
Hans Ekkehard Plesser
UMB / Simula Research Center

Simulating Neuronal Networks
with PyNEST

It is easy to do – 
but do we know what we are doing?



Oldenburg 6 April 2009 2© H E Plesser / UMB

Overview

● NEST Initiative & Simulator
●  PyNEST: Simple examples
●  PyNEST: Network examples
●  “Showtime”

● How “science” are simulations today?
●  Reproducibility
●  Sharing and re-use
●  Perspectives 



Oldenburg 6 April 2009 3© H E Plesser / UMB

NEST

Initiative & Simulator



Oldenburg 6 April 2009 4© H E Plesser / UMB

The NEST Initiative

 Activities:
 ht t p: / / www. nes t - i ni t i at i v e. or g

 Public releases of NEST available 
since fall 2004

 Since 2004 used at the EU 
Advanced Course in Computational 
Neuroscience

 NEST Workshops at the CNS*2005 
in Madison (USA) and CNS*2006 in 
Edinburgh (UK)

 Goals of the NEST Initiative:
1. share expertise
2. combine resources
3. coordinate research and software 

development
4. increase software quality
5. share simulations and results

 Neural Simulation Technology (NEST) 
Initiative was established in 2001.

 Currently four core developing groups:
1. Honda Research Institute Europe
2. BCCN Freiburg
3. Norwegian University of Life 

Science, Ås
4. Brain Science Institute, RIKEN



Oldenburg 6 April 2009 5© H E Plesser / UMB

Computational Neuroscience

"The goal of neural modeling is to relate, in nervous systems, function to 
structure on the basis of operation."
 MacGregor & Lewis 1977



Oldenburg 6 April 2009 6© H E Plesser / UMB

Important properties
● Discrete processing units: neurons
● Neurons process incoming signals internally
● Neurons communicate through stereotypical 

pulses with finite transmission delays: spikes
● Typical scales

– internal dynamics ~ 1ms

– spike delays ~ 1ms

– firing rates ~ 10 Hz

– 105 neurons/mm3

– 104 inputs/output per neuron



Oldenburg 6 April 2009 7© H E Plesser / UMB

NEST in a nutshell
 Available from www.nest-initiative.org
 Command-line application 
 Network models built from neurons, synapses, and devices.
 High-level simulation language (Python or SLI).
 Models for neurons, synapses, and devices are written in C++
 Support for parallel and distributed simulation (Threads and MPI)
 Used at international summer schools since 2004
 «Tell us and cite us» open source license



Oldenburg 6 April 2009 8© H E Plesser / UMB

Neural Networks in NEST

● Network: Directed graph
● Nodes: Neurons (104-106)
● Edges: Connections (107-109)
● Interaction: Delayed pulses 
● Kernel tasks:

– Process incoming spikes

– Advance neuron states

– Emit outgoing spikes

node 1

node 2

node 3

time



Oldenburg 6 April 2009 9© H E Plesser / UMB

Parallel Simulation in NEST2

SERIAL PARALLEL



Oldenburg 6 April 2009 10© H E Plesser / UMB

NEST

Simple Examples



Oldenburg 6 April 2009 11© H E Plesser / UMB

A simple model

import nest
import nest.voltage_trace

nest.ResetKernel()

neuron=nest.Create("iaf_neuron")
noise =nest.Create("poisson_generator",2)
sine  =nest.Create("ac_generator")
voltmeter= nest.Create("voltmeter")

nest.SetStatus(noise,[{"rate":75000.0},
                      {"rate":20000.0}])
nest.SetStatus(sine, [{"amplitude":100.0,
                       "frequency":2.0}])

nest.SetStatus(voltmeter,[{"withgid": True, "withtime": True}])

nest.ConvergentConnect(noise,neuron,weight=[1., -1.])
nest.Connect(voltmeter,neuron)
nest.Connect(sine,neuron)

nest.Simulate(1000.0)

nest.voltage_trace.from_device(voltmeter)

PG SG

VM

IAF

PG



Oldenburg 6 April 2009 12© H E Plesser / UMB

Example: Optimizing a network
● Excitatory population modeled 

as Poisson process
● Inhibitory population modeled 

as Poisson process
● Single I&F neuron receiving 

input from both populations
● Goal: Adjust inhibitory 

population rate so neuron 
fires with same rate as 
excitatory population 

● Approach: repeated simulation 
+ bisection

Excit Inhib

I&F



Oldenburg 6 April 2009 13© H E Plesser / UMB

Optimizing: the code
neuron        = nest.Create("iaf_neuron")
noise         = nest.Create("poisson_generator",2)
spikedetector = nest.Create("spike_detector")

nest.SetStatus(noise, [{"rate": n_ex*r_ex}, {"rate": n_in*r_in}])

nest.ConvergentConnect(noise, neuron, [w_excit, w_inhib], 1.0)
nest.Connect(neuron, spikedetector)

in_rate = bisect(lambda x: output_rate(x) - r_ex, 
                 lower, upper, xtol=prec)

def output_rate(guess):
    rate = float(abs(n_in*guess))
    nest.SetStatus([noise[1]], "rate", rate)
    nest.SetStatus(spikedetector, "n_events", 0)
    nest.Simulate(t_sim)
    out=nest.GetStatus(spikedetector, "n_events")[0]*1000.0/t_sim
    return out



Oldenburg 6 April 2009 14© H E Plesser / UMB

Optimization: example run
Inhibitory rate estimate: 15.00 Hz -> Neuron rate: 347.64 Hz
Inhibitory rate estimate: 25.00 Hz -> Neuron rate:   0.04 Hz
Inhibitory rate estimate: 20.00 Hz -> Neuron rate:  37.04 Hz
Inhibitory rate estimate: 22.50 Hz -> Neuron rate:   0.00 Hz
Inhibitory rate estimate: 21.25 Hz -> Neuron rate:   0.92 Hz
Inhibitory rate estimate: 20.62 Hz -> Neuron rate:   7.32 Hz
Inhibitory rate estimate: 20.94 Hz -> Neuron rate:   3.48 Hz
Inhibitory rate estimate: 20.78 Hz -> Neuron rate:   3.92 Hz
Inhibitory rate estimate: 20.70 Hz -> Neuron rate:   6.04 Hz
Inhibitory rate estimate: 20.74 Hz -> Neuron rate:   5.76 Hz
Inhibitory rate estimate: 20.76 Hz -> Neuron rate:   5.24 Hz
Inhibitory rate estimate: 20.77 Hz -> Neuron rate:   5.28 Hz

Optimal rate for the inhibitory population: 20.77 Hz



Oldenburg 6 April 2009 15© H E Plesser / UMB

PyNEST

Network Example



Oldenburg 6 April 2009 16© H E Plesser / UMB

NEST Topology Module
● Idea: User-friendly support for layered networks
● Implementation: Kittel Austvoll
● Describe network as collection of layers
● Elements of a layer can be

● Individual neurons
● Groups of neurons (e.g. Microcolumn)
● Placed on a fixed grid
● Placed arbitrarily in space

●  Connections described by
● Masks: no connections outside mask
● Kernels: give distance-dependent connection 

probability



Oldenburg 6 April 2009 17© H E Plesser / UMB

Example Network
(after Lumer et al, 1997)

● LGN: Layer of individual neurons
● Vp: Layer of microcolums

●  L4: 2 pyr. cells, 1 internrn
●  L6: 1 pyramidal cell

●  Connections:
● LGN -> Vp/L4 pyr: rectangle
● Vp/L4 pyr -> internrn: circular
● Vp/L4 internrn -> pyr: “doughnut”
● Vp/L4 internrn -> internrn: “flat”
● Vp/L4 pyr -> Vp/L6 pyr: Gaussian
● Vp/L6 pyr -> LGN: Gaussian 

After Lumer et al, 1997



Oldenburg 6 April 2009 18© H E Plesser / UMB

PyNEST/Topology Code for Network
layout = {'rows': 50, 'columns': 50,  
          'extent': [5.0, 5.0],       
          'center': [0.0, 0.0],       
          'edge_wrap': False}         

# - Retina --------------------------------

nest.CopyModel('ac_poisson_generator',      
               'retina_cell', 
               {'DC': 30.0, 'AC': [30.0], 
                'Freq': [2.0], 'Phi': [0.0]})

ret_config = dict(layout)
ret_config['elements'] = 'retina_cell'

retina = nest.CreateLayer(ret_config)

# - LGN -----------------------------------

nest.CopyModel('iaf_neuron', 'lgn_rc')  

lgn_config = dict(layout)
lgn_config['elements'] = 'lgn_rc'

lgn = nest.CreateLayer(lgn_config)

# - V1 ------------------------------------

nest.CopyModel('iaf_neuron', 'l4_pyr')
nest.CopyModel('iaf_neuron', 'l4_inh')
nest.CopyModel('iaf_neuron', 'l6_pyr')

v1_config = dict(layout)
v1_config['elements'] 

= [['l4_pyr', 2, 'l4_inh', 1], ['l6_pyr', 1]]

v1 = nest.CreateLayer(v1_config) 

# - Retina -> LGN -------------------------

nest.ConnectLayer(retina, lgn, 
  {'connection_type': 'convergent',
   'mask': { 'grid': {'rows': 1, 'columns': 1} },
   'delay': 1.0,
   'weight': 10.0})

# - LGN -> V1/L4 --------------------------

nest.ConnectLayer(lgn, v1, 
  {'connection_type': 'convergent',
   'targets': {'model': 'l4_pyr'},
   'mask': {'rectangular': 
            {'lower_left': [-0.4, -0.1],
             'upper_right': [0.4, 0.1]}},
   'kernel': 0.5,
   'weights': 5.0,
   'delays': {'uniform': {'min': 2, 'max': 3}}})

# - V1/L4 -> V1/L4 ------------------------

nest.ConnectLayer(v1, v1, 
  {'connection_type': 'divergent',
   'sources': {'model': 'l4_pyr'},
   'targets': {'model': 'l4_inh'},
   'mask': {'circular': {'radius': 1.0}},
   'kernel': {'linear': {'c': 1.0, 'a': -1.0}},
   'delays': 1.0,
   'weights': 2.0})

# - V1/L4 -> V1/L6 ------------------------
...

# - V1/L6 -> LGN --------------------------
...



Oldenburg 6 April 2009 19© H E Plesser / UMB

Showtime



Oldenburg 6 April 2009 20© H E Plesser / UMB

Simplified version of Hill & Tononi (2005)



Oldenburg 6 April 2009 21© H E Plesser / UMB

Larger visual-pathway model



Oldenburg 6 April 2009 22© H E Plesser / UMB

How “science” is 
neuronal network simulation 

today?



Oldenburg 6 April 2009 23© H E Plesser / UMB

Scientific method

● Thorough critique of methods, observations, 
and conclusions

● Validation based on independent reproduction
● Accumulation of knowledge through exchange, 

evolution and (sometimes) revolution of ideas
● Requires precise and comprehensible 

description of research



Oldenburg 6 April 2009 24© H E Plesser / UMB

Reproducibility

Neuronal network simulations are generally not 
reproducible today (and everyone knows ...)



Oldenburg 6 April 2009 25© H E Plesser / UMB

Example 1

● Single neuron model
● Generally well presented
● Paper-and-pencil analysis shows 

that row “3” should have no spikes
● Could not be resolved in 

collaboration with author
● Probably figure mix-up
● No qualitative consequences



Oldenburg 6 April 2009 26© H E Plesser / UMB

Example 2

● Well-known integrate-and-fire network model
● Chosen as benchmark for simulator comparison
● Author of paper unable to reproduce figures 

from his own paper with his own simulator
● Differences probably due to “minor” changes in 

simulator code
● Never resolved
● No qualitative consequences



Oldenburg 6 April 2009 27© H E Plesser / UMB

Example 3

● Well-known paper on plasticity
● Neuronal connections based on 

Gaussian profile
● Reproduction failed qualitatively
● Inspection of original C-code 

revealed Gaussian with cut-off
● Were original authors aware of 

role of cut-off?



Oldenburg 6 April 2009 28© H E Plesser / UMB

How bad is it?
● “It is currently impossible to reproduce and validate 

most of the results that computational scientist 
publish ...” (Stodden, 2009)

● “[A]n article about computational science in a scientific 
publication is not the scholarship itself, it is merely 
advertising on scholarship.” (J Claerbout)

● Shooting-star crystallographer had to retract six 
papers because “a homemade data-analysis program 
had flipped two columns of data” (Science 314:1856 
2006).

● See Victoria Stodden for more 
(http://www.stanford.edu/~vcs/)



Oldenburg 6 April 2009 29© H E Plesser / UMB

Sharing and re-use



Oldenburg 6 April 2009 30© H E Plesser / UMB

Resources: NeuronDB & ModelDB



Oldenburg 6 April 2009 31© H E Plesser / UMB

But are they used?
● Google Scholar search for “ModelDB Accession Number”:



Oldenburg 6 April 2009 32© H E Plesser / UMB

Why not?
● Little tradition for use of standard tools/simulators
● Difficult to port models from one simulator to other
● PhD students like to write their own simulators

– Instant gratification from software development

– Unaware of pitfalls

– Desire for “total understanding & control”

– Lack of compentence among supervisors?

● Models described in widely different ways in 
literature

● Rarely ever in a way facilitating re-building



Oldenburg 6 April 2009 33© H E Plesser / UMB

Ways of model description

Nordlie, Gewaltig, Plesser (submitted)



Oldenburg 6 April 2009 34© H E Plesser / UMB

Description vs Development
● Models often described with detailed references 

to biological literature
● Biological justification may obfuscate concise of 

resulting model architecture
● But in fact

– Design decisions often based on “what was 
needed to make model work”

– Some decisions motivated by external factors, 
eg need to define student project

● Last to points rarely mentioned in papers
● Information important for re-use lacking



Oldenburg 6 April 2009 35© H E Plesser / UMB

Perspectives
● Increasing awareness of advantages of 

“standard simulators” (Neuron, NEST, Genesis/
Moose, PCSim, Brian)

● Review by Brette et al, J Comp Neurosci 2007
● Simulator integration (PyNN, Music)
● SBML & CellML showing advantages of 

standards for sharing models
● INCF Task Force on Standard Language for 

Neuronal Network Models
● BUT: Requires conscious effort by all in the field


