DY 29.13

# Loop length distributions in the Negative Weight Percolation problem: Extension to $\mathrm{d}=2$... 6 

G. Claußen, O. Melchert and A.K. Hartmann

Institut für Physik, Universität Oldenburg, Germany

## Negative-weight percolation (NWP)

$d$-dimensional lattice model with quenched disorder. Edge weights $\omega$ drawn from disorder distribution

$$
P(\omega)=\rho e^{-\omega^{2} / 2} / \sqrt{2 \pi}+(1-\rho) \delta(\omega-1)
$$

- Allows for loops $\mathcal{L}$ with negative weight $\omega_{\mathcal{L}}$
- Tunable disorder parameter $\rho$ :
$\rho=0$ : no loops with $\omega_{\mathcal{L}}<0$
$\rho=1$ : many (large) loops with $\omega_{\mathcal{L}}<0$
Compute loop configuration $\mathcal{C}$ with minimum weight

$$
E \equiv \sum_{\mathcal{L} \in \mathcal{C}} \omega_{\mathcal{L}} \stackrel{!}{=} \min
$$

- "Easy" combinatorial optimization problem
- Solvable through mapping to minimum weight perfect matching (MWPM) problem [1]


## Percolation phenomenon


(2D square lattice, side length $L=64$ )

- Loop lengths $l$ "grow" for increasing $\rho$
- System spanning loops appear for $\rho \geq \rho_{c}=0.34$
- Disorder induced, geometric transition


## Measuring and quantities

- Set up random edge weights for $\rho<\rho_{c}$
- Compute distribution $n(l)$ of loop lengths $l$
- Count "small", i.e. non-percolating loops only!

Consider the following relations:

- $\rho \approx \rho_{c}: n \propto l^{-\tau}$ with Fisher exponent $\tau$
- $\rho<\rho_{c}: n \propto l^{-\tau} \exp \left(-T_{L} l\right)$ with line tension $T_{L}$
- $\rho<\rho_{c}: T_{L} \propto\left|\rho-\rho_{c}\right|^{1 / \sigma}$ with the finite-size cut-off parameter $\sigma$
Estimate $\sigma_{l i t}=\frac{1}{d_{f} \cdot \nu}$ (see [5]) employing:
- Fractal dimension $d_{f}$
- Correlation length exponent $\nu$

Measured for percolating loops at $\rho>\rho_{c}$

## Bibliography

[1] OM, AKH, New J. Phys. 10 (2008) 043039
[2] R. Ahuja, T. Magnanti, J. Orlin, Network flows, (Prentice Hall, 1993)
[3] AKH, Practical Guide to Computer Simulations, (World Scientific, 2009)
[4] W. Cook, A. Rohe, INFORMS 11 (1999) pp. 138-148
[5] L. Apolo, OM, AKH, Phys. Rev. E 79 (2009) 031103

## Loop algorithm - path-to-matching transformation

(a)


- Standard minimum-weight path algorithms don't work, since $d(i)=\min _{j \in N(i)}[d(j)+\omega(i, j)]$ not fulfilled
- Minimum-weight path problem

(a) original graph $G$,
(b) auxiliary graph $G_{\mathrm{A}}$,
(c) MWPM on $G_{\mathrm{A}}$ (blue edges),
(d) loop configuration on $G$

A MWPM is found through the Blossom IV algorithm [4].

## Exponential suppression of loop lengths

Example: $d=2, L=32, N=1024, \rho=\{0.28,0.30,0.32,0.34\}$



- Distributions $n(l)$ show exponential suppression of lengths
- Measured through the $\exp \left(-T_{L} l\right)$ factor $\left(\rho=\rho_{c}: T_{L}=0\right)$


## Results and conclusion

| $d$ | $L$ | $N_{\max }$ | $\rho_{c}$ | $\sigma_{\text {lit }}$ | best $\sigma$ | Remarks about the fit |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 2 | 512 | 6400 | 0.34 | $0.53(3)$ | $0.53(3)$ | rs for $\rho<0.28, \tilde{\rho}_{c}=0.344(2)$ |
| 3 | 64 | 4800 | 0.1273 | $0.69(2)$ | $0.67(1)$ | $\tilde{\rho}_{c}=0.1278(1)$ |
| 4 | $16-21$ | 32000 | 0.064 | $0.78(3)$ | $0.78(2)$ | resampling for $\rho<0.045$ |
| 5 | $10-12$ | 16000 | 0.0385 | $0.86(4)$ | $0.88(2)$ | $\left[0.025: \rho_{c}\right]$ |
| 6 | 6 | 54864 | 0.02670 | $1.00(3)$ | $0.97(4)$ | $\left[0.022: \rho_{c}\right]$ |



- Conclusion: Theory holds well up to $d=6$, fitted values meet expectations
- No considerable result at $d=7$ (upper critical dimension $d=6$, see [5]) System size limited to $L=5$ by computer memory (MWPM calculations)
- Improvement: Logarithmic binning reduces noise in the $n(l)$ tails

