Simulation of polymer translocation

<u>Prof. Gerard T. Barkema</u> ITP, Utrecht + Institute Lorentz, Leiden

- • Polymer scaling
- • Polymer dynamics
- • Translocation

Oldenburg, May 8, 2008

work done in collaboration with: <u>Debabrata Panja</u>, Alexander van Heukelum, Joanne Klein Wolterink, Henk van Beijeren, Henk Vocks and Robin Ball

Polymer size

Typical size of a single polymer of molecular mass (length) N:

 $R \sim N^{\nu}$

 $\nu = 1 \text{ (one dimension)}$ $\nu = 3/4 \text{ (two dimensions)}$ $\nu \approx 0.588 \text{ (three dimensions)}$ $\nu = 1/2 \text{ (four or more dimensions)}$

Same scaling for a tethered polymer (=polymer fixed to a surface)

Polymer in a melt: $\nu = 1/2$

Polymer dynamics

Melts are highly viscous, entangled systems.

Sideways movement is blocked; polymer is trapped in a 'tube'-like space

Dominant mechanism for polymer dynamics is REPTATION: movement by diffusion of stored length Diffusion coefficient scales as $D \sim L^{-2}$ Relaxation time scales as $\tau \sim L^3$

Strong dilution avoids entanglement.

New diffusion mechanism opening up : Rouse dynamics (sideways polymer displacement).

Diffusion coefficient scales as $D \sim L^{-1}$ Relaxation time scales as $\tau \sim L^{1+2\nu}$

Modeling reptation: repton model [M. Rubinstein, PRL 59, 1946 (1987)]

polymer \leftrightarrow chain of monomers (black dots) gel pores \leftrightarrow faces on square (cubic) lattice

Static constraint: neighbors along the chain are in same or neighboring faces

Dynamical rules:

- interior monomers join their neighbors along the chain
- end monomers retract or extrude in a random direction

Our extensions [A. van Heukelum and GTB, JCP 119, 8197 (2003)]

- static constraints and dynamics as in the repton model
- additional dynamics: sideways single-monomer moves (works best on FCC lattice)
- additional static constraint: hard-core repulsion on same site, except for consecutive monomers
- (energetic) interactions between nearest-neighbour sites can be added

Strong points of this model for our purposes:

- Dominant transport mechanism (reptation) occurs naturally and efficient
- no bond crossing
- multiple site occupation lifts ergodicity problems
- Model lends itself for highly efficient computer simulations

Polymer configuration: \vec{x}_i for $i \in [1, ..., N]$ Alternatively: \vec{x}_1 and $\vec{s}_i \equiv \vec{x}_{i+1} - \vec{x}_i$ for $i \in [1, ..., N-1]$ \vec{s}_i takes one of 13 values \Rightarrow can be stored in 4 bits $\{t, u, v, w\}_i$

On 64-bit computers, store 16 polymers in parallel: bits k, k + 16, k + 32 and k + 48 of long int S_i describes step s_i of the k^{th} polymer

- saves memory (fewer cache-misses)
- Clever programming allows to make moves in 16 polymers in one go!
- Reptation moves never violate excluded-volume constraints

Comparison to Bond-Fluctuation Model [E. Reister, M. Müller and K. Binder, Phys. Rev. E 64, 041804 (2001)]

One update in the Bond Fluctuation Model takes $\approx 3\mu s$ CPU-time

In our model:

- each reptation move takes 1.25 ns CPU-time (over three orders of magnitude faster)
- sideways moves, end-point moves take 82 ns CPU-time (almost two orders of magnitude faster)

Polymer relaxation

Observable: time autocorrelation of the end-to-end vector:

Polymer translocation, experiment

- How does the rate of escape of a polymer through a small hole depend on polymer length N?
- How long does such a translocating polymer dwell in the pore?

Experimental measurements:

Polymer translocation, simulation

Related system which we simulate:

- simulations in equilibrium
- equal boxes A and B
- observables are dynamic quantities:

average time between hops $\mathbf{A} \leftrightarrow \mathbf{B}$ duration of these hops Standard approach:

- consider which monomer s(t) is located in the (middle of) the pore at time t.
- unless s is close to either end (s = 0 or N), negligable drift
- \Rightarrow diffusion dominates: $\langle (s(t) s(0))^2 \rangle \sim t$
- ullet average dwell time au_d ~ average unthreading time au_u
- unthreading: $s^2(\tau_u) = N^2 \Rightarrow \tau_u \sim N^2$.

As shown by Kantor and Kardar (2004), this cannot be correct:

• wall does not make polymer more mobile \Rightarrow lower limit: $\tau_u \ge N^{1+2\nu}$ \Rightarrow dynamics has to be anomalous: $\langle (s(t) - s(0))^2 \rangle \sim t^{\alpha}$ with $\alpha \le \frac{2}{1+2\nu}$ \Rightarrow memory effects!

Unbiased translocation: cause of memory

Translocation velocity $v(t) \equiv \dot{s}(t)$ induces restoring chain tension $\phi(t)$

Assuming a linear response, $\phi(t)$ and v(t) are related:

$$\phi(t) = \int_0^t dt' \mu(t - t') v(t') \quad \text{and} \quad v(t) = \int_0^t dt' a(t - t') \phi(t')$$

Laplace transform in inverse time $k \equiv t^{-1}$:

$$\phi(k) = \tilde{\mu}(k)v(k) \quad \text{ and } \quad v(k) = \tilde{a}(k)\phi(k).$$

Consistency demands $\tilde{\mu}(k) = \tilde{a}^{-1}(k)$.

Unbiased translocation: memory kernel

Reminder: $\phi(t) = \int_0^t dt' \mu(t-t')v(t')$

 $\mu(t)$, is response in $\phi(t)$ to a delta-function in v(t), i.e., a step-function in s(t).

Analytic argument:

At time $t \sim n(t)^{1+2\nu}$, monomers up to n(t) are readjusted

Restoring force due to rest of polymer: $F = \Delta r \cdot \frac{\partial F}{\partial r} \sim \left(\Delta n \cdot \frac{\partial r}{\partial n}\right) \cdot \frac{1}{r^2}$

Using $r(t) \sim n(t)^{\nu}$: $F \sim \Delta n \cdot n(t)^{-(1+\nu)} \sim t^{-(1+\nu)/(1+2\nu)} \equiv t^{-\alpha}$ Simulation results:

$$\mu(t) \sim t^{-\alpha} \exp(-t/\tau_R) \Rightarrow \langle s^2(t) \rangle \sim t^{\alpha} \text{ for } t < \tau_R$$

 $\begin{array}{c}
10^{2} \\
10^{1} \\
10^{2} \\
10^{2} \\
10^{3} \\
t
\end{array}$

$$\Rightarrow \langle s^2(\tau_R) \rangle \sim N^{1+\nu}.$$

Numerical checks:

N	$ au_u$	$ au_u/N^{2+ u}$
100	65136	0.434
150	183423	0.428
200	393245	0.436
250	714619	0.445
300	1133948	0.440
400	2369379	0.437
500	4160669	0.431

No memory effects at $t > \tau_R$

 \Rightarrow normal diffusion:

$$\Rightarrow \langle s^2(t) \rangle = \frac{t}{\tau_R} \langle s^2(\tau_R) \rangle$$
$$\Rightarrow s^2(t) = N^2 \text{ at } \langle t \rangle \sim N^{2+\nu}$$

Case II: pulled translocation

Pulling one end of the polymer speeds up the unthreading time Theoretical framework: memory kernel (downstream side) becomes $\mu(t) \sim t^{-1/2} \exp(-t/N^2) \Rightarrow s(t) \sim t^{1/2}$

Case II: pulled translocation

Case III: driven translocation

Theoretical framework:

memory kernel is as before, $\mu(t) \sim t^{-(1+\nu)/(1+2\nu)} \exp(-t/\tau_R)$ $\Rightarrow \langle s(t) \rangle \sim t^{(1+\nu)/(1+2\nu)}$

Unthreading: $s(t) = N \Leftrightarrow \tau_u \sim N^{(1+2\nu)/(1+\nu)}$

Collapse if $\tau_u/N^{2+\nu}$ is plotted as a function of $EN^{\nu+(1+\nu)^{-1}}$

Secundary structure of RNA

- Pull RNA with an optical tweezer through a nanopore
- Record the pulling force vs. time
- Secundary structures give rise to peaks

Our analysis: thermal noise limits resolution to 5 to 10 nucleotides

Memory effects in polymer melts

- At time t = 0, slide a randomly tagged polymer along its contour
- According to standard reptation theory, no restoring tendency
- $y(t) \equiv \sum_i (\vec{x}_i(t) \vec{x}_i(0)) \cdot (\vec{x}_{i+1}(0) \vec{x}_{i-1}(0))$ is however clearly non-zero
- $\bullet \Rightarrow$ longitudinal motion experiences a restoring force: memory effects

Memory effects in polymer melts

- Probing memory kernel: response to a forced extrusion from one end
- Stored length density: $Z_5(t) Z_5(\infty) \sim t^{-\alpha} \Leftrightarrow -dZ_5/dt \sim t^{-(1+\alpha)}$
- Result: power-law decay with exponent $\alpha \approx 0.78 \pm 0.03$
- \Rightarrow longitudinal diffusion is <u>anomalous</u> till $t \sim N^{\beta}$ with $\beta = 2/\alpha = 2.56 \pm 0.10$

Consequences of melt memory

• Standard reptation theory:

Curvilinear diffusion crosses over from $\langle x^2 \rangle \sim t^{1/4}$ to $\sim t^{1/2}$ around $t \sim N^2$

- We find this crossover at $t \sim N^{\beta}$ with $\beta = 2/\alpha = 2.56 \pm 0.10$
- Hence longest relaxation time (and viscosity) scaling as N^{η_m} with $\eta_m = 3.28 \pm 0.05$

Summary and conclusions

- We have a very efficient lattice polymer program
- this allowed us to be investigate polymer translocation properly
- in unbiased translocation: $\tau_d \sim N^{2+\nu}$
- pulled translocation: $\tau_d \sim N^2$
- field-driven translocation: $\tau_d \sim N^{(1+2\nu)/(1+\nu)}$
- translocation velocity not constant; macroscopic ideas (friction e.d.) fail
- reptation theory is incomplete; many-polymer memory effects are missing Outlook:
 - further work on polymer melts
 - understanding gelation

References

Polymer model:

- "Reaching large lengths and long times in polymer dynamics simulations",
 - A. van Heukelum and G. T. Barkema, J. Chem. Phys. 119, 8197-8202 (2003).

Translocation:

- "Passage times for unbiased polymer translocation through a narrow pore", J. Klein Wolterink, G.T. Barkema and Debabrata Panja, Phys. Rev. Lett. 96, 208301 (2006).
- "Passage Times for Polymer Translocation Pulled through a Narrow Pore", D. Panja and G.T. Barkema, Biophys. J. 94, 1630-1637 (2008).
- "Anomalous dynamics of unbiased polymer translocation through a narrow pore",
 D. Panja, G.T. Barkema and R.C. Ball, J. Phys.: Condens. Matter 19, 432202 (2007).
- "Polymer translocation out of planar confinements",
 D. Panja, G.T. Barkema and R.C. Ball, J. Phys.: Condens. Matter 20, 075101 (2008).
- "Pore-blockade Times for Field-Driven Polymer Translocation",
 H. Vocks, D. Panja, G.T. Barkema and R.C. Ball, J. Phys.: Condens. Matter 20, 095224 (2008).
- "Can Translocation Be Used to Determine RNA Secondary Structures?", H. Vocks, D. Panja and G.T. Barkema, submitted (2008).

Polymer melts:

- "Local strain relaxation dictates polymer melt viscosity",
 - G.T. Barkema and D. Panja, submitted (2008).