longrightarrow\}
$$

$$
\text { its weight: } \sum_{(i, j) \in c u t} c_{i j}
$$

Computing Exact Ground States

weight $\sum_{(i, j) \in \mathrm{cut}} c_{i j}$
with $c_{i j}=-J_{i j}$:
maximum cut in G
NP-hard in general

Example

Example

Example

Example

Example

Example

[^0]Example

[^1]Example

[^2]Example

[^3]Example

[^4]Example

[^5]Example

[^6]
Branch-and-Cut

- is a clever enumeration method
- is a general framework for solving hard combinatorial optimization problems

Branch-and-Cut

- is a clever enumeration method
- is a general framework for solving hard combinatorial optimization problems

Branch-and-Cut

- is a clever enumeration method
- is a general framework for solving hard combinatorial optimization problems
- however: specification to a certain problem is science of its own

Branch-and-Cut

- is a clever enumeration method
- is a general framework for solving hard combinatorial optimization problems
- however: specification to a certain problem is science of its own
- for maxcut: started by M. Jünger, G. Reinelt, G. Rinaldi
- improved by M. Diehl, FL

Branch-and-Cut

- is a clever enumeration method
- is a general framework for solving hard combinatorial optimization problems
- however: specification to a certain problem is science of its own
- for maxcut: started by M. Jünger, G. Reinelt, G. Rinaldi
- improved by M. Diehl, FL
- ground-state server via command-line client or web interface, get result by email (will be extended)

Branch-and-Cut Algorithm

- (lb): lower bound for optimum
- (ub): upper bound
- (lb) $=(u b) \Rightarrow$ optimality

Calculation Of (ub) For Maxcut

$$
\begin{aligned}
& (i, j) \in E \rightarrow 0 \leq x_{i j} \leq 1 \\
& (i, j) \in \text { cut } \rightarrow x_{i j}=1 \\
& (i, j) \notin \text { cut } \rightarrow x_{i j}=0
\end{aligned}
$$

consider
$P_{C}(G)$: convex hull of all cut vectors
e.g. for

Calculation Of (ub) For Maxcut

$$
\begin{aligned}
& (i, j) \in E \rightarrow 0 \leq x_{i j} \leq 1 \\
& (i, j) \in \text { cut } \rightarrow x_{i j}=1 \\
& (i, j) \notin \text { cut } \rightarrow x_{i j}=0
\end{aligned}
$$

consider
$P_{C}(G)$: convex hull of all cut vectors
e.g. for
possible cut vectors:

$$
\left(\begin{array}{l}
0 \\
0 \\
0
\end{array}\right)
$$

Calculation Of (ub) For Maxcut

$$
\begin{aligned}
& (i, j) \in E \rightarrow 0 \leq x_{i j} \leq 1 \\
& (i, j) \in \text { cut } \rightarrow x_{i j}=1 \\
& (i, j) \notin \text { cut } \rightarrow x_{i j}=0
\end{aligned}
$$

consider
$P_{C}(G)$: convex hull of all cut vectors
e.g. for
possible cut vectors:

$$
\left(\begin{array}{l}
0 \\
1 \\
1
\end{array}\right)
$$

Calculation Of (ub) For Maxcut

$$
\begin{aligned}
& (i, j) \in E \rightarrow 0 \leq x_{i j} \leq 1 \\
& (i, j) \in \text { cut } \rightarrow x_{i j}=1 \\
& (i, j) \notin \text { cut } \rightarrow x_{i j}=0
\end{aligned}
$$

consider

$$
P_{C}(G) \text { : convex hull of all cut vectors }
$$

e.g. for
possible cut vectors:

$$
\left(\begin{array}{l}
1 \\
0 \\
1
\end{array}\right)
$$

Calculation Of (ub) For Maxcut

$$
\begin{aligned}
& (i, j) \in E \rightarrow 0 \leq x_{i j} \leq 1 \\
& (i, j) \in \text { cut } \rightarrow x_{i j}=1 \\
& (i, j) \notin \text { cut } \rightarrow x_{i j}=0
\end{aligned}
$$

consider
$P_{C}(G)$: convex hull of all cut vectors
e.g. for
possible cut vectors:

$$
\left(\begin{array}{l}
1 \\
1 \\
0
\end{array}\right)
$$

$$
\operatorname{conv}\left\{\left(\begin{array}{l}
0 \\
0 \\
0
\end{array}\right),\left(\begin{array}{l}
0 \\
1 \\
1
\end{array}\right),\left(\begin{array}{l}
1 \\
0 \\
1
\end{array}\right),\left(\begin{array}{l}
1 \\
1 \\
0
\end{array}\right)\right\}=
$$

cut polytope can be described by linear inequalities!

- however: in higher dimensions too many would be needed, not all known
- however: in higher dimensions too many would be needed, not all known
- solution: find part of the necessary inequalities that can 'easily' be determined
- however: in higher dimensions too many would be needed, not all known
- solution: find part of the necessary inequalities that can 'easily' be determined
- \rightarrow optimize over a solution space P that contains cut polytope
- however: in higher dimensions too many would be needed, not all known
- solution: find part of the necessary inequalities that can 'easily' be determined
- \rightarrow optimize over a solution space P that contains cut polytope
- yields (ub)

Branch And Cut Algorithm

FL, M. Jünger, G. Reinelt, G. Rinaldi, in 'New Optimization Algorithms in Physics', A.K. Hartmann and H.
(1) start with some solution space $P \supseteq P_{C}(G)$
(2) solve linear program

$$
(\mathrm{ub})=c x^{\star}=\max \sum_{e \in E} c_{e} x_{e}, \quad x \in P
$$

3 (lb): value of any cut
(4) if $(u b)=(\mathrm{lb})$ or x^{\star} is a cut: STOP

5 else: find better description P, goto 2)

Branch And Cut Algorithm

FL, M. Jünger, G. Reinelt, G. Rinaldi, in 'New Optimization Algorithms in Physics', A.K. Hartmann and H.
(1) start with some solution space $P \supseteq P_{C}(G)$
(2) solve linear program

$$
(\mathrm{ub})=c x^{\star}=\max \sum_{e \in E} c_{e} x_{e}, \quad x \in P
$$

3 (lb): value of any cut
(4) if $(u b)=(\mathrm{lb})$ or x^{\star} is a cut: STOP
(5) else: find better description P, goto 2)
(6) if no better description can be found: BRANCH

- select x_{e} with $x_{e}^{\star} \notin\{0 ; 1\}$

Outline

(1) Hard Ising Spin Glass Instances
(2) $2 d$ Ising Spin Glasses in a Field
(3) Potts Glasses
(4) Potts Glasses with $q \rightarrow \infty$

2d Spin Glasses in a Field

with Olivier C. Martin (Paris)
FL, O.C. Martin, Physical Review B, 76, 6 (2007).

2d Spin Glasses in a Field

with Olivier C. Martin (Paris)
FL, O.C. Martin, Physical Review B, 76, 6 (2007).

spin glasses

- exhibit subtle phase transitions
- in 2d: $T_{c}=0$, in 3d: $T_{c}>0$

2d Spin Glasses in a Field

with Olivier C. Martin (Paris)
FL, O.C. Martin, Physical Review B, 76, 6 (2007).

spin glasses

- exhibit subtle phase transitions
- in $2 \mathrm{~d}: T_{c}=0$, in $3 \mathrm{~d}: T_{c}>0$
- their physics in 3d is not yet agreed upon
- their physics in 2d without a field agrees well with the scaling/droplet (DS) picture of Bray/Moore and Fisher/Huse (mid 80')

2d Spin Glasses in a Field

with Olivier C. Martin (Paris)
FL, O.C. Martin, Physical Review B, 76, 6 (2007).

spin glasses

- exhibit subtle phase transitions
- in 2d: $T_{c}=0$, in 3d: $T_{c}>0$
- their physics in 3d is not yet agreed upon
- their physics in 2d without a field agrees well with the scaling/droplet (DS) picture of Bray/Moore and Fisher/Huse (mid 80')
- for 2 d with a field: previous studies found discrepancies to DS

2d Spin Glasses in a Field

with Olivier C. Martin (Paris)
FL, O.C. Martin, Physical Review B, 76, 6 (2007).

spin glasses

- exhibit subtle phase transitions
- in 2d: $T_{c}=0$, in 3d: $T_{c}>0$
- their physics in 3d is not yet agreed upon
- their physics in 2d without a field agrees well with the scaling/droplet (DS) picture of Bray/Moore and Fisher/Huse (mid 80')
- for 2 d with a field: previous studies found discrepancies to DS

Is DS correct for 2 d spin glasses in a field?

Our Approach

- exact ground-state algorithm
- study larger lattice sizes than before
- determine precise points where the ground states change as function of B
- study the properties of flipped clusters

- $L \times L$ lattice, periodic boundaries, Ising spins
- Gaussian/exponential $J_{i j}$
- $H(S) \equiv$
$-\sum_{\langle i j\rangle} J_{i j} S_{i} S_{j}-B \sum_{i} S_{i}$

The droplet and scaling hypothesis

- low-lying excitations arise by droplet flips

The droplet and scaling hypothesis

- low-lying excitations arise by droplet flips

- zero-field droplets $\sim \ell$ and compact. Interfacial energy is $O\left(\ell^{\theta}\right)$, total (random) magnetization goes as $\ell^{d / 2}$

The droplet and scaling hypothesis

- low-lying excitations arise by droplet flips

- zero-field droplets $\sim \ell$ and compact. Interfacial energy is $O\left(\ell^{\theta}\right)$, total (random) magnetization goes as $\ell^{d / 2}$
- $B=0: y_{T}=-\theta, y_{T}$ defined by $\xi \sim T^{\frac{-1}{y_{T}}}$

The droplet and scaling hypothesis

- low-lying excitations arise by droplet flips

- zero-field droplets $\sim \ell$ and compact. Interfacial energy is $O\left(\ell^{\theta}\right)$, total (random) magnetization goes as $\ell^{d / 2}$
- $B=0: y_{T}=-\theta, y_{T}$ defined by $\xi \sim T^{\frac{-1}{y_{T}}}$
- $B=0$: previous studies in 2d agree with DS and find $y_{T}=-\theta \approx 0.282$

The droplet and scaling hypothesis

- low-lying excitations arise by droplet flips

- zero-field droplets $\sim \ell$ and compact. Interfacial energy is $O\left(\ell^{\theta}\right)$, total (random) magnetization goes as $\ell^{d / 2}$
- $B=0: y_{T}=-\theta, y_{T}$ defined by $\xi \sim T^{\frac{-1}{y_{T}}}$
- $B=0$: previous studies in 2d agree with DS and find $y_{T}=-\theta \approx 0.282$
- $B \neq 0$: droplet prediction in dimension d is

$$
\begin{aligned}
& y_{B}=y_{T}+d / 2, y_{B} \text { defined by } \xi \sim B^{\frac{-1}{y_{B}}} \quad\left(T=T_{c}\right) \rightarrow \\
& y_{B} \approx 1.282 \text { in } d=2 .
\end{aligned}
$$

The droplet and scaling hypothesis

- low-lying excitations arise by droplet flips

- zero-field droplets $\sim \ell$ and compact. Interfacial energy is $O\left(\ell^{\theta}\right)$, total (random) magnetization goes as $\ell^{d / 2}$
- $B=0: y_{T}=-\theta, y_{T}$ defined by $\xi \sim T^{\frac{-1}{y_{T}}}$
- $B=0$: previous studies in 2d agree with DS and find $y_{T}=-\theta \approx 0.282$
- $B \neq 0$: droplet prediction in dimension d is $y_{B}=y_{T}+d / 2, y_{B}$ defined by $\xi \sim B^{\frac{-1}{y_{B}}}\left(T=T_{c}\right) \rightarrow$ $y_{B} \approx 1.282$ in $d=2$.
- $B \neq 0$: magnetization $m(B) \sim B^{1 / \delta}$, and $\delta=y_{B}$ in $d=2$

Previous work

- Kinzel and Binder 1983: $\delta \approx 1.39$ (Monte Carlo at low T)
- ground-state calculations:
- Kawashima/Suzuki 1992: $\delta \approx 1.48$
- Barahona 1994: $\delta \approx 1.54$
- Rieger et al. 1996: $\delta \approx 1.48$

Previous work

- Kinzel and Binder 1983: $\delta \approx 1.39$ (Monte Carlo at low T)
- ground-state calculations:
- Kawashima/Suzuki 1992: $\delta \approx 1.48$
- Barahona 1994: $\delta \approx 1.54$
- Rieger et al. 1996: $\delta \approx 1.48$
- Carter et al. 2003: power scaling probably only arises for huge sizes

Previous work

- Kinzel and Binder 1983: $\delta \approx 1.39$ (Monte Carlo at low T)
- ground-state calculations:
- Kawashima/Suzuki 1992: $\delta \approx 1.48$
- Barahona 1994: $\delta \approx 1.54$
- Rieger et al. 1996: $\delta \approx 1.48$
- Carter et al. 2003: power scaling probably only arises for huge sizes

Are there large corrections to scaling or does the droplet reasoning break down?

Details of our project

- Gaussian (and exponential) $J_{i j}$
- 2500 for $L=80,5000$ for $L=70,2000-11000$ for $L \leq 60$

Details of our project

- Gaussian (and exponential) $J_{i j}$
- 2500 for $L=80,5000$ for $L=70,2000-11000$ for $L \leq 60$

(1) compute gs at $B=0$
(2) determine ΔB so that gs at B remains optimum in $[B, B+\Delta B]$ (linear programming)
(3) reoptimize at $B+\Delta B+\epsilon$ with $\epsilon>0$
$L=70,80$: exact gs, $B=0,0.02,0.04,0.06, \ldots$

Exponent δ

- $m(B) \sim B^{1 / \delta} \rightarrow$ for $\delta_{D S}=1.28$, we should see an envelope curve appear in $m(B) / B^{1 / \delta_{D S}}$ as a fct. of B

- however: no flat region for $L \rightarrow \infty$, as found earlier
- power-law fit yields $\delta=1.45(L=50)$

Exponent δ

- $m(B) \sim B^{1 / \delta} \rightarrow$ for $\delta_{D S}=1.28$, we should see an envelope curve appear in $m(B) / B^{1 / \delta_{D S}}$ as a fct. of B

- however: no flat region for $L \rightarrow \infty$, as found earlier
- power-law fit yields

$$
\delta=1.45(L=50)
$$

- reason for discrepancy: m has analytic and non-analytic contributions: $m=\chi_{1} B+\chi_{S} B^{1 / \delta}+\ldots$, where $\chi_{1} B$ cannot be neglected

Exponent δ

- $m(B) \sim B^{1 / \delta} \rightarrow$ for $\delta_{D S}=1.28$, we should see an envelope curve appear in $m(B) / B^{1 / \delta_{D S}}$ as a fct. of B

- however: no flat region for $L \rightarrow \infty$, as found earlier
- power-law fit yields

$$
\delta=1.45(L=50)
$$

- reason for discrepancy: m has analytic and non-analytic contributions: $m=\chi_{1} B+\chi_{S} B^{1 / \delta}+\ldots$, where $\chi_{1} B$ cannot be neglected
- taking $\chi_{1} B$ into account (inset): droplet scaling fits data very well

Flipping clusters are like zero-field clusters

study for each realization of the disorder the largest cluster flipped for $B \in[0, \infty[$

- clusters have holes
- their volume $V \sim L^{2} \rightarrow$ compactness
- M / \sqrt{V} (M : cluster magnetization) insensitive to $L \rightarrow$ random
magnetization

Flipping clusters are like zero-field clusters

study for each realization of the disorder the largest cluster flipped for $B \in[0, \infty[$

- clusters have holes
- their volume $V \sim L^{2} \rightarrow$ compactness
- M / \sqrt{V} (M : cluster magnetization) insensitive to $L \rightarrow$ random magnetization
- cluster surface $\sim L^{d_{S}}$ with $d_{S} \approx 1.32(\leftrightarrow$ zero-field droplets: $d_{S}=1.27$)

Flipping clusters are like zero-field clusters

study for each realization of the disorder the largest cluster flipped for $B \in[0, \infty[$

- clusters have holes
- their volume $V \sim L^{2} \rightarrow$ compactness
- M / \sqrt{V} (M : cluster magnetization) insensitive to $L \rightarrow$ random magnetization
- cluster surface $\sim L^{d_{S}}$ with $d_{S} \approx 1.32$ (\leftrightarrow zero-field droplets: $d_{S}=1.27$)
\rightarrow DS arguments validated

y_{B} and finite size scaling of m

 measure y_{B} in $\xi_{B} \sim B^{-1 / y_{B}}$:- for a sample, largest cluster flips at field $B_{\jmath}^{*} . B^{*}=\left\langle B_{\jmath}^{*}\right\rangle_{\jmath}$

y_{B} and finite size scaling of m

 measure y_{B} in $\xi_{B} \sim B^{-1 / y_{B}}$:- for a sample, largest cluster flips at field B_{J}^{*}. $B^{*}=\left\langle B_{J}^{*}\right\rangle_{J}$
- biggest cluster involves $\sim L^{2}$ spins $\rightarrow \xi_{B}\left(B_{J}^{*}\right) \approx L \rightarrow$ $B^{*} \sim L^{-y_{B}}$

y_{B} and finite size scaling of m

 measure y_{B} in $\xi_{B} \sim B^{-1 / y_{B}}$:- for a sample, largest cluster flips at field $B_{\jmath}^{*} . B^{*}=\left\langle B_{\jmath}^{*}\right\rangle_{\jmath}$
- biggest cluster involves $\sim L^{2}$ spins $\rightarrow \xi_{B}\left(B_{j}^{*}\right) \approx L \rightarrow$ $B^{*} \sim L^{-y_{B}}$
- pure power with $y_{B}=1.28$ works well

- excellent data collapse as $\frac{m(B, L)-\chi_{1} B}{m\left(B^{*}, L\right)-\chi_{1} B^{*}}=$ $W\left(B / B^{*}\right)$
- $W(0)=O(1)$,
$W(x) \sim x^{1 / \delta}$ at large x.

y_{B} and finite size scaling of m

 measure y_{B} in $\xi_{B} \sim B^{-1 / y_{B}}$:- for a sample, largest cluster flips at field $B_{j}^{*} . B^{*}=\left\langle B_{j}^{*}\right\rangle$,
- biggest cluster involves $\sim L^{2}$ spins $\rightarrow \xi_{B}\left(B_{J}^{*}\right) \approx L \rightarrow$ $B^{*} \sim L^{-y_{B}}$
- pure power with $y_{B}=1.28$ works well

- excellent data collapse as $\frac{m(B, L)-\chi_{1} B}{m\left(B^{*}, L\right)-\chi_{1} B^{*}}=$ $W\left(B / B^{*}\right)$
- $W(0)=O(1)$, $W(x) \sim x^{1 / \delta}$ at large x.
- $B^{*} L^{1.28}$ as fct. of $1 / L$ works well with
- $O(1 / L)$ finite size effects.

$$
B^{*}(L)=u L^{-y_{B}}(1+v / L) \Rightarrow 1.28 \leq y_{B} \leq 1.30
$$

Conclusions for 2d Ising Spin Glasses in a Field

We validated the predictions of the droplet/scaling picture:

Conclusions for 2d Ising Spin Glasses in a Field

We validated the predictions of the droplet/scaling picture:

- we find $1.28 \leq \delta \leq 1.32$ by more careful analysis

Conclusions for 2d Ising Spin Glasses in a Field

We validated the predictions of the droplet/scaling picture:

- we find $1.28 \leq \delta \leq 1.32$ by more careful analysis
- earlier discrepances to $\delta=1.282$ because analytic contributions to magnetization curve were not treated

Conclusions for 2d Ising Spin Glasses in a Field

We validated the predictions of the droplet/scaling picture:

- we find $1.28 \leq \delta \leq 1.32$ by more careful analysis
- earlier discrepances to $\delta=1.282$ because analytic contributions to magnetization curve were not treated
- direct measurement of the magnetic length yields $1.28 \leq y_{B} \leq 1.30$

Conclusions for 2d Ising Spin Glasses in a Field

We validated the predictions of the droplet/scaling picture:

- we find $1.28 \leq \delta \leq 1.32$ by more careful analysis
- earlier discrepances to $\delta=1.282$ because analytic contributions to magnetization curve were not treated
- direct measurement of the magnetic length yields $1.28 \leq y_{B} \leq 1.30$
- relevant spin clusters are compact, random magnetization

Conclusions for 2d Ising Spin Glasses in a Field

We validated the predictions of the droplet/scaling picture:

- we find $1.28 \leq \delta \leq 1.32$ by more careful analysis
- earlier discrepances to $\delta=1.282$ because analytic contributions to magnetization curve were not treated
- direct measurement of the magnetic length yields $1.28 \leq y_{B} \leq 1.30$
- relevant spin clusters are compact, random magnetization
- same is true with exponentially distributed $J_{i j}$

Outline

(1) Hard Ising Spin Glass Instances
(2) $2 d$ Ising Spin Glasses in a Field
(3) Potts Glasses
(4) Potts Glasses with $q \rightarrow \infty$

Potts Glasses

with Bissan Ghaddar, Miguel Anjos (U. Waterloo, Canada)
B. Ghaddar, M. Anjos, FL (submitted)

Potts Glasses

with Bissan Ghaddar, Miguel Anjos (U. Waterloo, Canada)
B. Ghaddar, M. Anjos, FL (submitted)

- A spin can be in k different states $q_{1}, \ldots q_{k}$ Hamiltonian:

$$
H=-\sum_{\langle i, j\rangle} J_{i j} \delta_{q_{i} q_{j}}
$$

Potts Glasses

with Bissan Ghaddar, Miguel Anjos (U. Waterloo, Canada)
B. Ghaddar, M. Anjos, FL (submitted)

- A spin can be in k different states $q_{1}, \ldots q_{k}$ Hamiltonian:

$$
H=-\sum_{\langle i, j\rangle} J_{i j} \delta_{q_{i} q_{j}}
$$

- we solve the problem also via branch-and-cut

Potts Glasses

with Bissan Ghaddar, Miguel Anjos (U. Waterloo, Canada)
B. Ghaddar, M. Anjos, FL (submitted)

- A spin can be in k different states $q_{1}, \ldots q_{k}$ Hamiltonian:

$$
H=-\sum_{\langle i, j\rangle} J_{i j} \delta_{q_{i} q_{j}}
$$

- we solve the problem also via branch-and-cut
- however: the bounds through linear optimization are very weak in practice and

Potts Glasses

with Bissan Ghaddar, Miguel Anjos (U. Waterloo, Canada)
B. Ghaddar, M. Anjos, FL (submitted)

- A spin can be in k different states $q_{1}, \ldots q_{k}$

Hamiltonian:

$$
H=-\sum_{\langle i, j\rangle} J_{i j} \delta_{q_{i} q_{j}}
$$

- we solve the problem also via branch-and-cut
- however: the bounds through linear optimization are very weak in practice and
- can be considerably improved by positive semidefinite optimization

Potts Glasses

with Bissan Ghaddar, Miguel Anjos (U. Waterloo, Canada)
B. Ghaddar, M. Anjos, FL (submitted)

- A spin can be in k different states $q_{1}, \ldots q_{k}$

Hamiltonian:

$$
H=-\sum_{\langle i, j\rangle} J_{i j} \delta_{q_{i} q_{j}}
$$

- we solve the problem also via branch-and-cut
- however: the bounds through linear optimization are very weak in practice and
- can be considerably improved by positive semidefinite optimization
- still: gs determination for Potts glasses is considerably more difficult in practice than for Ising spin glasses
semidefinite programming (SDP) problem: minimize a linear function of a symmetric matrix X subject to linear constraints on X, with X being positive semidefinite.

Branch-and-Cut Algorithm for Potts Glasses

at each node of the branch-and-cut tree:
(1) use pos. semidef. optimization to obtain a LB

Branch-and-Cut Algorithm for Potts Glasses

at each node of the branch-and-cut tree:
(1) use pos. semidef. optimization to obtain a LB
(2) add valid inequalities to get a tighter LB

Branch-and-Cut Algorithm for Potts Glasses

at each node of the branch-and-cut tree:
(1) use pos. semidef. optimization to obtain a LB
(2) add valid inequalities to get a tighter LB
(3) find a feasible solution to get an UB

Branch-and-Cut Algorithm for Potts Glasses

at each node of the branch-and-cut tree:
(1) use pos. semidef. optimization to obtain a LB
(2) add valid inequalities to get a tighter LB
(3) find a feasible solution to get an UB
(4) choose an edge (ij) to branch on if optimality cannot yet be proven

Results

$\|V\|$	Best Solution Value	Root Node			\# of Nodes - Time
		LB	UB	Time	to achieve 0\%
5×5	-1484348	-1484722	-1484348	0:00:18	2-0:00:23
6×6	-2865560	-2865560	-2865560	0:05:12	1-0:05:12
7×7	-3282435	-3282435	-3282435	0:52:08	1-0:52:08
8×8	-5935341	-5935341	-5935341	2:21:43	1-2:21:43
9×9	-4758332	-4806178	-4758332	3:35:49	4-13:41:17
10×10	-6570984	-6630202.5	-6570984	10:36:23	6-18:09:41
11×11	-8586382	-9015701.1	-8586382	5:48:50	-
12×12	-10646782	-11189768	-10646782	9:31:00	-
13×13	-11618406	-12292274	-11618406	29:33:27	-
14×14	-13780370	-14607192	-13780370	47:16:57	-
$2 \times 3 \times 4$	-2197030	-2197030	-2197030	0:01:14	1-0:01:14
$2 \times 3 \times 5$	-2026448	-2026448	-2026448	0:08:02	1-0:08:02
$2 \times 4 \times 5$	-3392938	-3392938	-3392938	0:36:18	1-0:36:18
$3 \times 3 \times 3$	-1882389	-1882389	-1882389	0:00:21	1-0:00:21
$3 \times 3 \times 4$	-3192317	-3192317	-3192317	0:26:52	1-0:26:52
$3 \times 3 \times 5$	-4204246	-4209348	-4204246	2:52:31	5-3:38:37
$3 \times 4 \times 4$	-5387838	-5421403	-5387838	0:58:15	3-1:38:51
$4 \times 4 \times 4$	-7474525	-7529318	-7474525	3:22:37	3-10:12:11

Table: results for spinglass 2 g and spinglass 3 g instances where $k=3$. The time is given in hr:min:sec.

Results

	$\|V\|$	$k=5$		$k=7$	
		Objective Value	Time	Objective Value	Time
spinglass2g	6×6	-2865560	0:23:41	-2865560	0:21:00
	7×7	-3843979	0:42:31	-3864156	0:39:23
	8×8	-5935341	2:09:07	-5935341	2:13:05
	9×9	-5745419	2:39:38	-6026024	2:18:56
	10×10	-6860706	19:14:02	-7644016	17:32:29
spinglass3g	$2 \times 3 \times 4$	-2212707	0:00:10	-2212707	0:00:08
	$2 \times 3 \times 5$	-2081357	0:08:07	-2081358	0:05:35
	$2 \times 4 \times 5$	-3578762	0:17:00	-3578762	0:13:01
	$3 \times 3 \times 3$	-2932403	0:00:47	-2932403	0:00:03
	$3 \times 3 \times 4$	-3552295	0:26:58	-3559337	0:21:15
	$3 \times 3 \times 5$	-4561622	2:04:49	-4648539	1:02:09
	$3 \times 4 \times 4$	-5371414	1:14:11	-5466518	1:18:02
	$3 \times 4 \times 5$	-5474952	24:49:15	-5530625	4:09:23
	$4 \times 4 \times 4$	-7619675	9:30:19	-7646881	4:57:05

Table: results for $k=5$ and 7. The time is given in hr:min:sec.

Results

	$\|V\|$	$k=5$		$k=7$	
		Objective Value	Time	Objective Value	Time
spinglass2g	6×6	-2865560	0:23:41	-2865560	0:21:00
	7×7	-3843979	0:42:31	-3864156	0:39:23
	8×8	-5935341	2:09:07	-5935341	2:13:05
	9×9	-5745419	2:39:38	-6026024	2:18:56
	10×10	-6860706	19:14:02	-7644016	17:32:29
spinglass3g	$2 \times 3 \times 4$	-2212707	0:00:10	-2212707	0:00:08
	$2 \times 3 \times 5$	-2081357	0:08:07	-2081358	0:05:35
	$2 \times 4 \times 5$	-3578762	0:17:00	-3578762	0:13:01
	$3 \times 3 \times 3$	-2932403	0:00:47	-2932403	0:00:03
	$3 \times 3 \times 4$	-3552295	0:26:58	-3559337	0:21:15
	$3 \times 3 \times 5$	-4561622	2:04:49	-4648539	1:02:09
	$3 \times 4 \times 4$	-5371414	1:14:11	-5466518	1:18:02
	$3 \times 4 \times 5$	-5474952	24:49:15	-5530625	4:09:23
	$4 \times 4 \times 4$	-7619675	9:30:19	-7646881	4:57:05

Table: results for $k=5$ and 7 . The time is given in hr:min:sec.
doable sizes: ≤ 100 spin sites.

Results

	$\|V\|$	$k=5$		$k=7$	
		Objective Value	Time	Objective Value	Time
spinglass2g	6×6	-2865560	0:23:41	-2865560	0:21:00
	7×7	-3843979	0:42:31	-3864156	0:39:23
	8×8	-5935341	2:09:07	-5935341	2:13:05
	9×9	-5745419	2:39:38	-6026024	2:18:56
	10×10	-6860706	19:14:02	-7644016	17:32:29
spinglass3g	$2 \times 3 \times 4$	-2212707	0:00:10	-2212707	0:00:08
	$2 \times 3 \times 5$	-2081357	0:08:07	-2081358	0:05:35
	$2 \times 4 \times 5$	-3578762	0:17:00	-3578762	0:13:01
	$3 \times 3 \times 3$	-2932403	0:00:47	-2932403	0:00:03
	$3 \times 3 \times 4$	-3552295	0:26:58	-3559337	0:21:15
	$3 \times 3 \times 5$	-4561622	2:04:49	-4648539	1:02:09
	$3 \times 4 \times 4$	-5371414	1:14:11	-5466518	1:18:02
	$3 \times 4 \times 5$	-5474952	24:49:15	-5530625	4:09:23
	$4 \times 4 \times 4$	-7619675	9:30:19	-7646881	4:57:05

Table: results for $k=5$ and 7 . The time is given in hr:min:sec.
doable sizes: ≤ 100 spin sites.
Although the doable sizes are small, we are not aware of a faster exact algorithm.

Results

	$\|V\|$	$k=5$		$k=7$	
		Objective Value	Time	Objective Value	Time
spinglass2g	6×6	-2865560	0:23:41	-2865560	0:21:00
	7×7	-3843979	0:42:31	-3864156	0:39:23
	8×8	-5935341	2:09:07	-5935341	2:13:05
	9×9	-5745419	2:39:38	-6026024	2:18:56
	10×10	-6860706	19:14:02	-7644016	17:32:29
spinglass3g	$2 \times 3 \times 4$	-2212707	0:00:10	-2212707	0:00:08
	$2 \times 3 \times 5$	-2081357	0:08:07	-2081358	0:05:35
	$2 \times 4 \times 5$	-3578762	0:17:00	-3578762	0:13:01
	$3 \times 3 \times 3$	-2932403	0:00:47	-2932403	0:00:03
	$3 \times 3 \times 4$	-3552295	0:26:58	-3559337	0:21:15
	$3 \times 3 \times 5$	-4561622	2:04:49	-4648539	1:02:09
	$3 \times 4 \times 4$	-5371414	1:14:11	-5466518	1:18:02
	$3 \times 4 \times 5$	-5474952	24:49:15	-5530625	4:09:23
	$4 \times 4 \times 4$	-7619675	9:30:19	-7646881	4:57:05

Table: results for $k=5$ and 7 . The time is given in hr:min:sec.
doable sizes: ≤ 100 spin sites.
Although the doable sizes are small, we are not aware of a faster exact algorithm.
next step: replace the slow SDP-Solver by some faster routine

Outline

(1) Hard Ising Spin Glass Instances
(2) 2d Ising Spin Glasses in a Field
(3) Potts Glasses
(4) Potts Glasses with $q \rightarrow \infty$

Potts Glasses with $q \rightarrow \infty$

$$
\begin{array}{r}
\text { with Diana Fanghänel (Cologne) } \\
\text { D. Fanghänel, FL (in preparation) }
\end{array}
$$

Juhasz, Rieger, Iglòi (2001) have shown: for many states the dominant contribution to the partition function is

$$
\max _{A \in E(G)} q^{f(A)}
$$

$f(A)=$ number of connected components in $A(G)+\sum_{i, j \in A(G)} J_{i j}$

$$
f(A)=16
$$

Potts Glasses with $q \rightarrow \infty$

with Diana Fanghänel (Cologne)
D. Fanghänel, FL (in preparation)

Juhasz, Rieger, Iglòi (2001) have shown: for many states the dominant contribution to the partition function is

$$
\max _{A \in E(G)} q^{f(A)}
$$

$f(A)=$ number of connected components in $A(G)+\sum_{i, j \in A(G)} J_{i j}$

$$
\begin{aligned}
& \text { ass. } J_{i j}=0.1: f(A)= \\
& 5+15 * 0.1
\end{aligned}
$$

Potts Glasses with $q \rightarrow \infty$

with Diana Fanghänel (Cologne)
D. Fanghänel, FL (in preparation)

Juhasz, Rieger, Iglòi (2001) have shown: for many states the dominant contribution to the partition function is

$$
\max _{A \in E(G)} q^{f(A)}
$$

$f(A)=$ number of connected components in $A(G)+\sum_{i, j \in A(G)} J_{i j}$

$$
\begin{aligned}
& \text { ass. } J_{i j}=0.1: f(A)= \\
& 4+17 * 0.1
\end{aligned}
$$

Solution Approaches

- Angláis d'Auriac et al. presented an exact algorithm
- it uses many maximum-flow calculations (nolynomial but takes long)

Solution Approaches

- Angláis d'Auriac et al. presented an exact algorithm it uses many maximum-flow calculations (polynomial, but takes long)
- nur work: reduce the number of maximum-flow calculations by graph-theoretic considerations

Solution Approaches

- Angláis d'Auriac et al. presented an exact algorithm
- it uses many maximum-flow calculations (polynomial, but takes long)

Solution Approaches

- Angláis d'Auriac et al. presented an exact algorithm
- it uses many maximum-flow calculations (polynomial, but takes long)
- our work: reduce the number of maximum-flow calculations by graph-theoretic considerations

Preliminary Results

use coupling strengths w_{1}, w_{2} at criticality: $w_{1}+w_{2}=1$

- number of maximumn flow calculations reduces by $\frac{1}{3}$
- $L=128$: ca 1.5 minutes cpu time

Preliminary Results

use coupling strengths w_{1}, w_{2} at criticality: $w_{1}+w_{2}=1$

- number of maximum-flow calculations reduces by $\sim \frac{1}{3}$

Preliminary Results

use coupling strengths w_{1}, w_{2} at criticality: $w_{1}+w_{2}=1$

- number of maximum-flow calculations reduces by $\sim \frac{1}{3}$
- $L=$ 128: ca 1.5 minutes cpu time

Preliminary Results

use coupling strengths w_{1}, w_{2} at criticality: $w_{1}+w_{2}=1$

- number of maximum-flow calculations reduces by $\sim \frac{1}{3}$
- $L=$ 128: ca 1.5 minutes cpu time
- $L=256$: < 4 h cpu time

Preliminary Results

use coupling strengths w_{1}, w_{2} at criticality: $w_{1}+w_{2}=1$

- number of maximum-flow calculations reduces by $\sim \frac{1}{3}$
- $L=$ 128: ca 1.5 minutes cpu time
- $L=256:<4$ h cpu time
- will be improved further

The Current Limits

from 'difficult' to 'easy':

system	currently treatable sizes
Potts	
$3 \mathrm{~d} \mid \operatorname{sing}(\mathrm{w} / \mathrm{o}$ field $)$	

The Current Limits

from 'difficult' to 'easy':

system	currently treatable sizes
Potts	≤ 100 spin sites

The Current Limits

from 'difficult' to 'easy':

system	currently treatable sizes
Potts	≤ 100 spin sites
3d Ising (w/o field)	$\sim 12^{3}$

The Current Limits

from 'difficult' to 'easy':

system	currently treatable sizes
Potts	≤ 100 spin sites
3d Ising (w/o field)	$\sim 12^{3}$
2d Ising (periodic bc)	$>150^{2}$

The Current Limits

from 'difficult' to 'easy':

system	currently treatable sizes
Potts	≤ 100 spin sites
3d Ising (w/o field)	$\sim 12^{3}$
2d Ising (periodic bc)	$>150^{2}$
Potts $(q \rightarrow \infty)$	$>256^{2}$

Thank you for your attention!

[^0]: 4ロ〉《鸟〉

[^1]: $4 \square>$ 《司

[^2]: $4 \square>$ 《司

[^3]: $4 \square>$ 《司

[^4]: $4 \square>$ 《司

[^5]: $4 \square>$ 《司

[^6]: $4 \square>$ 《司

