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Simulating Neuronal Networks
with PyNEST

It is easy to do – 
but do we know what we are doing?
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Overview

● NEST Initiative & Simulator
●  PyNEST: Simple examples
●  PyNEST: Network examples
●  “Showtime”

● How “science” are simulations today?
●  Reproducibility
●  Sharing and re-use
●  Perspectives 
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NEST

Initiative & Simulator
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The NEST Initiative

 Activities:
 ht t p: / / www. nes t - i ni t i at i v e. or g

 Public releases of NEST available 
since fall 2004

 Since 2004 used at the EU 
Advanced Course in Computational 
Neuroscience

 NEST Workshops at the CNS*2005 
in Madison (USA) and CNS*2006 in 
Edinburgh (UK)

 Goals of the NEST Initiative:
1. share expertise
2. combine resources
3. coordinate research and software 

development
4. increase software quality
5. share simulations and results

 Neural Simulation Technology (NEST) 
Initiative was established in 2001.

 Currently four core developing groups:
1. Honda Research Institute Europe
2. BCCN Freiburg
3. Norwegian University of Life 

Science, Ås
4. Brain Science Institute, RIKEN
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Computational Neuroscience

"The goal of neural modeling is to relate, in nervous systems, function to 
structure on the basis of operation."
 MacGregor & Lewis 1977
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Important properties
● Discrete processing units: neurons
● Neurons process incoming signals internally
● Neurons communicate through stereotypical 

pulses with finite transmission delays: spikes
● Typical scales

– internal dynamics ~ 1ms

– spike delays ~ 1ms

– firing rates ~ 10 Hz

– 105 neurons/mm3

– 104 inputs/output per neuron
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NEST in a nutshell
 Available from www.nest-initiative.org
 Command-line application 
 Network models built from neurons, synapses, and devices.
 High-level simulation language (Python or SLI).
 Models for neurons, synapses, and devices are written in C++
 Support for parallel and distributed simulation (Threads and MPI)
 Used at international summer schools since 2004
 «Tell us and cite us» open source license
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Neural Networks in NEST

● Network: Directed graph
● Nodes: Neurons (104-106)
● Edges: Connections (107-109)
● Interaction: Delayed pulses 
● Kernel tasks:

– Process incoming spikes

– Advance neuron states

– Emit outgoing spikes

node 1

node 2

node 3

time



Oldenburg 6 April 2009 9© H E Plesser / UMB

Parallel Simulation in NEST2

SERIAL PARALLEL
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NEST

Simple Examples
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A simple model

import nest
import nest.voltage_trace

nest.ResetKernel()

neuron=nest.Create("iaf_neuron")
noise =nest.Create("poisson_generator",2)
sine  =nest.Create("ac_generator")
voltmeter= nest.Create("voltmeter")

nest.SetStatus(noise,[{"rate":75000.0},
                      {"rate":20000.0}])
nest.SetStatus(sine, [{"amplitude":100.0,
                       "frequency":2.0}])

nest.SetStatus(voltmeter,[{"withgid": True, "withtime": True}])

nest.ConvergentConnect(noise,neuron,weight=[1., -1.])
nest.Connect(voltmeter,neuron)
nest.Connect(sine,neuron)

nest.Simulate(1000.0)

nest.voltage_trace.from_device(voltmeter)

PG SG

VM

IAF

PG
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Example: Optimizing a network
● Excitatory population modeled 

as Poisson process
● Inhibitory population modeled 

as Poisson process
● Single I&F neuron receiving 

input from both populations
● Goal: Adjust inhibitory 

population rate so neuron 
fires with same rate as 
excitatory population 

● Approach: repeated simulation 
+ bisection

Excit Inhib

I&F
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Optimizing: the code
neuron        = nest.Create("iaf_neuron")
noise         = nest.Create("poisson_generator",2)
spikedetector = nest.Create("spike_detector")

nest.SetStatus(noise, [{"rate": n_ex*r_ex}, {"rate": n_in*r_in}])

nest.ConvergentConnect(noise, neuron, [w_excit, w_inhib], 1.0)
nest.Connect(neuron, spikedetector)

in_rate = bisect(lambda x: output_rate(x) - r_ex, 
                 lower, upper, xtol=prec)

def output_rate(guess):
    rate = float(abs(n_in*guess))
    nest.SetStatus([noise[1]], "rate", rate)
    nest.SetStatus(spikedetector, "n_events", 0)
    nest.Simulate(t_sim)
    out=nest.GetStatus(spikedetector, "n_events")[0]*1000.0/t_sim
    return out
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Optimization: example run
Inhibitory rate estimate: 15.00 Hz -> Neuron rate: 347.64 Hz
Inhibitory rate estimate: 25.00 Hz -> Neuron rate:   0.04 Hz
Inhibitory rate estimate: 20.00 Hz -> Neuron rate:  37.04 Hz
Inhibitory rate estimate: 22.50 Hz -> Neuron rate:   0.00 Hz
Inhibitory rate estimate: 21.25 Hz -> Neuron rate:   0.92 Hz
Inhibitory rate estimate: 20.62 Hz -> Neuron rate:   7.32 Hz
Inhibitory rate estimate: 20.94 Hz -> Neuron rate:   3.48 Hz
Inhibitory rate estimate: 20.78 Hz -> Neuron rate:   3.92 Hz
Inhibitory rate estimate: 20.70 Hz -> Neuron rate:   6.04 Hz
Inhibitory rate estimate: 20.74 Hz -> Neuron rate:   5.76 Hz
Inhibitory rate estimate: 20.76 Hz -> Neuron rate:   5.24 Hz
Inhibitory rate estimate: 20.77 Hz -> Neuron rate:   5.28 Hz

Optimal rate for the inhibitory population: 20.77 Hz
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PyNEST

Network Example
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NEST Topology Module
● Idea: User-friendly support for layered networks
● Implementation: Kittel Austvoll
● Describe network as collection of layers
● Elements of a layer can be

● Individual neurons
● Groups of neurons (e.g. Microcolumn)
● Placed on a fixed grid
● Placed arbitrarily in space

●  Connections described by
● Masks: no connections outside mask
● Kernels: give distance-dependent connection 

probability
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Example Network
(after Lumer et al, 1997)

● LGN: Layer of individual neurons
● Vp: Layer of microcolums

●  L4: 2 pyr. cells, 1 internrn
●  L6: 1 pyramidal cell

●  Connections:
● LGN -> Vp/L4 pyr: rectangle
● Vp/L4 pyr -> internrn: circular
● Vp/L4 internrn -> pyr: “doughnut”
● Vp/L4 internrn -> internrn: “flat”
● Vp/L4 pyr -> Vp/L6 pyr: Gaussian
● Vp/L6 pyr -> LGN: Gaussian 

After Lumer et al, 1997
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PyNEST/Topology Code for Network
layout = {'rows': 50, 'columns': 50,  
          'extent': [5.0, 5.0],       
          'center': [0.0, 0.0],       
          'edge_wrap': False}         

# - Retina --------------------------------

nest.CopyModel('ac_poisson_generator',      
               'retina_cell', 
               {'DC': 30.0, 'AC': [30.0], 
                'Freq': [2.0], 'Phi': [0.0]})

ret_config = dict(layout)
ret_config['elements'] = 'retina_cell'

retina = nest.CreateLayer(ret_config)

# - LGN -----------------------------------

nest.CopyModel('iaf_neuron', 'lgn_rc')  

lgn_config = dict(layout)
lgn_config['elements'] = 'lgn_rc'

lgn = nest.CreateLayer(lgn_config)

# - V1 ------------------------------------

nest.CopyModel('iaf_neuron', 'l4_pyr')
nest.CopyModel('iaf_neuron', 'l4_inh')
nest.CopyModel('iaf_neuron', 'l6_pyr')

v1_config = dict(layout)
v1_config['elements'] 

= [['l4_pyr', 2, 'l4_inh', 1], ['l6_pyr', 1]]

v1 = nest.CreateLayer(v1_config) 

# - Retina -> LGN -------------------------

nest.ConnectLayer(retina, lgn, 
  {'connection_type': 'convergent',
   'mask': { 'grid': {'rows': 1, 'columns': 1} },
   'delay': 1.0,
   'weight': 10.0})

# - LGN -> V1/L4 --------------------------

nest.ConnectLayer(lgn, v1, 
  {'connection_type': 'convergent',
   'targets': {'model': 'l4_pyr'},
   'mask': {'rectangular': 
            {'lower_left': [-0.4, -0.1],
             'upper_right': [0.4, 0.1]}},
   'kernel': 0.5,
   'weights': 5.0,
   'delays': {'uniform': {'min': 2, 'max': 3}}})

# - V1/L4 -> V1/L4 ------------------------

nest.ConnectLayer(v1, v1, 
  {'connection_type': 'divergent',
   'sources': {'model': 'l4_pyr'},
   'targets': {'model': 'l4_inh'},
   'mask': {'circular': {'radius': 1.0}},
   'kernel': {'linear': {'c': 1.0, 'a': -1.0}},
   'delays': 1.0,
   'weights': 2.0})

# - V1/L4 -> V1/L6 ------------------------
...

# - V1/L6 -> LGN --------------------------
...



Oldenburg 6 April 2009 19© H E Plesser / UMB

Showtime
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Simplified version of Hill & Tononi (2005)
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Larger visual-pathway model
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How “science” is 
neuronal network simulation 

today?
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Scientific method

● Thorough critique of methods, observations, 
and conclusions

● Validation based on independent reproduction
● Accumulation of knowledge through exchange, 

evolution and (sometimes) revolution of ideas
● Requires precise and comprehensible 

description of research
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Reproducibility

Neuronal network simulations are generally not 
reproducible today (and everyone knows ...)
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Example 1

● Single neuron model
● Generally well presented
● Paper-and-pencil analysis shows 

that row “3” should have no spikes
● Could not be resolved in 

collaboration with author
● Probably figure mix-up
● No qualitative consequences
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Example 2

● Well-known integrate-and-fire network model
● Chosen as benchmark for simulator comparison
● Author of paper unable to reproduce figures 

from his own paper with his own simulator
● Differences probably due to “minor” changes in 

simulator code
● Never resolved
● No qualitative consequences
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Example 3

● Well-known paper on plasticity
● Neuronal connections based on 

Gaussian profile
● Reproduction failed qualitatively
● Inspection of original C-code 

revealed Gaussian with cut-off
● Were original authors aware of 

role of cut-off?
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How bad is it?
● “It is currently impossible to reproduce and validate 

most of the results that computational scientist 
publish ...” (Stodden, 2009)

● “[A]n article about computational science in a scientific 
publication is not the scholarship itself, it is merely 
advertising on scholarship.” (J Claerbout)

● Shooting-star crystallographer had to retract six 
papers because “a homemade data-analysis program 
had flipped two columns of data” (Science 314:1856 
2006).

● See Victoria Stodden for more 
(http://www.stanford.edu/~vcs/)
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Sharing and re-use
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Resources: NeuronDB & ModelDB
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But are they used?
● Google Scholar search for “ModelDB Accession Number”:
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Why not?
● Little tradition for use of standard tools/simulators
● Difficult to port models from one simulator to other
● PhD students like to write their own simulators

– Instant gratification from software development

– Unaware of pitfalls

– Desire for “total understanding & control”

– Lack of compentence among supervisors?

● Models described in widely different ways in 
literature

● Rarely ever in a way facilitating re-building
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Ways of model description

Nordlie, Gewaltig, Plesser (submitted)
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Description vs Development
● Models often described with detailed references 

to biological literature
● Biological justification may obfuscate concise of 

resulting model architecture
● But in fact

– Design decisions often based on “what was 
needed to make model work”

– Some decisions motivated by external factors, 
eg need to define student project

● Last to points rarely mentioned in papers
● Information important for re-use lacking
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Perspectives
● Increasing awareness of advantages of 

“standard simulators” (Neuron, NEST, Genesis/
Moose, PCSim, Brian)

● Review by Brette et al, J Comp Neurosci 2007
● Simulator integration (PyNN, Music)
● SBML & CellML showing advantages of 

standards for sharing models
● INCF Task Force on Standard Language for 

Neuronal Network Models
● BUT: Requires conscious effort by all in the field


