Saarland University

Non-Markovian and Collective Search Strategies

H. Rieger

Center for Biophysics \& Physics Department Saarland University, Saarbrücken, Germany

Overview:
The Target Problem in Nature

The "target problem" in Nature

- Single searcher (stochastic), single target (immobile or stochastic) - typical FPT problem
- Group search: many searchers (stochastic), single target - independent / collective
- Group hunting: many searchers, single target - both with visibility
- Evasion strategies (predator-prey): single searcher, many targets - both with visibility
- Foraging: many searcher (communicating), many targets (immobile)

Group Hunting

Hunters see target:

$$
\frac{d \boldsymbol{X}}{d t}=\sqrt{2 D} \boldsymbol{\xi}(t) ; \quad \frac{d \boldsymbol{Y}_{n}}{d t}=v_{0} \frac{\boldsymbol{X}-\boldsymbol{Y}_{n}}{\left\|\boldsymbol{X}-\boldsymbol{Y}_{n}\right\|}
$$

[Bernardi etal, PRL 128, 040601 (2022)]

+ Target sees hunter:

$$
\frac{\mathrm{d} \boldsymbol{X}}{\mathrm{~d} t}=\sqrt{2 D} \boldsymbol{\xi}(t)+\boldsymbol{E}, \quad \boldsymbol{E}=\frac{v_{\mathrm{e}}}{N} \sum_{n=1}^{N} g\left(r_{n}\right) \frac{\boldsymbol{X}-\boldsymbol{Y}_{\boldsymbol{n}}}{\left\|\boldsymbol{X}-\boldsymbol{Y}_{\boldsymbol{n}}\right\|} .
$$

Chasing a faster prey:

etc.

[Lämmermann etal, Nature 498, 371 (2013)]

Models:

$$
\frac{\partial c}{\partial t}=D \nabla^{2} c+a \rho \delta(z) \Theta\left[c-C_{\mathrm{th}}\right]
$$

Model:

$$
\begin{aligned}
& \frac{\mathrm{d} x_{j}}{\mathrm{~d} t}=\frac{1}{N} \sum_{k=1, k \neq j}^{N}\left(\frac{x_{j}-x_{k}}{\left|x_{j}-x_{k}\right|^{2}}-a\left(x_{j}-x_{k}\right)\right)+b \frac{x_{j}-z}{\left|x_{j}-z\right|^{2}} \\
& \frac{\mathrm{~d} z}{\mathrm{~d} t}=\frac{c}{N} \sum_{k=1}^{N} \frac{x_{k}-z}{\left|x_{k}-z\right|^{p}} .
\end{aligned}
$$

[Chen, KolokoInikov: J. Royal Soc. Int. 11, 20131208 (2014)]

Collective Foraging (by sharing information)

foragers: blue; targets: green; example trajectory: red

Continuum model::

$$
\dot{\mathbf{r}}_{i}(t)=B_{g} \boldsymbol{\nabla} g\left(\mathbf{r}_{i}\right)+B_{C} \boldsymbol{\nabla} S\left(\mathbf{r}_{i}\right)+\eta_{i}(t),
$$

$g(r)$ environmental quality function

$$
\begin{aligned}
& S\left(\mathbf{r}_{i}\right)=\sum_{j=1, j \neq i}^{N} A\left(g\left(\mathbf{r}_{j}\right)\right) \frac{\exp \left(-\frac{\left(\mathbf{r}_{i}-\mathbf{r}_{j}\right)^{2}}{2 \sigma^{2}}\right)}{2 \pi \sigma^{2}} \\
& A(g(\mathbf{r}))=\Theta(g(\mathbf{r})-\kappa)
\end{aligned}
$$

-> Application to Mongolian Gazelles
[Martinez-Garcia et al, PRL 110, 248106 (2013)]
[Bhattacharya et al, J. Royal Soc. Int. 11, 20140674 (2014)]

Non-Markovian Search Strategies

Scheme of a discrete first-passage problem
$\operatorname{FPT}(\mathrm{t})=$ probability density for the first-passage time, i.e the first time the random walker hits a target (start at position r_{s}, target at position r_{t})

Scheme of a two target first-passage problem

Scheme of a first-exit problem

MFPT of Brownian motion in confined geometries

1d $\left\langle\mathbf{T}\left(\mathbf{r}_{s}\right)\right\rangle \sim \frac{L^{2}}{D}$
2d

$$
\left\langle\mathbf{T}\left(\mathbf{r}_{S}\right)\right\rangle=\frac{A}{2 \pi D} \ln \frac{R}{a}
$$

3d

$$
\left\langle\mathbf{T}\left(\mathbf{r}_{S}\right)\right\rangle=\frac{V}{4 \pi D}\left(\frac{1}{a}-\frac{1}{R}\right)
$$

L, A, V system size (in 1,2,3d)
R initial searcher-target distance
a target size
D diffusion constant

Optimizing search strategies

A search strategy is simply one parameter set for the of a stochastic process / random walk under consideration

Optimizing search strategies (2)

Example: Persistent Walk

Minimum!

Conditional transition probabilities: $p\left(\mathbf{e}_{k} \mid \mathbf{e}_{i_{0}}, \ldots, \mathbf{e}_{i_{n-1}}\right)$
$T_{n}\left(\mathbf{r}, \mathbf{r}_{T} ; \mathbf{e}_{i_{0}}, \ldots, \mathbf{e}_{i_{n-1}}\right)=$ average first passage time to reach the target at position r_{T} with n last directions $\left\{\mathbf{e}_{i_{0}}, \ldots, \mathbf{e}_{i_{n-1}}\right\}$

Backward equation for $\mathrm{T}_{\mathrm{n}}: \quad T_{n}\left(\mathbf{r}, \mathbf{r}_{T} ; \mathbf{e}_{i_{0}}, \ldots, \mathbf{e}_{i_{n-1}}\right)=1+\sum_{k} p\left(\mathbf{e}_{k} \mid \mathbf{e}_{i_{0}}, \ldots, \mathbf{e}_{i_{n-1}}\right) T_{n}\left(\mathbf{r}+\mathbf{e}_{k}, \mathbf{r}_{T} ; \mathbf{e}_{i_{1}}, \ldots, \mathbf{e}_{i_{n-1}}, \mathbf{e}_{k}\right)$
Solution: $\quad \tilde{t}_{n \alpha}\left(\mathbf{q}, \mathbf{r}_{T}\right)=T_{n}\left(\mathbf{q}, \mathbf{r}_{T} ; s_{n \alpha}\right)$

$$
\tilde{\mathbf{t}}_{n}\left(\mathbf{q}, \mathbf{r}_{T}\right)=V\left[\delta(\mathbf{q})-e^{-i \mathbf{q} \cdot \mathbf{r}_{T}}\right]\left[\mathbb{I}-\mathbf{P}_{n} \mathbf{E}_{n}(\mathbf{q})\right]^{-1} \mathbf{u}_{n}
$$

$$
\left\langle\mathbf{t}_{n}\right\rangle=\sum_{\mathbf{q} \neq 0}\left[\mathbb{I}-\mathbf{P}_{n} \mathbf{E}_{n}(\mathbf{q})\right]^{-1} \mathbf{u}_{n} .
$$

Optimal search strategies with n-step memory

Optimal search strategies on a
$2 d$ square lattice for $n=1,2,3$

The corresponding MFPT normalized by the MFPT for a blind random walk

The auto－chemotactic searcher

Philosophy：
try to avoid sites already visited！

Searcher releases chemo－repulsive diffusive cue c_{i}

Transition probabilities：

$$
p_{i \rightarrow j}=\left[1+\sum_{k \neq j} \exp \left[-\beta\left(c_{k}-c_{j}\right)\right]\right]^{-1}
$$

$\beta \rightarrow 0$ ：conventional random walk
$\beta \rightarrow \infty$ ：jump to site with lowest c_{i}

Optimal search strategy f. auto-chemotactic searcher

Collective Search:

Chemotactic Walker

N searcher / M targets

Consider confined 2d space, area A:

N independent, non-communicating random walkers, 1 target:
$\mathrm{FPT}_{1}(\mathrm{t}) \sim \mathrm{e}^{-\mathrm{t} / \tau} \Rightarrow \mathrm{MFPT}_{1} \sim \tau \Rightarrow \mathrm{MFPT}_{\mathrm{N}} \sim \tau / \mathrm{N}$

1 random walker, M randomly distributed targets:
MFPT $_{\text {first target }} \sim 1 / \mathrm{M}^{\beta}$, with $\beta^{\sim} 1$.
$\mathrm{MFPT}_{\text {all targets }} \sim$ cover time(A) for M/A -> 1 .

N chemotactic searchers, 1 target

Optimal coupling β to chemotactic field c

Persistence length vs. coupling β

N chemotactic searchers, 1 target

Compare MFPT(N, L^{2}) (N searcher in area L^{2}) with MFPT(1, $\mathrm{L}^{2} / \mathrm{N}$) (1 searcher in area ($\mathrm{L}^{2} / \mathrm{N}$))

Cost for N -walker search:
N^{*} MFPT $+\mathrm{N}^{*} \tau_{\mathrm{k}}, \tau_{\mathrm{k}}=$ cost for 1 searcher

Optimal Searcher Number in a Costly Search

searchers introduced at $t_{1}, t_{2}, \ldots, t_{n}, \ldots$.
Independent searcher result:

$$
\mathcal{K}=\sum_{n=1}^{\infty}\left[(1+n \gamma) \int_{t_{n}}^{t_{n+1}} S_{n}(t) d t+\kappa S_{n}\left(t_{n}\right)\right]
$$

$$
S_{n}(t)=\prod_{k=1}^{n} s\left(t-t_{k}\right)
$$

$\mathrm{s}(\mathrm{t})$ survival probability $s(t)=\int_{t}^{\infty} \rho(t) d t$
$\rho(t)$ FPT distribution

Exponential survival probability
$\mathrm{N}_{\text {opt }}$ searcher must be introduced all at once
Algebraic survival probability
$\mathrm{N}_{\text {opt }}$ searcher must be introduced in fixed time intervals

Collective Search: Chemotactic ABPs

\mathbf{N} active Brownian particles (ABPs), M targets

ABPs:

Disk-like particles with radius a
Motion with velocity v_{0} along $\mathbf{e}_{i}=\binom{\cos \varphi_{i}}{\sin \varphi_{i}}$
Position: $\quad \dot{\mathbf{r}}_{i}(t)=V_{0} \mathbf{e}_{i}(t)+\frac{1}{\gamma_{t}} \sum_{j \neq i} \mathbf{f}_{j i}$

Orientation:

$$
\dot{\varphi}_{i}(t)={\sqrt{2 D_{r}} \eta_{i}(t), ~}_{\text {and }}
$$

Gaussian white noise

$$
\text { Péclét number: } \mathrm{Pe}=\frac{V_{0}}{D_{r} a}=\frac{\text { persistence length }}{\text { particle radius }}
$$

$$
\mathrm{Pe}=\frac{V_{0}}{D_{r} a}=\frac{\text { persistence length }}{\text { particle radius }}
$$

Diffusive motion: $\mathrm{Pe} \ll 1$
Ballistic motion: $\mathrm{Pe} \gg 1$

N chemotactic active Brownian particles (ABPs), M targets

Position:

$$
\dot{\mathbf{r}}_{i}(t)=V_{0} \mathbf{e}_{i}(t)+\frac{1}{\gamma_{t}} \sum_{j \neq i} \mathbf{f}_{j i} \quad \text { with } \quad \mathbf{e}_{i}=\binom{\cos \varphi_{i}}{\sin \varphi_{i}}
$$

Orientation:

$$
\begin{aligned}
& \dot{\varphi}_{i}(t)=\frac{1}{\gamma_{r}} \mathbf{e}_{i}(t) \times \kappa \nabla c\left(\mathbf{r}_{i}(t), t\right)+\sqrt{2 D_{r}} \eta_{i}(t) \\
& \kappa<0 \text { align antiparallel to the gradient (chemorepulsion) } \\
& \kappa>0 \text { align parallel to the gradient (chemoattraction) }
\end{aligned}
$$

Chemical field

$$
\frac{\partial}{\partial t} c(\mathbf{r}, t)=D \nabla^{2} c-k c+h \sum_{i=1}^{N} \delta\left[\mathbf{r}-\mathbf{r}_{i}(t)\right]
$$

Chemorepulsion

Repulsive chemotactic particles search faster

Chemo-repulsion leads to persistent motion

$$
\langle\mathbf{e}(t) \cdot \mathbf{e}(0)\rangle \sim \exp \left(-D_{r}^{\text {eff }} t\right) \Longrightarrow \mathrm{Pe}_{\mathrm{eff}}=\frac{V_{0}}{D_{r}^{\text {eff }} a}
$$

Collective effects? Yes!

CTP's outperform ABP's if $\tau_{\text {catch }} D_{\mathrm{r}}^{\text {eff }}<\tau_{\text {catch }}^{\mathrm{ABP}}\left(P e_{\text {eff }}\right)$

Thank you for your attention!

Title

Title

Mean first passage time MFPT

$$
\mathrm{MFPT}=\langle\mathrm{T}\rangle=\int_{0}^{\infty} d t F P T(t)
$$

Markovian processes: $\mathrm{P}\left(\mathrm{r}_{\mathrm{n}+1}, \mathrm{t}_{\mathrm{n}+1} \mid \mathrm{r}_{\mathrm{n}}, \mathrm{t}_{\mathrm{n}} ; \ldots ; \mathrm{r}_{1}, \mathrm{t}_{1}\right)=\mathrm{P}\left(\mathrm{r}_{\mathrm{n}+1}, \mathrm{t}_{\mathrm{n}+1} \mid \mathrm{r}_{\mathrm{n}}, \mathrm{t}_{\mathrm{n}}\right)$ for all $\mathrm{t}_{\mathrm{n}+1}>\mathrm{t}_{\mathrm{n}}>\ldots>\mathrm{t}_{1}$

Renewal equation: $\quad P\left(\mathbf{r}_{T}, t \mid \mathbf{r}_{S}\right)=\delta_{t, 0} \delta_{\mathbf{r}_{T}, \mathbf{r}_{S}}+\int_{0}^{t} \operatorname{FPT}\left(t^{\prime}\right) P\left(\mathbf{r}_{T}, t-t^{\prime} \mid \mathbf{r}_{T}\right) d t^{\prime}$

$$
\text { Def.: } \quad H\left(\mathbf{r}_{T} \mid \mathbf{r}_{S}\right)=\int_{0}^{\infty}\left(P\left(\mathbf{r}_{T}, t \mid \mathbf{r}_{S}\right)-P_{\text {stat }}\left(\mathbf{r}_{T}\right)\right) d t
$$

-> Express MFPT in terms of P :

$$
\langle\mathbf{T}\rangle=\frac{H\left(\mathbf{r}_{T} \mid \mathbf{r}_{T}\right)-H\left(\mathbf{r}_{T} \mid \mathbf{r}_{S}\right)}{P_{\text {stat }}\left(\mathbf{r}_{T}\right)}
$$

Non-Markovian search

Optimal Non-Markovian Search Strategies with n-Step Memory

Hugues Meyer© ${ }^{*}$ and Heiko Rieger©
Department of Theoretical Physics and Center for Biophysics, Saarland University, 66123 Saarbrücken, Germany
(0) (Received 21 May 2021; revised 19 July 2021; accepted 22 July 2021; published 10 August 2021)

Stochastic search processes are ubiquitous in nature and are expected to become more efficient when equipped with a memory, where the searcher has been before. A natural realization of a search process with long-lasting memory is a migrating cell that is repelled from the diffusive chemotactic signal that it secretes on its way, denoted as an autochemotactic searcher. To analyze the efficiency of this class of nonMarkovian search processes, we present a general formalism that allows one to compute the mean firstpassage time (MFPT) for a given set of conditional transition probabilities for non-Markovian random walks on a lattice. We show that the optimal choice of the n-step transition probabilities decreases the MFPT systematically and substantially with an increasing number of steps. It turns out that the optimal search strategies can be reduced to simple cycles defined by a small parameter set and that mirrorasymmetric walks are more efficient. For the autochemotactic searcher, we show that an optimal coupling between the searcher and the chemical reduces the MFPT to $1 / 3$ of the one for a Markovian random walk.

DOI: 10.1103/PhysRevLett.127.070601

$$
\begin{aligned}
& l_{p} \simeq 2+\frac{e^{\beta D_{c}^{2}}}{2} \\
& \beta^{*}=D_{c}^{-2} \ln \left(2 l_{p}^{*}-4\right)
\end{aligned}
$$

Figure 3: Optimal inverse temperature range β^{*} as a function of D_{c} (black dashed line) with error range (red dotted line), together with equation (10) for $l_{p}^{*}=5$. The inset shows the value of the persistence length at the optimal point $\left(\beta^{*}, D c\right)$.

MFPT and Random Search Problems

Reaction Kinetics

Narrow Escape Problem
Reaction-Escape

Mean First Passage Time (MFPT)

depends on geometrical and motility parameters

Are the search areas uniformly distributed?

$\sigma_{\mathscr{A}}^{\text {Poission }} \approx 0.5292$ is the standard deviation of the normalized areas $\mathscr{A}=A /\langle A\rangle$ of Poisson Voronoi cells.

Spatial order correlates with search efficiency

Ordered if $\sigma_{\mathscr{A}}<\sigma_{\mathscr{A}}^{\text {Poisson }}$
Clustered if $\sigma_{\mathscr{A}}>\sigma_{\mathscr{A}}^{\text {Poisson }}$

