The many faces of percolation

Golnoosh Bizhani, Claire Christensen, Maya Paczuski, Hon Wai Lau, Arsalan Sattari, Seung-Woo Son, Peter Grassberger

Oldenburg, May 2012

If you can establish long range connectivity, then you can ...

... eat your breakfast egg without a spoon, ...

... eat your breakfast egg without a spoon, watch TV at the same time, eat your breakfast egg without a spoon, watch TV at the same time, ...

... win a game of "go", ...

... eat your breakfast egg without a spoon, watch TV at the same time, ...

- ... win a game of "go", ...
- ... or catch the flu.

In spite of this broad range of phenomena (& much more!), conventional folklore:

percolation is simple & universal:

- continuous ("second order") phase transition
- for spatial systems (lattices, Voronoi tessalations, ...) : anomalous critical exponents depending on dimension d
- for random networks (locally loop-less, e.g. Erdös-Renyi): mean field exponents
- for directed systems (SIS epidemics): directed percolation has different exponents
- finite systems: Finite Size Scaling (FSS)

That's it !

NO, THERE IS MORE!

Growing random networks (Callaway, Hopcroft, Kleinberg, Newman & Strogatz, PRE 64, 041902 (2001):

- begin with empty graph (no nodes, no links)
- add one node
- with probability δ add a link between two randomly chosen nodes, if there are not yet linked node pairs
- repeat

NB: disregard connectivity, no preferential attachment

- For $\delta < \delta_c = 1/4$, there will be no ∞ cluster, i.e. $S_{max}/N \to 0$
- For $\delta > 1/4$, $S_{max}/N \to \text{finite value } \rho(\delta) > 0$.
- $\rho(\delta)$ has no power law singularity $\rho(\delta) \sim \delta^{\beta}$ as in OP, but an essential singularity: all derivatives $d^k \rho(\delta)/d^k = 0$: "infinite order"
- for all $\delta < 1/4$, $S_{max} \sim N^{-\alpha(\delta)}$: "critical phase" (cf. Kosterlitz-Thouless-Berezinskii)

Hmm!

Boettcher, Singh, & Ziff, arXiv 1109.6567: bond percolation on a hierarchical lattice with finite ramification \rightarrow discontinuous transition: S_{max}/N jumps (for $N \rightarrow \infty$) at p = 1/2.

Hmmm!

Are there more models with first order percolation transitions?

Large Percolation on interdependent networks

[Buldyrev et al., 2010, Parshani et al., 2010, S.-W. Son et al. 2011, ...]

Ordinary SIR epidemic on sparse random graph (locally loop-less); infection probability = 1:

 $u = \text{prob}\{ \text{ end point of random link is not infected} \}$ = u^{k-1} (k = degree) Let $p'(k) = kp(k)/\langle k \rangle$ = degree distribution of link endpoint; $S = 1 - u = \text{prob}\{\text{ point is infected}\} = \text{relative size of infected cluster}$ $S = 1 - \sum_k p'(k)(1 - S)^{k-1} = 1 - G(1 - S)$ $G(x) = -\sum_k p'(k)x^k = 1 + \langle k \rangle x + \frac{1}{2} \frac{\langle k(k-1) \rangle}{\langle k \rangle} x^2 + \dots$

Def.: f(S) = S - 1 + G(1 - S) $\rightarrow f(S) = 0 : \rightarrow$ self-consistency condition for relative cluster size

Erdös-Rényi:

Large Interdependent networks:

- same set of nodes
- two different sets of links: $\{\mathcal{A}, \mathcal{B}\}$
- cluster $C_{\mathcal{AB}}$ of sites is (\mathcal{AB}) -connected, if any two sites $i, j \in C$ are connected both by \mathcal{A} -path and by \mathcal{B} -path, both entirely within C

node $i \in C_{\mathcal{AB}} \leftrightarrow$

- *i* is connected to at least one other node $j \in C_{\mathcal{AB}}$ through an \mathcal{A} -link
- & at least one node $\in C_{\mathcal{AB}}$ through a \mathcal{B} -link

For Erdös-Rényi with $\langle k \rangle_{\mathcal{A}} = \langle k \rangle_{\mathcal{B}}$:

 $g(S) \equiv S - (1 - G(S))^2 = 0$

0-16

First order (discontinuous) transition!

Same simple analytic treatment also for other types of dependencies (Son et al., 2011):

- > 2 interdependent sets of links,
- mixture of "connectivity" & "dependency" links,
- some nodes need only single connection

• ...

Intuitive picture (Buldyrev et al., 2010):

Italy, September 28, 2003: Nation-wide power black out \mathcal{A} = network of power lines \mathcal{B} = information network

Failure of first node to all nodes connected to it via \mathcal{A} fail to all nodes connected to these via \mathcal{B} fail to all nodes connected to these via \mathcal{A} fail

Cascades of mutually induced failures \rightarrow more abrupt onset of giant cluster

NO!

For \mathcal{A}, \mathcal{B} subsets of links on 2-d lattices:

- $S \sim (\langle k \rangle \langle k \rangle_c)^{\beta}$: continuous transition
- $\beta_{depend} > \beta_{OP}$: transition is *less* abrupt

Large Cooperative contagion

- Barbara tells Thilo: "movie X is good!" Thilo: "Hm"
- Stefan tells Thilo: "movie X is good!" Thilo: "Hm"
- Ginestra tells Thilo: "movie X is good!" Thilo: "Hm"
- Barbara & Stefan & Ginestra tell Thilo: "movie X is good!"

Thilo: "Oh – Where can I see it!?"

More generally:

```
p_1 = \text{prob}\{\text{site is infected at first attack}\}

p_2 = \text{prob}\{\text{site that was not infected at first attack is infected at 2<sup>nd</sup>}\}

p_3 = \text{prob}\{\text{site that is still not infected is infected at 3<sup>rd</sup> attack}\}

etc
```

Ordinary bond percolation: $p_1 = p_2 = p_3 = \dots$ Ordinary site percolation: $p_2 = p_3 = \dots = 0$

 p_k decrease with k: immunity strengthened by successive attacks: dull p_k increases with k: cooperative contagion – interesting!

Alternative notation: $q_k = \text{prob}\{\text{site is infected after } k \text{ attacks}\}$

$$= p_1 + (1 - p_1)p_2 + \dots (1 - q_{k-1})p_k$$

On sparse (i.e., locally loop-less) random graphs: Similar treatment as before

Ordinary (bond) percolation with infection probability p:

$$1 - S = \sum_{k}^{\infty} kp'(k)(1 - pS)^{k-1}$$

$$F(S) \equiv \sum_{k=1}^{\infty} kp(k) \{ (1 - pS)^{k-1} + (S - 1) \} = 0$$

Complex contagion:

$$(1-pS)^{k-1} \to \sum_{n=0}^{k-1} {\binom{k-1}{n}} (1-q_n)S^n (1-S)^{k-n-1}$$

(each term corresponds to exactly n infective neighbors)

Transition continuous \rightarrow discontinuous percolation transition: F(0) = F'(0) = F''(0) = 0

$$q_1 = p_1 = \frac{\langle k \rangle}{\langle k(k-1) \rangle}$$

$$q_2 = 2q_1$$

(Dodds & Watts 2004).

Spatially embedded (regular lattice, \dots):

cooperativity

- \rightarrow surface of clusters become smoother
- \rightarrow holes in cluster become smaller
- \rightarrow cluster density increases

Tricritical point: cluster becomes compact, with rough but non-fractal surface

Beyond tricritical point:

"First-order percolation" \equiv rough pinned surfaces

Why did "explosive percolation" make such a splash? Why did we, like Molière's Bourgeois Gentilhomme, not know that we speak 1^{st} order percolation, whenever we spoke rough pinned surfaces?

- Density of ∞ cluster has always finite density
- Nucleation: growth from point seed is hindered & goes through bottleneck

BUT:

• No jump in any plot of "order parameter" S against "control parameter" = #(bonds)

Is this a bona fide "first order" phase transition in the usual sense?

A short course on first & second order phase transitions:

Thermodynamics:

- order parameter is density of extensive quantity (magnetization, particle density, ...) or inverse density (specific volume)
- control parameter is conjugate variable (magnetic field, chemical potential, pressure, ...)
- e.g. van der Waals gas (~ water / vapor): if pressure is kept fixed below critical point, then energy jumps at $T = T_{boil} \rightarrow$ forst order transition. If $p > p_c$, no such jump, all is continuous. If $p = p_c$, then no jump, but dE/dT is not continuous.
- similar, if T = const, p is used as control parameter

! if volume is used at fixed T, then NO jump, even if always $p < p_c$!

(water in pot with movable tight lid: as lid is moved, vapor \leftrightarrow coexisting vapor/water \leftrightarrow water)

Percolation:

p=fraction of est'd bonds (bond percolation) p=fraction of est'd sites (site percolation)

neither is conjugate to a density or to an inverse density, but both are densities themselves!

?!?! S_{max}/N is not expected to jump at a bona fide first order transition !?!?!?

Cooperative contagion: q_1, q_2 are NOT directly related to bond densities

Phase diagram for regular graphs:

0-31

d = 2: no tricritical point, pinned surfaces are always fractal & in percolation universality class

d = 5: Upper critical dimension for tricritical point, also upper critical dimension for rough surfaces

 $d \leq 5$: ϵ -expansion (field theoretic RG) H.K. Janssen, M. Müller, & O. Stenull, PRE **70**,026114 (2004): – agrees with simulations for d = 4, 5– disagrees for d = 3

Points on *x*-axis $(p_1 = 0)$: "Bond bootstrap" percolation Ordinary bootstrap percolation: all bonds are present, but sites are only present when > *k* neighbors.

Here: Bonds are present with probability < 1, sites are only present when ≥ 2 neighbors

-d>3: "Edwards-Wilkinson-type" theory (no overhangs) give correct scaling -d=3: Numerically observed scaling disagrees with EW-predictions

All dimensions:

Cluster surfaces become $(t \to \infty)$ locally isotropic, when in ordinary percolation universality class, stay anisotropic when in first-order regime

Ordinary & tricritical percolation: decay of local surface anisotropy $\sim t^a$ with

- one new exponent a for d < 5; - two new exponents for $d \ge 5$ (one exponent for directionalities of new contacts, other for anisotropy of new infections)

0-34

1 0.1 3d 0.01 0.001 tricritical, a(t) tricritical, b(t)bond p., a(t) = b(t)0.0001 10 100 1000 10000 1 t

0-35

0-36

0-38

0-39

$d \ge 4$:

- Finite size scaling as in second-order regime ok.
- Cleanest power laws for $p_0 = 0$ ("bond bootstrap percolation"), powers agree with Edwards-Wilkinson type models (no overhangs)

Large Other way to implement cooperativity:

Hamiltonian ("exponential") graph models

 $P(G) = e^{-H(G|\theta_1, \theta_2, ...)}$ (Gibbs-Boltzmann)

- ER-model, fluctuating bond number L: $H(G|\theta) = \theta L$
- Strauss model:

 $H(G|\theta) = \theta L + B/Nn_{\Delta},$

- n_{Δ} = number of triangles ...
- 2-star model:

 $H(G|\theta) = \theta L + B/Nn_v,$ $n_v =$ number of "2-stars" • ...

Percolation thresholds: $\theta = O(\ln N) \ (gives L \sim N)$

For $\theta/B = O(1), \theta \ge 1$: first order "clustering" transition with huge jump in L. (Park & Newman)

For $\theta/B = O(1), \theta = O(\ln N)$:

second order percolation transition is "overrun" by clustering transition, becomes also first order,

but with "schizophrenic" hysteresis loop

Agglomerative percolation (AP)

Ordinary bond percolation (OP): in each step, one random pair of nodes is joined.

AP: in each step, one cluster is chosen randomly and joined with ALL of its neighbors

[original motivation: claim by Song, Havlin, & Makse (Nature **433**, 392 (2005), that similar procedure shows finite fractal dimensions for small world graphs]

Random trees Erdös-Renyi networks 1-d chains \rightarrow different results from OP.

2-d lattices:

triangular lattice: same universality class as OP ($\tau = 2.055, D = 1.89, \nu = 4/3$) square lattice: completely different: $\tau = D = 2, \nu = \infty$

??

Hon Wai Lau, PG, Maya Paczuski:

Square lattice is *bipartite*,

"color" of site/node to unique color of cluster starting at this site/node AP transition on bipartite graph coincides with spontaneous symmetry breaking

Conclusions:

• Depending on topology, percolation on graphs can have orders ranging from 1 to ∞

Figure 1: (Color online) Probabilities that the two largest clusters have the same color. These probabilities should vanish in the supercritical phase, if $L \to \infty$. Panel (a) is for the square lattice, panel (b) for the cubic. The upper inset in panel (b) shows the region close to the critical point. The lower inset shows a data collapse plot, $c_{--}(n)$ against $(n - n_c)L^{1/\nu}$ with $n_c = 0.4109$ and $\nu = 1.01$.

- Definition of "order" of percolation transition requires care
- In a well defined way, pinned rough surfaces are just first order percolation transitions.
- Their off-lattice equivalents are models for cooperative infectious spreading studied in the sociological literature
- Although Achlioptas processes are coninuous, they completely different finite size behavior
- Interdependencies in random sparce (loop-less) networks can be treated theoretically much easier, if cascades are not followed explicitly –
- – but this might be not so interesting, because geometric networks show opposite effects
- Agglomerative percolation shows dramatic violations of universality ;
 - it can do so because it is non-local;

 it does so, because the percolation transition on bipartite lattices involves spontaneous symmetry breaking