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Overview:
The Target Problem in Nature



The “target problem” in Nature

• Single searcher (stochastic), single target (immobile or stochastic) – typical FPT problem

• Group search: many searchers (stochastic), single target – independent / collective

• Group hunting: many searchers, single target – both with visibility

• Evasion strategies (predator-prey): single searcher, many targets – both with visibility

• Foraging: many searcher (communicating), many targets (immobile)



Group Hunting
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Figure 1. A pictorial illustration (a) (Reproduced with permission fromMeta Laitko) and a more faithful illustration of the actual
model (b). Several hounds (here N= 3) go after a hare (gray trajectory) which has started its random motion from the origin;
hounds start at the circumference of a unit circle. The hare is captured by one of the hounds (blue trajectory).

units of the initial distance between chasers and target. The hunt terminates when the hare and any of the
hounds are closer apart than a prescribed distance R, which means that the hare is described by a circle of
radius R (see figure 1(b)).

Compared to the model in [51], there is a new term E modeling the hare’s escape velocity ve resulting
from ‘seeing’ the hounds. This systematic contribution to the hare’s velocity is given by a weighted sum of N
terms, i.e.

E=
ve
N

N∑

n=1

g(rn)
X−Yn

∥X−Yn∥
. (4)

In equation (4), the nth term of the sum is directed away from the nth chaser and is weighted according to
the distance-dependent function g(rn), where rn = ∥X−Yn∥. It is plausible that hounds further away
contribute less to the escape velocity term; we choose a simple exponential decay for the weighting function:

g(rn) = exp

[
− rn −R

S

]
. (5)

Here S sets the decay rate of the weighting function from its maximum value g(rn = R) = 1 (it must be rn ! R
for each chaser, otherwise the target is captured and the trial terminates). From equation (5), it is clear that
the contribution to the escape term is larger for closer hounds, and that S can be interpreted as the effective
‘viewing range’ of the hare. The parameter ve in equation (4) sets the maximum escape drift speed, which can
be reached only asymptotically. By setting ve = 0, the escape term E vanishes. We will refer to this situation as
to that of a ‘blind’ target, the case which was previously studied in [51] and that we use for reference.

As in [51], we set v0 = 1, which is equivalent to rescaling time units, and choose R= 0.1. The CT for each
realization (trial) is a stochastic variable defined as

Td,N =min

{
t
∣∣∣ min
n=1,...,N

{∥X(t)−Yn(t)∥" R}
}
. (6)

The indices indicate the dimension of space, d, and the number of hounds, N. In the following, we will
mainly focus on the mean CT, but will also briefly consider the median of the CT distribution.

Unless otherwise indicated, results of numerical simulations are based on theM= 105 realizations of
equations (1) and (2) integrated with an Euler–Maruyama algorithm with time step∆t= 10−6.

3. One-dimensional case

If hare and hounds move on a line, there can be at most two hounds, which start at Y1(2)(0) =±1.
Furthermore, the hounds’ trajectories do not depend on the particular noise realization, and are described by
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Run with the Brownian Hare, Hunt with the Deterministic Hounds
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We present analytic results for mean capture time and energy expended by a pack of deterministic
hounds actively chasing a randomly diffusing prey. Depending on the number of chasers, the mean capture
time as a function of the prey’s diffusion coefficient can be monotonically increasing, decreasing, or attain a
minimum at a finite value. Optimal speed and number of chasing hounds exist and depend on each chaser’s
baseline power consumption. The model can serve as an analytically tractable basis for further studies with
bearing on the growing field of smart microswimmers and autonomous robots.
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A classic textbook problem in differential calculus is
finding the trajectory of a dog that runs at a constant speed
in the direction of a hare moving in a straight trajectory.
Bouguer’s solution in 1732 is considered to mark the origin
of pursuit theory [1], and mathematical chase-and-escape
models have a long tradition in game theory, which has
typically focused on optimal evade or pursuit strategies
[2–8]. What if, however, the hare’s motion is stochastic?
Erratic motion could serve as an evasion tactic or, in the
microscopic world, it would naturally arise from stochastic
interactions with the environment, a case that is particularly
interesting since progress in nanotechnology foreshadows
the realization of self-propelled particles capable of target
pursuit [9–17].
Stochastic elements have been included in optimal-

search models on graphs or abstract sets [18–21]; some-
what more realistic yet parsimonious dynamical models
that mimic interactions between hunter packs and prey
flocks have been proposed [22–29]. Although some of
these models include noise terms, they can be studied only
through numerical simulations. Considerable analytic
efforts were recently devoted to the problem of searching
for a fixed target by using stochastic agents or with
stochastic resetting [30–43]. Some analytic results exist
for models in which a prey that is randomly diffusing on a
line [44–46], on grids [47], along graphs [48], or one that
adopts a minimal escape strategy [49,50] can bump into
random walkers (the “predators”). However, an analytically
tractable model in which the predators are actually chasing
a target that moves randomly in space is missing.
Here, we consider a pack of hounds that pursue a

Brownian prey in a d-dimensional space. We first obtain
exact solutions for the mean capture time in special cases,

which we leverage to derive an analytic approximation that
captures the full system’s behavior for d ¼ 2. In particular,
we show that increasing the randomness (the diffusion
constant) of the target’s trajectory is not necessarily
beneficial to escape, unless only one hound is chasing.
Furthermore, we find the energetically optimal speed and
number of chasers that the hunter should employ:
Depending on each chaser’s baseline power consumption,
the most favorable combination shifts from many slow
hounds to fewer and faster hounds.
Model.—The N deterministic hounds move with con-

stant velocity v0 directly pointing toward the hare, which
follows Brownian diffusion. The system obeys

dX
dt

¼
ffiffiffiffiffiffiffi
2D

p
ξðtÞ; dYn

dt
¼ v0

X − Yn

kX − Ynk
; ð1Þ

where XðtÞ and YnðtÞ indicate the positions of the hare and
the nth hound, respectively (n ¼ 1;…; N), D sets the
diffusion coefficient of the prey, and k·k is the Euclidean
distance. The d components of the noise vector ξðtÞ are
Gaussian white noise processes ξi with

hξii ¼ 0; hξiðtÞξjðt0Þi ¼ δijδðt − t0Þ; ð2Þ

where angular brackets indicate averaging, δij is a
Kronecker delta, and δðt − t0Þ is a Dirac delta function.
At t ¼ 0, the hounds are equidistant from each other and
kXð0Þ − Ynð0Þk ¼ l. The hunt terminates whenever any
hound comes closer than a prescribed distance Rl to the
target. The capture time (CT) Td;N is a stochastic variable
that depends on d and N; it is defined as
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target, for which many analytical results were derived in the last years [38–49]. Some results exist for
predators and preys that diffuse on a square lattice and can interact at limited range [12, 50], but analytically
tractable models of active chasers pursuing a randomly moving prey are scarce. Recently, a stochastic pursuit
model involving multiple chasers (hounds) with a classical pursuit strategy that hunt a single, diffusively
moving prey (hare) has been suggested [51, 52], a model that permits some analytical progress for the
capture-time (CT) statistics.

In one of the scenarios studied in [51], N hounds start their pursuit from an equidistant arrangement on
a circle centered around the hare. The disk-shaped hare moves randomly in a two-dimensional space (like an
overdamped Brownian particle), while the point-like hounds deterministically run towards the hare until any
of them reaches the target’s circumference. Remarkably, the randomness of the prey’s motion (quantified by
its diffusion coefficient) can, on average, both lengthen or shorten its survival (enlarge or diminish the mean
CT) depending on the number of hounds and their running speed. From the perspective of the hunter, it is
furthermore interesting to note that the energy spent on hunting the prey can be minimized at a finite
number of hounds and a nonvanishing but finite value of the speed of pursuit [51]. These results may have
relevance for pursuit problems in nanorobotics and for problems involving natural microswimmers.

The model considered in [51] displays strong asymmetries in two respects. The chasers can see the prey
and are completely deterministic, both in their dynamics as well as in their initial position. The single prey,
the hare, does not ‘see’ the predators and behaves completely at random. What if, however, the hare can also
detect the pursuers and make some use of this knowledge to escape from the hounds? This possibility is not
only obviously relevant for macroscopic systems, but also for microscopic chase-and-pursuit scenarios:
chemotaxis, for instance, is used not only by predators to chase preys, but also by preys to evade predators
[53, 54].

In this paper, we revisit the tractable prey-pursuit model from [51] by introducing a sensible ‘evasion
term’ into the dynamics of the hare that reflects its information (seeing) about the pursuers. The chasers still
deterministically move towards the prey, and the prey tends to run away from the chasers in addition to
randomly moving. We derive analytical expressions for the mean CT for the one-chaser case in one and two
spatial dimensions. We also investigate the noiseless case and derive a critical condition for divergence of the
CT. For the case of several chasers, the mean CT is measured by means of stochastic simulations and
inspected as a function of the noise intensity for different combinations of pursuit and escape speeds and
number of hounds. We investigate the existence of a ‘critical’ deterministic evasion speed, above which the
mean CT undergoes a dramatic increase at weak noise levels, and how this critical speed depends on the
number of chasers. We briefly discuss how this picture is changed by a randomization of the initial positions
of the hounds. Inspecting the full CT probability density, we find that certain effects on the mean CT rely on
very rare events when the hare escapes from a pack of hounds and the capture takes an unusually long time.
For these cases we also compare mean and median of the distribution of CTs.

2. Model

The system consists of N chasing hounds and one target hare that move in a d-dimensional space. In this
study, we will consider the cases d= 1 and d= 2 (see figure 1 for an illustration). The chasers’ velocity has
constant magnitude v0 and direction always pointing to the target’s position. In the original model, the prey
undergoes pure Brownian diffusion. Here, the additional term E represents a deterministic escape velocity
that depends on the chasers’ position. The system obeys

dX

dt
=
√
2Dξ(t)+ E, (1)

dYn

dt
= v0

X−Yn

∥X−Yn∥
, (2)

where X(t) is the hare’s position, Yn(t) is the nth hound’s position (n= 1, . . .,N), v0 is the running speed of
the hounds, and ∥·∥ represents the Euclidean distance. The components of ξ(t) are independent Gaussian
white noise sources with unit intensity,

⟨ξi⟩= 0,
〈
ξi(t)ξj(t

′)
〉
= δijδ(t− t ′), (3)

so that D sets the intensity of the noise process, i.e. the randomness of the prey’s trajectory.
The hare’s initial position is the origin of the coordinate system, while the hounds are placed at the same

distance from the target, and such that they are distributed around a circle equidistantly from each other.
Without loss of generality, we can set the initial distance to one, which is equivalent to measuring space in
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Figure 1. A pictorial illustration (a) (Reproduced with permission fromMeta Laitko) and a more faithful illustration of the actual
model (b). Several hounds (here N= 3) go after a hare (gray trajectory) which has started its random motion from the origin;
hounds start at the circumference of a unit circle. The hare is captured by one of the hounds (blue trajectory).

units of the initial distance between chasers and target. The hunt terminates when the hare and any of the
hounds are closer apart than a prescribed distance R, which means that the hare is described by a circle of
radius R (see figure 1(b)).

Compared to the model in [51], there is a new term E modeling the hare’s escape velocity ve resulting
from ‘seeing’ the hounds. This systematic contribution to the hare’s velocity is given by a weighted sum of N
terms, i.e.

E=
ve
N

N∑

n=1

g(rn)
X−Yn

∥X−Yn∥
. (4)

In equation (4), the nth term of the sum is directed away from the nth chaser and is weighted according to
the distance-dependent function g(rn), where rn = ∥X−Yn∥. It is plausible that hounds further away
contribute less to the escape velocity term; we choose a simple exponential decay for the weighting function:

g(rn) = exp

[
− rn −R

S

]
. (5)

Here S sets the decay rate of the weighting function from its maximum value g(rn = R) = 1 (it must be rn ! R
for each chaser, otherwise the target is captured and the trial terminates). From equation (5), it is clear that
the contribution to the escape term is larger for closer hounds, and that S can be interpreted as the effective
‘viewing range’ of the hare. The parameter ve in equation (4) sets the maximum escape drift speed, which can
be reached only asymptotically. By setting ve = 0, the escape term E vanishes. We will refer to this situation as
to that of a ‘blind’ target, the case which was previously studied in [51] and that we use for reference.

As in [51], we set v0 = 1, which is equivalent to rescaling time units, and choose R= 0.1. The CT for each
realization (trial) is a stochastic variable defined as

Td,N =min

{
t
∣∣∣ min
n=1,...,N

{∥X(t)−Yn(t)∥" R}
}
. (6)

The indices indicate the dimension of space, d, and the number of hounds, N. In the following, we will
mainly focus on the mean CT, but will also briefly consider the median of the CT distribution.

Unless otherwise indicated, results of numerical simulations are based on theM= 105 realizations of
equations (1) and (2) integrated with an Euler–Maruyama algorithm with time step∆t= 10−6.

3. One-dimensional case

If hare and hounds move on a line, there can be at most two hounds, which start at Y1(2)(0) =±1.
Furthermore, the hounds’ trajectories do not depend on the particular noise realization, and are described by
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Chasing a faster prey:

t¢ = +
¢ -⎡

⎣⎢
⎤
⎦⎥∣ ∣

( )v
v

r r
v
v

r r
min , 11e e

e

e
max,e

e c

max,e
pred

Interaction between chasers. Let us assume that a group of chasers is chasing the same escaper. If there is no
interaction between the chasers theywill eventually get too close to each other because their driving forces are
similar. This results in a tail of chasers behind the escaper. This is neither a logical predatory behaviour nor one
observable in nature.Whatwe can see in nature, though, is that chasers do not get too close to each other as they
pursue their prey, but the distance between themdecreases as they get closer to (andfinally catch) the escaper.
Wemodelled this with a repulsive interaction term that has a characteristic length rinter, amagnitude factor Cinter

and amagnitude C vinter max,c. Consequently, =C 0inter means that there is no interaction and =C 1inter means
that the repulsion between chasers is just as strong as their attraction towards the escaper. Themathematical
definition of this interaction is

 å=
-

- 
-⎡

⎣
⎢⎢

⎛
⎝⎜

⎞
⎠⎟

⎤
⎦
⎥⎥

∣ ∣
∣ ∣ ∣ ∣

( )C v
r

Cv d
d

d

v v

d
, 12i

j
ij

ij

ij

i j

ij
c,
inter

inter max, c
inter

f
c, c,

2

= - ( )d r r , 13ij i jc, c,

where Cf is the coefficient of the viscous friction-like term.
The driving force of the ith chaser is the sumof the previously introduced terms (interactionwith thewall of

the arena, collision-avoiding short-term repulsion, direct chasing force and the long-term repulsion between
chasers):

= + + + ( )f v v v v . 14i i i i ic,
a

c,
coll

c,
ch

c,
inter

2.2.3. Escapers
Escaping rule.The escapermoves in the free direction that is furthest away fromall the chasers within its
sensitivity range. At thewall, the escaper aligns its velocity to thewall. If the escaper can slip away between the
nearest two chasers, then it returns to thefield.We defined a panic parameter that depends on the distance
between the escaper and its nearest chaser and controls the erratic behaviour.

Direct escaping. An escaping agent takes into account every chaser within its range of sensitivity (rsens), while
it weights this effect by the distance of each chaser. This represents the biological observation that the prey is
concerned about all the chasers that are too close, and the closer a predator is, themore dangerous it is. This
interaction term for the ith escaper is

 å=
-

-
-

-

-
Q - -

⎡
⎣
⎢⎢

⎛
⎝⎜

⎞
⎠⎟

⎤
⎦
⎥⎥∣ ∣

‴
∣ ∣

( ∣ ∣) ( )v C rv
r r

r r

v v

r r
r r , 15i

j

i j

i j

i j

i j
i je,

esc
max,e

e, c,

e, c,
2 f

e, c,

e, c,
2 sens

where ‴Cf is the coefficient of the velocity alignment term.
Erratic escaping. In naturemany species tend to use certain kinds of erratic escaping strategies inwhich they

combine direct escapingwith somemore advanced patterns ofmotion.Herewe implemented themost basic
one called zigzagging [29, 31]. During zigzagging, the escaper tries to trick its chaser(s)with a set of sudden and
unexpected changes in direction. For this we introduced a so-called panic parameter (ppanic), which is an
exponential function of the distance between the escaper and the nearest chaser ( )dmin , with the value of 0 if the

Figure 4.The chasers (blue) are chasing (a) the current position of the escaper (yellow) and (b) its position predicted according to (11).
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2.2.4.Model parameters
Although in ourmodel the number of expressions and parameters is significantly larger than in the simplest
statisticalmechanicalmodels, these expressions and parameters are far from arbitrary; almost all of them are in a
direct relationwith the observed systems and originate from such trivial facts as the existence of time delays (e.g.
reaction time). The parameters are ‘freely’ tunable from the point of themodel, butmost of them are
experimentallymeasurable for an actual predator–prey system.

Theseparameters canbe separated into two sets: environmental and tactical parameters (table 2). Except for tdel, all
the environmental parametershadfixedvaluesduring themeasurements: for instance, =a 6max ms–2, =ra 150m
and =r 5wall m.On theotherhand, all the tactical parameters except thefixed velocities ( =v 6max,c ms–1, =vmax,e

8ms–1) canbe adjusted at thebeginningof each run to create and studydifferent chasing and escaping tactics.We
studiedmost cases inboth2Dand3D.

3. Results and discussions

Weuse afinite andfixed simulation length (t = 600max s), which is comparable to the observed length of
pursuits in nature, and also practical for the simulations because of the limited computation time. Thismeans
thatwhen counting the average results of the runswe have to handle properly those cases in which the escaper
was not caught. Therefore we assume that the uncaught prey’s lifetimewas themaximum, so if the escaper’s
average lifetime is tesc out of n runswhen it was caught, the average time is

Figure 5. (a)The escaper (yellow) can slip through the gap (according to (26)) between the chasers (blue), therefore it escapes (green
arrow), but if it stayed at thewall it would get caught (red arrows). (b)The escaper cannot slip through the gap between the chasers but
it can escape by aligning to thewall. (c)The chasers are blocking all the possible escape directions.

Table 2.The environmental and tactical parameters of themodel.

Environmental parameters Typical range Dimension Definition

amax 6 m s–2 Maximumacceleration of the agent
σ 0.0–1.0 m2 s–3 Standard deviation of theGaussian noise
tCTRL 0.06 s Characteristic time of the acceleration
tdel 0–6 s Delay time
¢Cf 1.1 ms Friction coefficient in the direct chasing term

C f 1.1 m2 s Friction coefficient in the velocity alignment between chasers
‴Cf 1.1 s Friction coefficient in the direct escaping term

ra 150 m Radius of the arena
rcd 1 m Catching distance
rwall 5 m Width of thewall
Parameters of chasers’ tactics Typical range Dimension Definition
vmax,c 6 m s–1 Maximumvelocity of the chasers

tpred 0–6 s Upper limit of the chaser’s prediction

Cinter 0–1 1 Strength of interaction between chasers
rinter 0–300 m Interaction distance between chasers
Parameters of escapers’
tactics

Typical range Dimension Definition

vmax,e 8 m/s Maximumvelocity of the escapers

pthresh 0–1 1 Escaper’s panic threshold

rsens 0–120 m Escaper’s range of sensitivity
rzigzag 0–80 m Minimal length of a zigzag segment; the distance limit between an escaper

and a chaserwhen the escaper stops zigzagging
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Hunters see target:
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Neutrophil Swarming: Signaling Relay

LETTER
doi:10.1038/nature12175

Neutrophil swarms require LTB4 and integrins at
sites of cell death in vivo
Tim Lämmermann1, Philippe V. Afonso2, Bastian R. Angermann1, Ji Ming Wang3, Wolfgang Kastenmüller1,4, Carole A. Parent2

& Ronald N. Germain1

Neutrophil recruitment from blood to extravascular sites of sterile
or infectious tissue damage is a hallmark of early innate immune
responses, and the molecular events leading to cell exit from the
bloodstream have been well defined1,2. Once outside the vessel,
individual neutrophils often show extremely coordinated chemo-
taxis and cluster formation reminiscent of the swarming behaviour
of insects3–11. The molecular players that direct this response at the
single-cell and population levels within the complexity of an inflamed
tissue are unknown. Using two-photon intravital microscopy in
mouse models of sterile injury and infection, we show a critical role
for intercellular signal relay among neutrophils mediated by the
lipid leukotriene B4, which acutely amplifies local cell death signals
to enhance the radius of highly directed interstitial neutrophil
recruitment. Integrin receptors are dispensable for long-distance
migration12, but have a previously unappreciated role in maintain-
ing dense cellular clusters when congregating neutrophils rearrange
the collagenous fibre network of the dermis to form a collagen-free
zone at the wound centre. In this newly formed environment, integ-
rins, in concert with neutrophil-derived leukotriene B4 and other
chemoattractants, promote local neutrophil interaction while form-
ing a tight wound seal. This wound seal has borders that cease to grow
in kinetic concert with late recruitment of monocytes and macro-
phages at the edge of the displaced collagen fibres. Together, these
data provide an initial molecular map of the factors that contribute
to neutrophil swarming in the extravascular space of a damaged
tissue. They reveal how local events are propagated over large-range
distances, and how auto-signalling produces coordinated, self-organized
neutrophil-swarming behaviour that isolates the wound or infec-
tious site from surrounding viable tissue.

Neutrophil swarming has been observed using intravital microscopy
in inflamed, infected or sterilely wounded tissues3–11,13, and a series of
sequential phases have been described3,4: (1) initial chemotaxis of indi-
vidual neutrophils close to the damage, followed by (2) amplified che-
motaxis of neutrophils from more distant interstitial regions, leading to
(3) neutrophil clustering. To study the molecules controlling these
distinct neutrophil-response phases, we used an inducible model of
sterile skin injury in which a brief intense two-photon laser pulse causes
focal, dermis-restricted tissue damage (Supplementary Fig. 2)4. We
were specifically interested in how neutrophils coordinate swarming
in the extravascular space, so we performed two-photon intravital
microscopy (2P-IVM) of neutrophils that had already exited blood
vessels and entered a mildly inflamed dermis before laser damage.
Focal injury induced substantial interstitial chemotaxis of lysozyme
2–green fluorescent protein (Lyz2–GFP, also known as LysM–GFP)-
positive neutrophils/monocytes that lasted ,25–40 min before cells
accumulated in a cluster at the damage site and recruitment stopped
(Fig. 1a). The dynamic behaviour of neutrophils differed from CX3CR1-
positive macrophages/monocytes in the same environment, with

neutrophils immediately showing highly directed chemotaxis towards
the wound centre at high speeds (10–20mm min21) and the CX3CR1-
positive cells migrating at slower speeds (3–5mm min21) and undergoing

1Laboratory of Systems Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland 20892-0421, USA. 2Laboratory of Cellular and Molecular Biology,
Center for Cancer Research, NationalCancer Institute, National Institutes ofHealth, Bethesda,Maryland20892-4256,USA. 3Laboratory of Molecular Immunoregulation, Cancer and Inflammation Program,
Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, Maryland 21702-1201, USA. 4Institutes of Molecular Medicine and Experimental Immunology (IMMEI),
University of Bonn, 53105 Bonn, Germany.
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Figure 1 | Neutrophil extravascular swarming dynamics. 2P-IVM on intact
ear dermis of anaesthetized mice. Interstitial cell recruitment towards focal
damage (blue dotted circle) was recorded. a, b, Time-lapse sequence of
endogenous innate immune cell dynamics in DsRed1/2 Lyz2gfp/1 Tyrc-2J/c-2J

mice (myelomonocytic cells in green–yellow, stroma in red) (a) and
DsRed1/1 Cx3cr1gfp/gfp Tyrc-2J/c-2J mice (macrophages/monocytes in green,
neutrophils and stroma in red) (b, top). Cell tracks over the last 10 min (n 5 4)
(b, bottom). Scale bars, 50mm. Time, h:min. c, Distance–time plot (DTP) of
intradermal (i.d.) injected bone marrow neutrophils; individual cell-migration
paths towards the damage site are each highlighted with instantaneous
chemotactic index (colour) and velocity (opacity). Representative experiment
of n 5 169.
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Models: 

2

used this formalism to understand di↵usive wave signal-
ing in Dictyostelium discoideum with di↵usion and cells
in two dimensions. There, repeated pulsed emission and
signaling molecule decay results in spiral signaling waves
whose wave speed obeys our scaling laws only for long
pulses or slow decay.
In addition to studying asymptotic wave dynamics, we

systematically examine under what conditions a group
of cells can trigger the formation of a di↵usive wave.
Here again, our results provide predictive relationships
between biophysical inputs and the resulting dynamics,
which are at once dramatically a↵ected by dimensionality
and largely insensitive to the details of activation.
Finally, we show that neutrophil swarming experi-

ments [4] display dynamics consistent with our model.
In this context, our results elucidate a potential design
principle of di↵usive relays: they create large concentra-
tion gradients. Whereas simple di↵usion of a signaling
molecule from a central source creates a shallow concen-
tration profile that falls o↵ like exp(�r

2
/4Dt), relays give

rise to steep concentration profiles with gradients that
quickly propagate outward and decay only modestly in-
side the wave front. As such, for cells like neutrophils –
which use a small molecule, leukotriene B4 (LTB4), as an
intercellular signaling molecule and chemoattractant (4,
18, 19) – relays provide a method for cells to collectively
generate large chemical gradients that can guide direc-
tional migration. These concentration profiles, which are
the result of continuous emission of a signaling molecule,
are unlike those generated by repeated pulsed emission
– e.g., in Dictyostelium discoideum [10, 11] – which cre-
ate pulse trains of chemotactic cues or the flat profiles
generated by relays with continuous emission and decay.

MODEL CONSTRUCTION

We begin by considering a static group of cells uni-
formly distributed in two dimensions – e.g., atop a solid
surface – and described by an area density ⇢ (Fig. 1A).
We assume a cell at position r senses the local concen-
tration of a signaling molecule, c(r, t), and participates
in the emission at a constant rate a when c(r, t) exceeds
a threshold Cth. This process is depicted in Fig. 1A.
Once secreted into the extracellular medium, the signal-
ing molecules di↵use with di↵usivity D. Treating the
cells and signaling molecule in the continuum limit – we
discuss the validity of doing so below with explicit details
in the SI Appendix – gives rise to a single equation that
governs the time evolution of c(r, t):

@c

@t
= Dr2

c+ a⇢�(z)⇥[c� Cth] (1)

where ⇥[.] is the Heaviside step function and the Dirac
Delta function �(z) accounts for the fact that the cells
are confined to the plane. We discuss the validity of the

latter – as well as the regime in which one can ignore
signaling molecule decay – below.
While we at first consider cells scattered in a two-

dimensional plane, one can study the signaling dynam-
ics of cells in a one-dimensional channel or a three-
dimensional environment with similar analyses. Below,
we discuss the connections between the cell signaling dy-
namics in all of these scenarios, and all are treated in
depth in the SI Appendix.

ASYMPTOTIC WAVE DYNAMICS

Our first step in understanding di↵usive signaling re-
lays is to solve for the asymptotic dynamics of (1). Since
such relays involve cells signaling their neighbors, which
then signal their own neighbors, one can imagine that
di↵usive relays give rise to di↵usive waves. We therefore
make the ansatz that the concentration c(r, t) = c(r, z, t)
can be described by an outward-traveling wave of the
form c(r, z, t) = c(r̃ = r � vt, z) [13–15]. Here, r̃ is the
distance from the wave front – negative when inside the
wave front, positive when beyond – and v is the wave
speed. With Cth ⌘ c(r̃ = 0, z = 0) and r � D/v, we
take (1) and arrive at the following equation governing
asymptotic behavior:
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+

@
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◆
+ v

@c

@r̃
+ a⇢�(z)⇥[�r̃].

(2)

Since we consider r � D/v, we may ignore the
D(@c/@r̃)/r term due to the dominance of v@c/@r̃. This
is e↵ectively the same as ignoring the curvature of the
wave front, and has the e↵ect of reducing our asymptotic
analysis of cells in two dimensions into an asymptotic
analysis of cells in one dimension [13]. The asymptotic
dynamics of cells distributed in three spatial dimensions
allow for a similar manipulation, an extensive discussion
of which can be found in the SI Appendix.
We wish to find a solution to (2) for various di↵usive

– i.e., extracellular – environments. In doing so, we hope
to solve for the spatial dependence of the concentration
profiles c(r̃, z) as well as a relationship that will tell us
how the signaling dynamics – in this case, the wave speed
v – depend on the biophysical system parameters like the
cell density, ⇢; the concentration threshold, Cth; and the
signaling molecule emission rate, a.
But first, we note that (2) provides two quantities

of value: a natural length scale D/v and a natural
time scale D/v

2. For a small di↵using molecule with
D ⇡ 10�10 m2/s and a wave speed of v ⇡ 1 µm/s –
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Evasion strategies (predator-swarm interaction)

an anti-predator strategy. During hunting, predators become
confused when confronted with their prey swarm [13] and
predator confusion was observed in 64% of the predator–
prey systems studied in [14]. Predator–prey dynamics were
also studied using computer models (e.g. [5,15–17]). Zheng
et al. [15] studied a mathematical model of schools of fish,
which demonstrates that collective evasion reduces the pre-
dator’s success by confusing it. Olson et al. [16] used
simulated coevolution of predators and prey to demonstrate
that predator confusion gives a sufficient selective advantage
for swarming prey. Similar preference for swarming in the
presence of a confused predator was investigated in [5].

While there are many models in the literature that demon-
strate complex predator–prey dynamics, most of these
models are too complex to study except through numerical
simulations. The goal of this paper is to present a minimal
mathematical model which is carefully chosen so that (i) it
is amenable to mathematical analysis and (ii) it captures the
essential features of predator–prey interactions. A commonly
used approach to swarm dynamics is to represent each prey
by a particle that moves based on its interactions with other
prey and its interaction with the predator. There is a large lit-
erature on particle models in biology, where they have been
used to model biological aggregation in general [1,18–22]
and locusts [21] or fish populations [15,23–27] in particular.
This is the approach that we take in this paper as well.

We now introduce the model that we study in this paper.
We assume that there are N prey whose positions xj(t) [ R2,
j ¼ 1 . . . N follow Newton’s law so that m(d2/dt2)xjþ
m(d/dt)xj ¼ F j,prey#prey þ F j,prey#predator: Here, Fj,prey2prey þ
Fj,prey2predator is the total force acting on the j-th particle,
m is the strength of ‘friction’ force and m is its mass. We
make a further simplification that the mass m is negligible
compared with the friction force m. After rescaling to set

m ¼ 1, the model is then simply (d/dt)xj ¼ F j,prey#preyþ
F j,prey#predator, so that the prey moves in the direction of
the total force. This reduces the second-order model to a
first-order model, which makes it easier to analyse mathe-
matically. Similar reduction was used, for example, in the
analysis of locust populations [28] and other biological
models [19,29]. Various forms can be considered for prey–
prey interactions. To keep cohesiveness of the swarm, we con-
sider the interactions which exhibit pairwise short-range
repulsion and long-range attraction, averaged over all of the
particles. For concreteness, we consider the endogenous
prey–prey interaction of the form F j,prey#prey ¼ 1/NPN

k¼1,k=j (1/jxj # xkj2 # a)(xj # xk): The term xj # xk/jxj # xkj2

represents Newtonian-type short-range repulsion that acts
in the direction from xj to xk, whereas 2a(xj 2 xk) is a linear
long-range attraction in the same direction. While more gen-
eral attraction–repulsion dynamics can be considered, we
concentrate on this specific form because more explicit results
are possible. In particular, in the absence of exogenous prey–
predator force, this particular interaction has been shown to
result in uniform swarms [30,31]. In general, the distribution
inside the swarm can vary and have fluctuations; however,
uniform density of a swarm is often a good first-order
approximation for many swarms. For example, Miller &
Stephen [32] found that the flocks of sandhill cranes feeding
in cultivated fields had distribution close to uniform, regard-
less of flock size. See [19, pp. 537–538], and references therein
for further examples and discussion of prevalence of nearly
uniform distribution of flocks in nature.

The prey–predator interactions are modelled in a similar
fashion: again for concreteness assume that there is a single
predator whose position we denote as z(t) [ R2. Assuming
that the predator acts as a repulsive particle on the prey,
we take F j,prey#predator ¼ b((xj # z)/jxj # zj2), with b being the

(a)

(d ) (e) ( f ) (g)

(b)

(c)

Figure 1. (a) Flock of sheep in Argentina avoiding the shepherd in the middle. (Photograph by Yann Arthus Bertrand, used with the permission of the author.)
(b) A farmer walks 5000 ducks in Taizhou, China. (Source: BBC news.) (c) A baitball of sardines under attack by diving gannets. (Source: The Telegraph, Jason Heller/
Barcroft Media.) (d – g) A flock of ducks in Vancouver, Canada, being pursued by a kleptoparasitic gull. Snapshots taken 2 s apart showing complex pursuit dynamics.
(Photographs by Ryan Lukeman, used with the permission of the author. Photographs (e,f ) also appear in [11].) (Online version in colour.)
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strength of the repulsion. Finally, we model the predator–prey
interactions as an attractive force in a similar way,
(d/dt)z ¼ Fpredator"prey. We consider the simplest scenario
where Fpredator2prey is the average over all predator–prey
interactions and each individual interaction is a power law,
which decays at large distances; the prey then moves in the
direction of the average force. These assumptions result in
the following system:

dxj

dt
¼ 1

N

XN

k¼1,k=j

xj " xk

jxj " xkj2
" a(xj " xk)

 !
þ b

xj " z
jxj " zj2

(1:1)

and

dz
dt
¼ c

N

XN

k¼1

xk " z
jxk " zjp

: (1:2)

To illustrate the results and motivate the analysis in this
paper, consider the numerical simulations of the particle
model (1.1) and (1.2) shown in figure 2. We use the strength
c of the predator–prey attraction as the control parameter,
with other parameters as given in the figure. In the
second row with c ¼ 0.4, random initial conditions for
prey and predator positions are taken inside a unit square.
The swarm forms a ‘ring’ of constant density with a preda-
tor at the centre of the ring. Our first result is to fully
characterize this ring in the limit of large swarms; see
result 2.1. Our main result characterizes the stability of

this ring. In result 3.1, we show that the ring is stable
whenever 2 , p , 4 and

ba(2"p)=2

(1þ b)(2"p)=2 , c ,
a(2"p)=2

b(2"p)=2 " (1þ b)(2"p)=2 : (1:3)

With parameters as chosen in figure 2 this corresponds
to 0.2190 , c , 0.7557. When c is decreased below 0.2910
(row 1), the ring becomes unstable and the predator is
‘expelled’ out of the ring; the swarm escapes completely.
A very different instability appears if c is increased above
0.7557 (row 3). In this case, we show that the ring also
becomes unstable owing to the presence of oscillatory instabilities,
whereby the predator ‘oscillates’ around the ‘centre’ of the
swarm. After some transients, the system settles into a ‘rotat-
ing pattern’ where the predator is continually chasing after its
prey, without being able to fully catch up to it. As c is further
increased (row 4), the motion becomes progressively chaotic
until the predator is finally able to catch the prey (row 5).

Our approach is to take the continuum-limit N!1 of (1.1)
and (1.2), which results in the non-local integro-differential
equation model [19–22]

rt(x, t)þr $ (r(x, t)v(x, t)) ¼ 0;
ð

R2
r(y, t)dy ¼ 1, (1:4)

v(x, t) ¼
ð

R2

x" y
jx" yj2

" a(x" y)

 !

r(y, t)dyþ b
x" z
jx" zj2

(1:5)

t = 0 t = 45 t = 55 t = 60 t = 70 t = 80
t = 100

t = 0 t = 0.35 t = 0.85 t = 2.35 t = 4.85 t = 9.85 t = 21.05

t = 0 t = 4 t = 123.8 t = 125.8 t = 127.8 t = 129.8 t = 131.8

t = 0 t = 0.6 t = 1.2 t = 1.8 t = 2.4 t = 3 t = 3.6

t = 0 t = 0.2 t = 0.4 t = 0.6 t = 0.8 t = 1 t = 1.2

c = 0.15:(1)

(2)

(3)

(4)

(5)

c = 0.4:

c = 0.8:

c = 1.5:

c = 2.5:

Figure 2. Predator – prey dynamics using the model (1.1) and (1.2). Parameters are n ¼ 400; a ¼ 1; b ¼ 0 : 2; p ¼ 3; and c is as given. The bifurcation values for
c are c0 ¼ 0 : 2190 and chopf ¼ 0 : 7557 (see result 3.1). The velocity vector of the predator is also shown. First row: c , c0; the swarm escapes completely. Second
row: c0 , c , chopf; predator catches up with the swarm but gets ‘confused’ and the swarm forms a stable ring around it. Third row: c is just above chopf; regular
oscillations are observed. Fourth row: c is further increased leading to complex periodic patterns. Fifth row: the predator is able to ‘catch’ the prey (see §4); chaotic
behaviour is observed.
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strength of the repulsion. Finally, we model the predator–prey
interactions as an attractive force in a similar way,
(d/dt)z ¼ Fpredator"prey. We consider the simplest scenario
where Fpredator2prey is the average over all predator–prey
interactions and each individual interaction is a power law,
which decays at large distances; the prey then moves in the
direction of the average force. These assumptions result in
the following system:

dxj

dt
¼ 1

N

XN

k¼1,k=j

xj " xk

jxj " xkj2
" a(xj " xk)

 !
þ b

xj " z
jxj " zj2

(1:1)

and

dz
dt
¼ c

N

XN

k¼1

xk " z
jxk " zjp

: (1:2)

To illustrate the results and motivate the analysis in this
paper, consider the numerical simulations of the particle
model (1.1) and (1.2) shown in figure 2. We use the strength
c of the predator–prey attraction as the control parameter,
with other parameters as given in the figure. In the
second row with c ¼ 0.4, random initial conditions for
prey and predator positions are taken inside a unit square.
The swarm forms a ‘ring’ of constant density with a preda-
tor at the centre of the ring. Our first result is to fully
characterize this ring in the limit of large swarms; see
result 2.1. Our main result characterizes the stability of

this ring. In result 3.1, we show that the ring is stable
whenever 2 , p , 4 and

ba(2"p)=2

(1þ b)(2"p)=2 , c ,
a(2"p)=2

b(2"p)=2 " (1þ b)(2"p)=2 : (1:3)

With parameters as chosen in figure 2 this corresponds
to 0.2190 , c , 0.7557. When c is decreased below 0.2910
(row 1), the ring becomes unstable and the predator is
‘expelled’ out of the ring; the swarm escapes completely.
A very different instability appears if c is increased above
0.7557 (row 3). In this case, we show that the ring also
becomes unstable owing to the presence of oscillatory instabilities,
whereby the predator ‘oscillates’ around the ‘centre’ of the
swarm. After some transients, the system settles into a ‘rotat-
ing pattern’ where the predator is continually chasing after its
prey, without being able to fully catch up to it. As c is further
increased (row 4), the motion becomes progressively chaotic
until the predator is finally able to catch the prey (row 5).

Our approach is to take the continuum-limit N!1 of (1.1)
and (1.2), which results in the non-local integro-differential
equation model [19–22]

rt(x, t)þr $ (r(x, t)v(x, t)) ¼ 0;
ð

R2
r(y, t)dy ¼ 1, (1:4)

v(x, t) ¼
ð

R2

x" y
jx" yj2

" a(x" y)

 !

r(y, t)dyþ b
x" z
jx" zj2

(1:5)

t = 0 t = 45 t = 55 t = 60 t = 70 t = 80
t = 100

t = 0 t = 0.35 t = 0.85 t = 2.35 t = 4.85 t = 9.85 t = 21.05

t = 0 t = 4 t = 123.8 t = 125.8 t = 127.8 t = 129.8 t = 131.8

t = 0 t = 0.6 t = 1.2 t = 1.8 t = 2.4 t = 3 t = 3.6

t = 0 t = 0.2 t = 0.4 t = 0.6 t = 0.8 t = 1 t = 1.2

c = 0.15:(1)

(2)

(3)

(4)

(5)

c = 0.4:

c = 0.8:

c = 1.5:

c = 2.5:

Figure 2. Predator – prey dynamics using the model (1.1) and (1.2). Parameters are n ¼ 400; a ¼ 1; b ¼ 0 : 2; p ¼ 3; and c is as given. The bifurcation values for
c are c0 ¼ 0 : 2190 and chopf ¼ 0 : 7557 (see result 3.1). The velocity vector of the predator is also shown. First row: c , c0; the swarm escapes completely. Second
row: c0 , c , chopf; predator catches up with the swarm but gets ‘confused’ and the swarm forms a stable ring around it. Third row: c is just above chopf; regular
oscillations are observed. Fourth row: c is further increased leading to complex periodic patterns. Fifth row: the predator is able to ‘catch’ the prey (see §4); chaotic
behaviour is observed.
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strength of the repulsion. Finally, we model the predator–prey
interactions as an attractive force in a similar way,
(d/dt)z ¼ Fpredator"prey. We consider the simplest scenario
where Fpredator2prey is the average over all predator–prey
interactions and each individual interaction is a power law,
which decays at large distances; the prey then moves in the
direction of the average force. These assumptions result in
the following system:

dxj

dt
¼ 1

N

XN

k¼1,k=j

xj " xk

jxj " xkj2
" a(xj " xk)

 !
þ b

xj " z
jxj " zj2

(1:1)

and

dz
dt
¼ c

N

XN

k¼1

xk " z
jxk " zjp

: (1:2)

To illustrate the results and motivate the analysis in this
paper, consider the numerical simulations of the particle
model (1.1) and (1.2) shown in figure 2. We use the strength
c of the predator–prey attraction as the control parameter,
with other parameters as given in the figure. In the
second row with c ¼ 0.4, random initial conditions for
prey and predator positions are taken inside a unit square.
The swarm forms a ‘ring’ of constant density with a preda-
tor at the centre of the ring. Our first result is to fully
characterize this ring in the limit of large swarms; see
result 2.1. Our main result characterizes the stability of

this ring. In result 3.1, we show that the ring is stable
whenever 2 , p , 4 and

ba(2"p)=2

(1þ b)(2"p)=2 , c ,
a(2"p)=2

b(2"p)=2 " (1þ b)(2"p)=2 : (1:3)

With parameters as chosen in figure 2 this corresponds
to 0.2190 , c , 0.7557. When c is decreased below 0.2910
(row 1), the ring becomes unstable and the predator is
‘expelled’ out of the ring; the swarm escapes completely.
A very different instability appears if c is increased above
0.7557 (row 3). In this case, we show that the ring also
becomes unstable owing to the presence of oscillatory instabilities,
whereby the predator ‘oscillates’ around the ‘centre’ of the
swarm. After some transients, the system settles into a ‘rotat-
ing pattern’ where the predator is continually chasing after its
prey, without being able to fully catch up to it. As c is further
increased (row 4), the motion becomes progressively chaotic
until the predator is finally able to catch the prey (row 5).

Our approach is to take the continuum-limit N!1 of (1.1)
and (1.2), which results in the non-local integro-differential
equation model [19–22]

rt(x, t)þr $ (r(x, t)v(x, t)) ¼ 0;
ð

R2
r(y, t)dy ¼ 1, (1:4)

v(x, t) ¼
ð

R2

x" y
jx" yj2

" a(x" y)

 !

r(y, t)dyþ b
x" z
jx" zj2

(1:5)

t = 0 t = 45 t = 55 t = 60 t = 70 t = 80
t = 100

t = 0 t = 0.35 t = 0.85 t = 2.35 t = 4.85 t = 9.85 t = 21.05

t = 0 t = 4 t = 123.8 t = 125.8 t = 127.8 t = 129.8 t = 131.8

t = 0 t = 0.6 t = 1.2 t = 1.8 t = 2.4 t = 3 t = 3.6

t = 0 t = 0.2 t = 0.4 t = 0.6 t = 0.8 t = 1 t = 1.2

c = 0.15:(1)
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Figure 2. Predator – prey dynamics using the model (1.1) and (1.2). Parameters are n ¼ 400; a ¼ 1; b ¼ 0 : 2; p ¼ 3; and c is as given. The bifurcation values for
c are c0 ¼ 0 : 2190 and chopf ¼ 0 : 7557 (see result 3.1). The velocity vector of the predator is also shown. First row: c , c0; the swarm escapes completely. Second
row: c0 , c , chopf; predator catches up with the swarm but gets ‘confused’ and the swarm forms a stable ring around it. Third row: c is just above chopf; regular
oscillations are observed. Fourth row: c is further increased leading to complex periodic patterns. Fifth row: the predator is able to ‘catch’ the prey (see §4); chaotic
behaviour is observed.
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Model:

[Chen, Kolokolnikov: J. Royal Soc. Int. 11, 20131208 (2014)]



Collective Foraging (by sharing information)
landscape quality (local information), and by the interac-
tion among individuals through a communication mecha-
nism that is activated when good resources are found, thus
providing information on habitat quality in other areas
(nonlocal information). The dynamics of any of the parti-
cles i ¼ 1; . . . ; N is

_r iðtÞ ¼ BgrgðriÞ þ BCrSðriÞ þ !iðtÞ; (1)

where !iðtÞ is a Gaussian white noise term characterized
by h!iðtÞi ¼ 0, and h!iðtÞ!jðt0Þi ¼ 2D"ij"ðt% t0Þ, with D
the diffusion coefficient. The term BgrgðriÞ refers to the
local search, where gðrÞ is the environmental quality func-
tion (amount of grass, prey, etc.) and Bg is the local search
bias parameter. BCrSðriÞ is the nonlocal search term, with
BC the nonlocal search bias parameter and SðriÞ is the
available information function of the individual i. It rep-
resents the information arriving at the spatial position of
the animal i as a result of the communication with the rest
of the population. This term makes the individuals move
along the gradients of the information received. This is a
function of the superposition of pairwise interactions
between the individual i and each one of its conspecifics,

SðriÞ ¼ F

 XN

j¼1;j!i

AðgðrjÞÞVðri; rjÞ
!
: (2)

F is an arbitrary perception function that must be set in
each application of the model, Vðri; rjÞ is the interaction
between the receptor particle i depending on its position ri
and the emitting particle fixed at rj, and AðgðrjÞÞ is the
activation function (typically, a Heaviside function) that
indicates that the individual at rj calls the others if it is in a
good habitat.

From the Langevin equation (1), and following the
standard arguments presented in [33,34] it is possible to
write an equation for the evolution of the density of indi-
viduals, #ðr; tÞ. This approach will allow us to fix the
parameters of the problem having a better understanding
of the role they are playing in the dynamics through a
dimensional analysis. However, in the case of the large
grazing mammals we are going to study later, it is not very
suitable to describe a population as a continuum since the
number of individuals is not very high and the typical
distances among them is large. Neglecting fluctuations,
the continuum equation for the density is
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which is quite similar to the one derived in [35] to study the
transport of interacting particles on a substrate.

As previously stated, we wish to explore how foraging
times are affected when individuals share information, but
our model could also be generalized to the case of preda-
tors which use prey’s signals to locate them, or many other
situations where animals obtain information from conspe-
cifics. For the general case, we consider an identity per-
ception function and a Gaussian-like interaction kernel.
Later, to check the robustness of the model to changes in
V, we will use a physically motivated power law interac-
tion with an exponential cutoff. Manipulating its typical
range via the standard deviation, $, we ask how the typical
communication distance affects the average efficiency of
individuals searching for targets in space (areas of high-
quality forage). We give an answer in terms of spatial
distributions of individuals at long times starting from a
random initial condition, and the mean first arrival time to
the targets, %, as it is done in related works [36].
We begin with Monte Carlo simulations of the

individual-based dynamics in Eq. (1) using a square sys-
tem, Lx ¼ Ly ¼ 1, with periodic boundary conditions, and
a population of N ¼ 100 individuals. We use a theoretical
landscape quality function, gðrÞ, consisting of three non-
normalized Gaussian functions, to ensure that gðrÞ 2
½0; 1', centered at different spatial points. The available
information function of the individual i depending on its
position will be

SðriÞ ¼
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where, as mentioned before, AðgðrÞÞ is a Theta Heaviside
function that activates the interaction when the quality is
over a certain threshold ', AðgðrÞÞ ¼ !ðgðrÞ % 'Þ.
We observe that the first arrival time [Fig. 1 (right)] may

be optimized with a communication range parameter, $, of
intermediate scale. The number of individuals from which
a given animal receives a signal will typically increase with
the interaction scale. When this scale is too small, indi-
viduals receive too little information (no information when
$ ¼ 0), and thus exhibit low search efficiency (Fig. 1).
Similarly, interaction scales that are too large lead to
individuals being overwhelmed with information from all
directions, also resulting in inefficient searches (Fig. 1).
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landscape quality (local information), and by the interac-
tion among individuals through a communication mecha-
nism that is activated when good resources are found, thus
providing information on habitat quality in other areas
(nonlocal information). The dynamics of any of the parti-
cles i ¼ 1; . . . ; N is

_r iðtÞ ¼ BgrgðriÞ þ BCrSðriÞ þ !iðtÞ; (1)

where !iðtÞ is a Gaussian white noise term characterized
by h!iðtÞi ¼ 0, and h!iðtÞ!jðt0Þi ¼ 2D"ij"ðt% t0Þ, with D
the diffusion coefficient. The term BgrgðriÞ refers to the
local search, where gðrÞ is the environmental quality func-
tion (amount of grass, prey, etc.) and Bg is the local search
bias parameter. BCrSðriÞ is the nonlocal search term, with
BC the nonlocal search bias parameter and SðriÞ is the
available information function of the individual i. It rep-
resents the information arriving at the spatial position of
the animal i as a result of the communication with the rest
of the population. This term makes the individuals move
along the gradients of the information received. This is a
function of the superposition of pairwise interactions
between the individual i and each one of its conspecifics,
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F is an arbitrary perception function that must be set in
each application of the model, Vðri; rjÞ is the interaction
between the receptor particle i depending on its position ri
and the emitting particle fixed at rj, and AðgðrjÞÞ is the
activation function (typically, a Heaviside function) that
indicates that the individual at rj calls the others if it is in a
good habitat.

From the Langevin equation (1), and following the
standard arguments presented in [33,34] it is possible to
write an equation for the evolution of the density of indi-
viduals, #ðr; tÞ. This approach will allow us to fix the
parameters of the problem having a better understanding
of the role they are playing in the dynamics through a
dimensional analysis. However, in the case of the large
grazing mammals we are going to study later, it is not very
suitable to describe a population as a continuum since the
number of individuals is not very high and the typical
distances among them is large. Neglecting fluctuations,
the continuum equation for the density is
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which is quite similar to the one derived in [35] to study the
transport of interacting particles on a substrate.

As previously stated, we wish to explore how foraging
times are affected when individuals share information, but
our model could also be generalized to the case of preda-
tors which use prey’s signals to locate them, or many other
situations where animals obtain information from conspe-
cifics. For the general case, we consider an identity per-
ception function and a Gaussian-like interaction kernel.
Later, to check the robustness of the model to changes in
V, we will use a physically motivated power law interac-
tion with an exponential cutoff. Manipulating its typical
range via the standard deviation, $, we ask how the typical
communication distance affects the average efficiency of
individuals searching for targets in space (areas of high-
quality forage). We give an answer in terms of spatial
distributions of individuals at long times starting from a
random initial condition, and the mean first arrival time to
the targets, %, as it is done in related works [36].
We begin with Monte Carlo simulations of the

individual-based dynamics in Eq. (1) using a square sys-
tem, Lx ¼ Ly ¼ 1, with periodic boundary conditions, and
a population of N ¼ 100 individuals. We use a theoretical
landscape quality function, gðrÞ, consisting of three non-
normalized Gaussian functions, to ensure that gðrÞ 2
½0; 1', centered at different spatial points. The available
information function of the individual i depending on its
position will be
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where, as mentioned before, AðgðrÞÞ is a Theta Heaviside
function that activates the interaction when the quality is
over a certain threshold ', AðgðrÞÞ ¼ !ðgðrÞ % 'Þ.
We observe that the first arrival time [Fig. 1 (right)] may

be optimized with a communication range parameter, $, of
intermediate scale. The number of individuals from which
a given animal receives a signal will typically increase with
the interaction scale. When this scale is too small, indi-
viduals receive too little information (no information when
$ ¼ 0), and thus exhibit low search efficiency (Fig. 1).
Similarly, interaction scales that are too large lead to
individuals being overwhelmed with information from all
directions, also resulting in inefficient searches (Fig. 1).
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landscape quality (local information), and by the interac-
tion among individuals through a communication mecha-
nism that is activated when good resources are found, thus
providing information on habitat quality in other areas
(nonlocal information). The dynamics of any of the parti-
cles i ¼ 1; . . . ; N is

_r iðtÞ ¼ BgrgðriÞ þ BCrSðriÞ þ !iðtÞ; (1)

where !iðtÞ is a Gaussian white noise term characterized
by h!iðtÞi ¼ 0, and h!iðtÞ!jðt0Þi ¼ 2D"ij"ðt% t0Þ, with D
the diffusion coefficient. The term BgrgðriÞ refers to the
local search, where gðrÞ is the environmental quality func-
tion (amount of grass, prey, etc.) and Bg is the local search
bias parameter. BCrSðriÞ is the nonlocal search term, with
BC the nonlocal search bias parameter and SðriÞ is the
available information function of the individual i. It rep-
resents the information arriving at the spatial position of
the animal i as a result of the communication with the rest
of the population. This term makes the individuals move
along the gradients of the information received. This is a
function of the superposition of pairwise interactions
between the individual i and each one of its conspecifics,

SðriÞ ¼ F
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j¼1;j!i

AðgðrjÞÞVðri; rjÞ
!
: (2)

F is an arbitrary perception function that must be set in
each application of the model, Vðri; rjÞ is the interaction
between the receptor particle i depending on its position ri
and the emitting particle fixed at rj, and AðgðrjÞÞ is the
activation function (typically, a Heaviside function) that
indicates that the individual at rj calls the others if it is in a
good habitat.

From the Langevin equation (1), and following the
standard arguments presented in [33,34] it is possible to
write an equation for the evolution of the density of indi-
viduals, #ðr; tÞ. This approach will allow us to fix the
parameters of the problem having a better understanding
of the role they are playing in the dynamics through a
dimensional analysis. However, in the case of the large
grazing mammals we are going to study later, it is not very
suitable to describe a population as a continuum since the
number of individuals is not very high and the typical
distances among them is large. Neglecting fluctuations,
the continuum equation for the density is
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which is quite similar to the one derived in [35] to study the
transport of interacting particles on a substrate.

As previously stated, we wish to explore how foraging
times are affected when individuals share information, but
our model could also be generalized to the case of preda-
tors which use prey’s signals to locate them, or many other
situations where animals obtain information from conspe-
cifics. For the general case, we consider an identity per-
ception function and a Gaussian-like interaction kernel.
Later, to check the robustness of the model to changes in
V, we will use a physically motivated power law interac-
tion with an exponential cutoff. Manipulating its typical
range via the standard deviation, $, we ask how the typical
communication distance affects the average efficiency of
individuals searching for targets in space (areas of high-
quality forage). We give an answer in terms of spatial
distributions of individuals at long times starting from a
random initial condition, and the mean first arrival time to
the targets, %, as it is done in related works [36].
We begin with Monte Carlo simulations of the

individual-based dynamics in Eq. (1) using a square sys-
tem, Lx ¼ Ly ¼ 1, with periodic boundary conditions, and
a population of N ¼ 100 individuals. We use a theoretical
landscape quality function, gðrÞ, consisting of three non-
normalized Gaussian functions, to ensure that gðrÞ 2
½0; 1', centered at different spatial points. The available
information function of the individual i depending on its
position will be

SðriÞ ¼
XN

j¼1;j!i

AðgðrjÞÞ
exp
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where, as mentioned before, AðgðrÞÞ is a Theta Heaviside
function that activates the interaction when the quality is
over a certain threshold ', AðgðrÞÞ ¼ !ðgðrÞ % 'Þ.
We observe that the first arrival time [Fig. 1 (right)] may

be optimized with a communication range parameter, $, of
intermediate scale. The number of individuals from which
a given animal receives a signal will typically increase with
the interaction scale. When this scale is too small, indi-
viduals receive too little information (no information when
$ ¼ 0), and thus exhibit low search efficiency (Fig. 1).
Similarly, interaction scales that are too large lead to
individuals being overwhelmed with information from all
directions, also resulting in inefficient searches (Fig. 1).
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over 200 configurations. In figure 2a, we plot h as a function
of a. For N ¼ 512 and L ¼ 512, we are able to compare the
efficiency of the searches for target distributions at different
degrees of patchiness characterized by g. When the targets

regenerate randomly across the lattice, we find h to increase
with a and then saturate to a value in the limit of a!1.
Thus, searching independently is overall beneficial. How-
ever, for a patchy distribution of targets, the scenario is

(a) (b) (c)

(d ) (e) ( f )

Figure 1. The snapshots during evolution of the model for N ¼ 128, L ¼ 128, g ¼ 2.5 and a ¼ 0 at times t ¼ (a) 0, (b) 194, (c) 281, (d) 747, (e) 802 and (f ) 979.
The foragers are marked with blue circles and the targets are marked with green squares. The path of a typical forager is drawn. The red steps belong to random walks
and the black steps belong to targeted walks. The fact that a single lattice site may be multiply occupied by foragers or targets is not separately colour coded.
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N ¼ 256, g ¼ 2.5 (triangle-down); N ¼ 512, g ¼ 2.0 (triangle-right); and N ¼ 512, random regeneration of targets (triangle-left). The inset of (a) corresponds
to N ¼ 512 and g ¼ 3.5. (b) Scaling collapse of h for different values of N with g ¼ 2.5 and L ¼ 512. The collapse results with b1 ¼ 0.15 and b2 ¼ 0.70. The
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First passage problems

1.2 First-passage properties

S

T

Figure 1.8: Scheme of a generic first-passage problem.

• We have defined what di↵usion and random walks are ;

• we have introduced networks and some mathematical tools ;

• we have shown a link between random walks and di↵usion.

Quick summary

1.2 First-passage properties

We will now focus on a more specific subject concerning di↵usion and random walks: first-
passage properties. The first sub-section will define the first-passage observables that we will use
all along this manuscript. The second sub-section will introduce the renewal equation, only valid
for Markovian processes, and shows how to relate the mean first-passage time (MFPT) with
the pseudo-Green functions. This link is central for this manuscript: it allows a quantitative
estimation of MFPT as soon as the pseudo-Green function can be calculated or approximated.
The last sub-section extend this relationship to other first-passage time observables. The first
two sub-sections presents textbook results while the last one introduce some original results that
have been obtained during my Master thesis.

1.2.1 The basic of first-passage

We will consider a random walk starting from rS . We name first-passage time the first time the
random walker hits a target site rT . This time is called the first-passage time (FPT). As shown
in Figure 1.8, this quantity is defined for a single random walker. This quantity is fundamental
in the study of transport limited reactions [169, 185, 133], as it gives the reaction time in the
limit of perfect reaction.

This quantity is also useful in target search problems [198, 69, 22, 24, 84, 121], and other
physical systems [66, 192, 168], and will be used throughout this manuscript.

We can extract several quantities with this first definition. The more complete quantity is
the first-passage density FPT(t) giving for a single particle the probability that the first-passage
time is t. This density is the probability density function of the first-passage time, satisfying in
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Figure 1.9: Scheme of a discrete first-passage problem.

To define a transient or a recurrent site, we have to compute the probability that, starting from
a given point, a random walker in an infinite media returns eventually to this starting point. If
this return probability is 1, then almost surely, the random walker will come back to the starting
point. Such point is called “recurrent”. If not, the point is called “transient”. Pólya theorem
[161] states that the 1D and 2D Euclidian spaces are recurrent (everywhere), and the Euclidian
spaces of dimension d � 3 are transient (everywhere). One has to take care that some networks
can contain both transient and recurrent sites, like the one described in reference [2].

Since this property is site-dependent, we can define a closely related notion that is media-
dependent: the compacity of the exploration[72]. Basically, if all sites are recurrent, then the
exploration will be called “compact”, and if all sites are transient, the exploration will be called
“non-compact”. For homogeneous networks, namely where all sites have the same recurrence
property (either recurrent or transient), compact is a synonym of recurrent, and non-compact of
transient.

We can understand this notion as follows: for a compact exploration, once a site is visited,
the near vicinity will almost certainly be visited. For a non-compact exploration, one site can be
visited while the neighboring one has a probability strictly smaller than 1 to be visited.

We can propose a link with a more usual definition of compacity by looking at the trace of
a random walker in continuous space. This trace, namely the ensemble of all the sites visited
between t = 0 and t has a fractal dimension dt equal to the embedding space dimension for a
compact exploration, and a dt smaller that the embedding space dimension for a non-compact
one. Namely, a compact exploration visit all the sites in a given area, while a non-compact one
will visit only some of them before going to another area. For a regular Brownian motion, the
fractal dimension of the trace is dt = 1 for d = 1, and dt = 2 for d � 2: a Brownian motion
in d > 2 is non-compact since the fractal dimension of the trace will be smaller than the space
dimension, leading to a non-compact exploration.

We will see below how to link the compacity property with the fractal dimension of the em-
bedding space df and the walk dimension dw of a scale-invariant random walk.

Several targets and first-passage
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1 A guided visit into the random world

S

T1

T2

Figure 1.10: Scheme of a two target first-passage problem.

So far, we considered the case of a random walk with a single target. If several targets exist, new
first-passage quantities appear. As shown in Figure 1.10, if more than one target is available, one
can compute the “first-passage splitting probabilities”, namely the probability that the random
walker, starting from rS , hits the target ri before any of the other targets rj 6=i. This splitting
probability will be noted Pi, it correspond to the probability mass of the discrete random variable
“index of the first target hitted”. Normalization once again gives:

X

i

Pi = 1 (1.59)

Those probabilities allow to study quantitatively competitive reactions[169].
Another quantity is the conditional first-passage density, namely the first-passage density at

target i, without touching any of the other targets j 6= i. This density, noted FPTi(t) is the
probability density function of the first-passage time at target i, knowing that the target i is the
first target hitted. It is normalized

Z 1

0
FPTi(t)dt = 1 (1.60)

As previously, we can define the moments of conditional first-passage time:

hTn

i i =

Z 1

0
tnFPTi(t)dt (1.61)

The last quantity we will focus on is the first exit time, namely the time needed to reach for
the first time any of the targets. The related density FET(t) is normalized, and satisfy:

FET(t) =
X

i

PiFPTi(t) )

Z 1

0
FET(t)dt =

X

i

Pi = 1, (1.62)

where the Pi are the splitting probabilities. If the targets surround entirely a given volume, like
in Figure 1.11, we retrieve the alternative notion of first exit time given below, namely the time
needed to exit the volume for the first time.
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FPT(t) = probability density for the first-passage time, 
              i.e the first time the random walker hits a target 
              (start at position rs, target at position rt)

1.2 First-passage properties

S

Figure 1.11: Scheme of a first exit problem.

Other first-passage quantities

We will now introduce some supplementary first-passage quantities, to o↵er a wide overview
of what a first-passage observables could be.

We always talk about first-passage, but for random walk performing jumps in a continuous
space, two quantities can be defined: the first-passage time and the first arrival time[123]. The
first-passage time is the first time the random walker trajectory crosses the target, but this could
occur during a jump, where the random walker does not hit the target. The first arrival time is
in the contrary the first time the random walker hits the target. By definition, the first arrival
time is always larger (or equal) than the first-passage time.

The first exit time is defined when the random walker starts in a given subset of space. As
shown in Figure 1.11, the first time the random walker exits this subset is the first exit time. It
is equivalent to a first-passage time if we define the subset boundary as the target.

The maximal excursion is a related concept: rmax(t) is the maximal distance from the origin
the random walker have reached at time t. If we note r(t) the random walker position at time t,
we can define this maximal excursion as:

rmax(t) = max
0t0t

kr(t0) � r(t = 0)k (1.63)

This maximal excursion is a growing function of time, and is closely related to the first exit time.
If the first exit time of a sphere centered on r(t = 0) and of radius r0 is t, then rmax(t) = r0. The
first exit time focus on the time needed to exit a given subset while the maximal excursion focus
on the maximal distance reached at a given time.

At last, we can introduce the occupation time, the number of time Ni a random walker visit a
given site ri before reaching the target site rT . This quantity is useful in the context of reactions
occurring with a finite probability per unit of time[21, 35, 65]. We stress that the occupation
time provides a finer information on the trajectory of the particle than the first passage time.
We can retrieve this first-passage time T with the sum over all sites of the occupation time:

T =
X

i

Ni (1.64)

19

Scheme of a 
first-exit problem



MFPT of Brownian motion in confined geometries

!T"rS#$ =
V!0"rS#

D
=

V

D
%G0"a# + H*"rT&rT# − H"rT&rS#'

+ O(adG0"a#
D

) . "49#

This equation is very close to "8#, with the correspondence
H"r &r#→G0"a#+H*"r &r#, but one should pay attention to the
fact that this is only an approximation! One may expect de-
viations from this expression when the variations of H"r &rS#
or H*"r &rT# will not be negligible over the target sphere; it
corresponds to the cases when the target is either near the
source or near a boundary. However, if we compare the ex-
pression obtained with simulations "see Fig. 10# when the
target is near the source, we see no such deviation; this is
justified in Appendix C. On the other hand, there is indeed a
deviation near the boundaries. This deviation scales as a /d in
two dimensions, or a /d2 in three dimensions, where d is the
distance between the target and the boundary. It is possible to
compute a correction, which is given in Appendix C, and
used in practical applications in Appendix A.

The exact value of H is known analytically for disks and
spheres %23'; we will detail this in Appendix A. This is why
we will test the expressions we obtain in such geometries. If
no exact expression is known, the simplest approximation of
H is simply H=G0. More accurate approximations are also
discussed in Appendix A. We give the estimations of !T"rS#$
with the basic approximation, to show the order of magni-
tude:
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R being the source-target distance. This already improves the
"exact# asymptotic results of Pinsky %20', which only give
the leading term in a.

B. Higher-order moments

The higher-order moments and density of the FPT in the
three-dimensional case can also be computed. The computa-
tion is detailed in Appendix B 2; the results are quite similar
to the results obtained in the discrete case, and the physical
interpretation is essentially the same. The results obtained
are the following:
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+ H*"rT&rT# − H̄'n−1 + O"nV−2/3a2−n#+ . "52#

We may also deduce from this information about the prob-
ability density of the absorption time p"t#: If we drop the
term O"nV−2/3a2−n#, we have

p"t# =
D

V

G0"a# + H*"rT&rT# − H"rT&rS#

"G0"a# + H*"rT&rT# − H̄#2

#exp( − Dt

V%G0"a# + H*"rT&rT# − H̄'
)

+
H"rT&rS# − H̄

G0"a# + H*"rT&rT# − H̄
$"t# . "53#

In the limit a→0, with the position of rS fixed, the H terms
are constant since they only depend on the shape of the do-
main, and G0"a# tends towards infinity. The probability den-
sity then simply becomes exponential:

p"t# =
4"aD

V
exp(−

4"aDt

V
) . "54#

In the limit a→0, with the quantity R /a fixed, H"rS &rT#
,G0"R#, and the probability density becomes

p"t# =
4"Da

V
(1 −

a

R
)exp(−

4"aDt

V
) +

a

R
$"t# . "55#

We did not test these results with a numerical simulation,
since the continuous simulation method "see Appendix E# is
not adapted to the computation of the FPT density, and
would require a large computation time to give accurate re-
sults. Furthermore, the approximations made "cf. Appendix
B# are the same as on the discrete case, and the discrete
results have been successfully compared to an exact numeri-
cal simulation "cf. Fig. 5#.

C. Case of two targets

For the case of two targets, we will compute the same
quantities as in the discrete case; however, we may notice
that the radius a1 and a2 of the two targets may differ, which
adds another parameter to the problem. With two targets, we
will use the same Green function as before, but %abs=%1
+%2 will be the reunion of the surfaces of the two absorbing
target spheres. The mean absorption time !T"rS#$ satisfies
Eq. "40#; the splitting probability P1"rS# satisfies the follow-
ing equations %1':

FIG. 10. "Color online# Brownian motion on a 2D disk of radius
25 centered on "0,0#; the source is in "0,1# and the target of radius 1
is on "x ,0#. Red crosses: simulations; black solid line: estimation
"49# with the exact function H for a sphere given by Eq. "A6#.
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=
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+ O(adG0"a#
D

) . "49#
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fact that this is only an approximation! One may expect de-
viations from this expression when the variations of H"r &rS#
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corresponds to the cases when the target is either near the
source or near a boundary. However, if we compare the ex-
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target is near the source, we see no such deviation; this is
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two dimensions, or a /d2 in three dimensions, where d is the
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4"D
(1

a
−

1
R
) "three dimensions# , "50#

!T"rS#$ =
A

2"D
ln

R

a
"two dimensions# , "51#
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We did not test these results with a numerical simulation,
since the continuous simulation method "see Appendix E# is
not adapted to the computation of the FPT density, and
would require a large computation time to give accurate re-
sults. Furthermore, the approximations made "cf. Appendix
B# are the same as on the discrete case, and the discrete
results have been successfully compared to an exact numeri-
cal simulation "cf. Fig. 5#.

C. Case of two targets

For the case of two targets, we will compute the same
quantities as in the discrete case; however, we may notice
that the radius a1 and a2 of the two targets may differ, which
adds another parameter to the problem. With two targets, we
will use the same Green function as before, but %abs=%1
+%2 will be the reunion of the surfaces of the two absorbing
target spheres. The mean absorption time !T"rS#$ satisfies
Eq. "40#; the splitting probability P1"rS# satisfies the follow-
ing equations %1':
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refinements to the method, in order to increase the accuracy.
These refinements are given in Appendix C, and are used in
practical computations of the MFPT in Appendix A when the
target is close to a boundary. It should be emphasized that, in
the cases where the pseudo-Green function is known, such as
the case of a spherical domain, the method gives accurate
explicit expressions for all the MFPT and the other quantities
studied here.

A. Mean first-passage time

The mean first-passage time !MFPT" #T!rs"$ at the target
satisfies the following equations %28&:

D!#T!rs"$ = − 1 if rs ! D*, !33"

#T!rs"$ = 0 if rs ! "abs, !34"

!n#T!rs"$ = 0 if rs ! "refl, !35"

where "abs !respectively, "refl" stands for the surface of the
absorbing target sphere !respectively, the reflecting confining
surface" and !n denotes the normal derivative. The bound-
aries have to be regular enough !twice continuously differ-
entiable is sufficient, but not necessary" for these definitions
to make sense.

To solve this problem, we introduce the following Green
function G!r 'r!" defined by

− !G!r'r!" = #!r − r!" if r ! D*, !36"

G!r'r!" = 0 if r ! "abs, !37"

!nG!r'r!" = 0 if r ! "refl. !38"

Note that this Green function may also be seen as the sta-
tionary density of particles if there is a unit incoming flux of
particles in r!, and the diffusion coefficient is set to 1. It
should not be confused with the free Green function G0, and
is rather the continuous equivalent of the average density of
particles $ defined in Eq. !9" with J=1. It depends implicitly
on the target position through Eq. !37".

Using Green’s formula,

(
D*

!#T!r"$!G!r'r!" − G!r'r!"!#T!r"$"ddr

= (
"abs+"refl

!#T!r"$!nG!r'r!" − G!r'r!"!n#T!r"$"dd−1r ,

!39"

we easily find that the MFPT is given by

#T!rS"$ =
1
D
(

D*
G!r'rS"ddr . !40"

To approximate G!r 'rS" we can use a direct transposition
to the continuous case of Eq. !10":

G!r'rS" ) $0!rS" + H!r'rS" − H!r'rT" , !41"

where $0 is defined by G!r 'rS")0 if r!"abs and H!r 'r!" is
the pseudo-Green function %23&, which satisfies

− !H!r'r!" = #!r − r!" −
1
V

if r ! D , !42"

!nH!r'r!" = 0 if r ! "refl, !43"

H!r'r!" = H!r!'r" , !44"

(
D

H!r!'r"ddr! * VH̄ , !45"

H̄ being independent of r. This latter equation can be easily
deduced from the three previous ones.

The choice !41" of G!r 'r!" is the simplest one which
satisfies formally Eqs. !36" and !38". However, Eq. !37" can
only be approximately satisfied. To take into account this
latter equation, we will approximate, on the target sphere,
H!r 'rS" by H!rT 'rS" and H!r 'rT" by G0!r−rT"+H*!rT 'rT",
where G0 is the well-known free Green function
%!2%"−1 ln!r" in two dimensions, 1 / !4%r" in three dimen-
sions&, and H* is defined by

H*!r'r!" * H!r'r!" − G0!r − r!" . !46"

Note that H*!r 'rT" has no singularity in rT. Thus on the
surface of the target sphere we have

$0!rS" + H!rT'rS" − G0!a" − H*!rT'rT" = 0, !47"

where G0!a" is the value of G0!r" when 'r'=a. We can now
compute

#T!rS"$ =
1
D
(

D*
%$0!rS" + H!r'rS" − H!r'rT"&ddr . !48"

Since the target is small compared to the domain, the integral
over D* is almost equal to the integral over D, the relative
order of magnitude of the correction being a3 /V in three
dimensions and a2 /A in two dimensions. Using the property
!45", we can then compute the integral, and find the result:

FIG. 9. !Color online" Continuous problem.
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1d

2d

3d

L, A, V system size (in 1,2,3d)
R initial searcher-target distance
a target size
D diffusion constant

[Condamin etal, PRL 2005]
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Optimizing search strategies

A search strategy is simply one parameter set 
for the of a stochastic process / random walk under consideration
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What is the fastest way of finding a randomly hidden target? Experimental observations reveal that the
search behavior of foraging animals is generally intermittent: active search phases randomly alternate with
phases of fast ballistic motion. Here, we study the efficiency of this two state search strategy by
calculating analytically the mean first passage time at the target. We model the perception mechanism
involved in the active search phase by a diffusive process. We show that the search strategy is optimal
when the average duration of ‘‘motion phases’’ varies like the power either 3=5 or 2=3 of the average
duration of ‘‘search phases,’’ depending on the regime. This scaling accounts for experimental data over a
wide range of species, which suggests that the kinetics of search trajectories is a determining factor
optimized by foragers and that the perception activity is adequately described by a diffusion process.

DOI: 10.1103/PhysRevLett.94.198101 PACS numbers: 87.23.2n, 05.40.2a

Searching for a randomly located object is one of the
most frequent tasks of living organisms, be it for obtaining
food, a sexual partner, or a shelter [1]. In these examples,
the search time is generally a limiting factor which has to
be optimized for the survival of the species. The question
of determining the efficiency of a search behavior is thus a
crucial problem of behavioral ecology, which has inspired
numerous experimental [1–5] and theoretical [6–10]
works. It is also relevant to broader domains such as
stochastic processes theory [11,12], applied mathematics
[13], and molecular biology [14,15].

Anyone who has ever lost his keys knows that instinc-
tively we adopt an intermittent behavior combining local
scanning phases and relocating phases. Indeed, numerous
studies of foraging behavior of a broad range of animal
species show that such an intermittent behavior is com-
monly observed and that the durations of search and dis-
placement phases vary widely [1–3]. The spectrum, which
goes from cruise strategy (e.g., for large fishes that swim
continuously such as tuna) to ambush or sit-and-wait
search, where the forager remains stationary for long peri-
ods (such as a rattlesnake), has never been interpreted
quantitatively. The intermittent strategy, often referred to
as ‘‘saltatory’’ [2,3], can be understood intuitively when
the targets are ‘‘difficult’’ to detect and sparsely distrib-
uted, as is the case for many foragers (such as ground
foraging birds, lizards, planktivorous fish, etc.): since a
fast movement is known to significantly degrade percep-
tion abilities [2,3], the forager must search slowly. Then, it
has to relocate as fast as possible in order to explore a
previously unscanned space and search slowly again.

Even though numerous models based on optimization of
the net energy gain [4–6] predict an optimal strategy for
foragers, the large number of unknown parameters used to
model the complexity of the energetic constraint renders a
quantitative comparison with experimental data difficult.
Here, as has already been suggested [8,9], we assume that

the search time is the relevant quantity optimized by the
forager in order to obtain a sufficient daily amount of food
and to precede other competing foragers. We treat the
energy cost only as an external constraint that sets the
maximal speed of the animal. We develop a general purely
kinetic model of target search, which captures the essential
features of saltatory search behavior observed for foragers
in experiments [2], when the predator has no information
about the prey location.

The central point of our schematic model (see Fig. 1) is
that it relies on the explicit description of searching tra-
jectories. In particular, as we show, it permits us to eluci-
date the nature of the search phase. In the following we
assume that the searcher displays alternatively two distinct
attitudes:

(1) a search phase, hereafter referred to as phase 1,
during which the searcher explores its immediate vicinity
using its sensory organs. As justified below, this local
scanning is modeled as a ‘‘slow’’ diffusive movement (a
continuous random walk with diffusion coefficient D). The
target is found when this movement reaches the target
location for the first time.

(2) a motion phase, referred to as phase 2, during which
the searcher moves ‘‘fast’’ and is unable to detect a target.

FIG. 1. A two state model of saltatory search behavior.
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Example: 
Intermittent search

Walker / searcher alternates
stochastically between 
ballistic and diffusive behavior

[Bénichou etal, PRL 2005]
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Figure 1 Model of reaction kinetics in active media, and examples of low-dimensional structures in biological cells. a, The reactant alternates thermal diffusion
phases (regime 1 in red) of mean duration ⌧1 and diffusion coefficient D, and ballistic phases of velocity v powered by molecular motors (regime 2 in blue) of mean
duration ⌧2. Here, the cytoskeletal filaments (in black) are in a disordered state. The polarized nematic state would correspond to parallel filaments, and is equivalent in a first
approximation to a one-dimensional situation (see b) with the same concentration c1d = c3d = a33d/b

3
3d and an effective reaction radius a1d = a3d c

2/3
3d . Molecular motors are

not represented. b, Tubular structures in cells such as axons and dendrites (d= 1). c, Planar structures such as membranes and lamellipodia (d= 2).

section, and is plotted in Fig. 2a,b. Strikingly, K3d can be maximized
(Fig. 2a,b) as soon as the reaction radius exceeds a threshold
ac ' D/v for the following value of the mean interaction time
with motors:

⌧
opt
2,3d =

p
3a

vx0

' 1.078
a

v
,

where x0 is the solution of 2tanh(x)�2x + x tanh(x)2 = 0. The ⌧1

dependence is very weak, but we can roughly estimate the optimal
value by ⌧

opt
1,3d ' 6D/v2. This in turn gives the maximal reaction rate

K m
3d ' cv

a

p
3(x0 � tanh(x0))

x2
0

,

so that the gain with respect to the reaction rate K p
3d in a passive

medium is G3d = K m
3d/K p

3d ' Cav/D with C ' 0.26.
Several comments are in order. (1) ⌧

opt
2,3d neither depends on

D, nor on the reactant concentration. A similar analysis for
k finite (in the D ! 0 limit) shows that this optimal value
does not depend on k either, which proves that the optimal
mean interaction time with motors is widely independent of the
parameters characterizing the diVusion phase 1. (2) The value
ac should be discussed. In standard cellular conditions, D ranges
from '10�2 µm2 s�1 for vesicles to '10 µm2 s�1 for small proteins,
whereas the typical velocity of a motor protein is v ' 1 µm s�1,
a value that is widely independent of the size of the cargo1.
This gives a critical reaction radius ac ranging from '10 nm for
vesicles, which is smaller than any cellular organelle, to '10 µm for
single molecules, which is comparable to the whole cell dimension.
Hence, this shows that in such a three-dimensional disordered
case, active transport can optimize reactivity for suYciently large
tracers such as vesicles, as motor-mediated motion permits a
fast relocation to unexplored regions, whereas it is ineYcient
for standard molecular reaction kinetics, mainly because at the
cell scale molecular free diVusion is faster than motor-mediated
motion. This could help justify that many molecular species in
cells are transported in vesicles. Interestingly, in standard cellular
conditions ⌧

opt
2,3d is of the order of 0.1 s for a typical reaction

radius of the order of 0.1 µm. This value is compatible with
experimental observations1, and suggests that cellular transport is
close to optimum. (3) The typical gain for a vesicle of reaction

radius a ⇠> 0.1 µm in standard cellular conditions is G3d ⇠> 2.5
(Fig. 2a,b) and can reach G3d ⇠> 10 for faster types of molecular
motor such as myosins (v ' 4 µm s�1, see refs 1,11), independently
of the reactant concentration c. As we shall show below, the gain
will be significantly higher in lower-dimensional structures such
as axons.

We now come to the d = 2 disordered case (Fig. 1c). Striking
examples in cells are given by the cytoplasmic membrane, which
is closely coupled to the network of cortical actin filaments, or the
lamellipodium of adhering cells1. In many cases, the orientation of
filaments can be assumed to be random. This problem then exactly
maps the search problem studied in ref. 23, where the reaction
time was calculated. This enables us to show that as for d = 3, the
reaction rate K2d can be optimized in the regime D/v ⌧ a ⌧ b.
Remarkably, the optimal interaction time ⌧

opt
2,2d takes the same value

in the two limits k ! 1 and D ! 0:

⌧
opt
2,2d ' a

v
(ln(1/c1/2)�1/2)1/2,

which indicates that again ⌧
opt
2,2d does not depend on the parameters

of the thermal diVusion phase, neither through D nor k. In the limit
k ! 1, we have ⌧

opt
1,2d = (D/2v2)(ln2(1/c1/2)/(2ln(1/c1/2) � 1)),

and the maximal reaction rate can then be obtained:

K m
2d ' c1/2v

2a
p

ln(1/c1/2)
.

Comparing this expression to the case of passive transport yields
a gain G2d = K m

2d/K p
2d ' av

p
ln(1/c1/2)/(4D). As in the d = 3

case, this proves that active transport enhances reactivity for large
enough tracers (with a critical reaction radius ac ' D/v of the
same order as in the d = 3 case) such as vesicles. However, here
the gain G2d depends on the reactant concentration c, and can
be more significant: with the same values of D, v and a as given
above for a vesicle in standard cellular conditions, and for low
concentrations of reactants (such as specific membrane receptors)
with a typical distance between reactants b ⇠> 10 µm, the typical
gain is G2d ⇠> 8, and reaches 10 for single reactants (such as some
signalling molecules).

The case of nematic order of the cytoskeletal filaments, which
depicts for instance the situation of a polarized cell1, can be shown
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Intermittence cannot be favorable in this regime, as con-
firmed by the numerical study in Appendix A 2.

Without intermittence, the searcher only performs diffu-
sive motion and the problem can be solved straightforwardly.
The backward equations read tdif f =0 inside the target !x
!a" and outside the target !x"a",

D
d2tdif f

dx2 = − 1. !40"

Since tdif f!x=a"=0 and dtdif f /dx #x=b=0, we get tdif f!x"
= 1

2D $!b−a"2− !b−x"2%. The mean first-passage time at the
target then reads

tdif f =
!b − a"3

3Db
, !41"

which in the limit b#a leads to

tdif f &
b2

3D
. !42"

4. Optimization in the first regime where intermittence is
favorable: b$ D

V and bD2 Õa3V2š1

As explained in detail in Appendix A 3, we use the ap-
proximation of low target density !b#a" and we use as-
sumptions on the dependence of %1

opt and %2
opt on b and a.

These assumptions lead to the following approximation of
the mean first-passage time:

tm = !%1 + %2"b' b

3V2%2
2 +

1
(D%1

) . !43"

We checked numerically that this expression gives a good
approximation of tm in this regime, in particular around the
optimum !Fig. 4".

The simplified tm expression $Eq. !43"% is minimized for

%1
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1
2
(3 2b2D

9V4 , !44"

%2
opt =(3 2b2D

9V4 , !45"
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opt &(3 35

24

b4
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This compares to the case without intermittence $Eq. !41"%
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These results are in agreement with numerical minimization
of the exact tm !Table III in Appendix A 2".

5. Optimization in the second regime where intermittence is
favorable: b$ D

V and 1šbD2 Õa3V2

We start from the exact expression of tm $Eq. !A1"%. As
detailed in Appendix A 4, we make assumptions on the de-
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opt and %2
opt with b and a and use the assump-

tions that b#a and 1#bD2 /a3V2. It leads to
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This expression gives a good approximation of tm, at least
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FIG. 4. !Color online" Diffusive mode in one dimension. tm / tdif f, tdif f from Eq. !42" and tm exact expression $Eq. !A1"% !line" and
approximation in the regime of favorable intermittence and bD2 /a3V2#1 $Eq. !43"% !symbols". a=1 and b=100 !green, circles", a=1, b
=104 !red, crosses", and a=10, b=105 !blue, squares". D=1, V=1. %1

opt is from expression !44"; %2
opt is from expression !45".
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Optimizing search strategies (2)

such optimal persistent random walk strategy is more
efficient than any Levy walk of parameter ! 2!0; 2½.
Together, our results show that the distribution of targets
plays a crucial role in the random search problem. In
particular, in the biologically relevant cases of either a
single target or patterns of targets characterized by a
peaked distribution of the target to target distance [2], we
find that, in marked contrast with repeated statements in
the literature, persistent random walks with exponential
distribution of excursion lengths can minimize the search
time, and in that sense perform better than any Levy walk.

The model is defined as follows (see Fig. 1). We con-
sider a persistent randomwalker in discrete time and space,
moving on a d-dimensional cubic lattice L of volume
V ¼ Xd, where a single target site is located. In practice
we take d ¼ 2 or d ¼ 3, make use of periodic boundary
conditions, and consider the dilute regime X $ 1. This
geometry encompasses both cases of a single target cen-
tered in a confined domain, and of regularly spaced targets
in infinite space with concentration 1=V. The latter situ-
ation can be seen as a limiting case of target distribution
with strong correlations, as opposed to the Poissonian case,
and is biologically meaningful, for example, in the case of
repulsive interactions between targets [2]. The case of a
target of arbitrary position in a domain with reflective
boundary conditions can also be solved exactly using
similar techniques and has been checked to yield analo-
gous results; analytical expressions are, however, much
more complicated in this case and are omitted here for
clarity. Note that here the lattice step size corresponds to
the target size and is set to 1, which defines the unit length
of the problem. At each time step, the random searcher has
a probability p1 to continue in the same direction, p2 to go
backward, and p3 to choose an orthogonal direction, so that
p3 ¼ ð1& p1 & p2Þ=ð2d& 2Þ. Following [20], we denote
p1 ¼ p3 þ " and p2 ¼ p3 & #, and set in what follows
# ¼ 0 for the sake of simplicity. The probability of a
ballistic excursion of l consecutive steps with unchanged
direction is then PðlÞ ¼ ð1& p1Þpl&1

1 , and the persistence

length of the walk can be defined as lp ¼ P1
l¼1 lPðlÞ ¼

1=ð1& p1Þ where p1 ¼ ½1þ ð2d& 1Þ"!=ð2dÞ, so that
eventually lp ¼ ½2d=ð2d& 1Þ!=ð1& "Þ. In what follows
we calculate analytically the search time h !Ti, defined
here as the MFPT to the target averaged over all possible
starting positions and velocities of the searcher, and ana-
lyze its dependence on the persistence length lp (or equiv-
alently ") and the volume Xd.
While the position process alone is non Markovian, the

joint process of the position and velocity of the searcher is
Markovian. One can therefore derive an exact backward
equation for the MFPT !Tðr; eiÞ to the target of position rT ,
for a random searcher starting from r with initial velocity
ei, where B ¼ fe1; . . . ; edg defines a basis of the lattice:
!Tðr;eiÞ¼p1

!Tðrþei;eiÞþp2
!Tðr&ei;&eiÞ

þp3

X

ej2B;j!i

½ !Tðrþej;ejÞþ !Tðr&ej;&ejÞ!þ1:

(1)

Note that this equation holds for all sites r ! rT . Indeed, by
definition for r ¼ rT the left-hand side of of Eq. (1) yields
!TðrT; eiÞ ¼ 0, while the right-hand side gives the mean
return time to site rT , which is exactly equal to V in virtue
of a theorem due to Kac [24]. We next introduce the
Fourier transform ~fðqÞ ¼ P

r2LfðrÞe&{q:r of a function
fðrÞ, where qi ¼ 2$ni=X with ni 2 ½0; X & 1!. The
Fourier transform of Eq. (1), completed by the above
discussed result at r ¼ rT then yields

~!Tðq;eiÞþVe&{q:rT ¼"~!Tðq;eiÞe{q:ei þV#ðqÞþp3gðqÞ; (2)

where

gðqÞ ¼
X

ej2B

½~!Tðq; ejÞe{q:ej þ ~!Tðq;&ejÞe&{q:ej!; (3)

and #ðqÞ is the d-dimensional Kronecker function. We thus
obtain

~!Tðq; eiÞ ¼
V½#ðqÞ & e&{q:rT ! þ p3gðqÞ

1& "e{q:ei
: (4)

Summing Eq. (4) times e{q:ei over all ei yields a closed
equation for gðqÞ, which is solved by

gðqÞ ¼ %ðq; "ÞV½#ðqÞ & e&{q:rT !
1& p3%ðq; "Þ

; (5)

where

%ðq; "Þ ¼ 2
X

ej2B

cosðq:ejÞ & "

1þ "2 & 2" cosðq:ejÞ
: (6)

Substituting this expression of gðqÞ in Eq. (4) then leads to
an explicit expression of ~!Tðq; eiÞ. After Fourier inversion
and averaging over all possible starting positions and ve-
locities we finally obtain after some algebra

X

Target

Start

~lp

FIG. 1 (color online). Example of search trajectory for a
persistent random searcher in a bounded domain.
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Example: Persistent Walk

Probability 
p1 forward = p3+𝜀
p2 backward = p3-𝛿  (d=0)
p3 orthogonal

⇒ persistence length lp ~ 1/(1- 𝜀)

h !Ti ¼ "!ðV " 1Þ
1" !

þ 1þ !2

1" !2
X

q!0

1

1" hðq; !Þ ; (7)

where

hðq; !Þ ¼ ð!" 1Þ2
d

X

ej2B

cosðq:ejÞ
1þ !2 " 2! cosðq:ejÞ

(8)

and
P

q!0 denotes the sum over all possible vectors q
defined above, except q ¼ 0. This exact expression of
the search time for a non Markovian searcher constitutes
the central result of this Letter. We discuss below its
physical implications, based on two useful
approximations.

We first consider the case where ! & 1, which implies
that the persistence length is of the same order as the target
size (lp ¼ Oð1Þ). In this regime the search time reads

h !Ti ¼
!&1

Að!; VÞðV " 1Þ þ 1

Dð!Þ h
!Ti0; (9)

where h !Ti0 is the search time of a nonpersistent random
walk (! ¼ 0) which is known exactly [25]. The quantity
Að!; VÞ writes Að!; VÞ ¼ ½BdðVÞ " 1(!þOð!2Þ where
BdðVÞ depends on V as follows

BdðVÞ ¼
2

V

X

q!0

1
d

P
ej2B½1" cosð2"q:ejÞ(2

½1d
P

ej2B 1" cosð2"q:ejÞ(2
: (10)

In the dilute regime (V ! 1), Bd has a finite limit
(for example B2 ’ 2:72) and Eq. (9) provides a useful
approximate of the search time. In this expression, Dð!Þ ¼
ð1þ !Þ=ð1" !Þ is the diffusion coefficient of the persistent
random walk normalized by the diffusion coefficient of
the nonpersistent walk (case ! ¼ 0) [20]. Hence, in
Eq. (9), h !Ti0=D is the search time expected for a non-
persistent random searcher of same normalized diffusion
coefficient D. Note that the persistence property yields a
nontrivial additive correction which scales linearly with
the volume, and therefore should not be neglected; this
could be related to the ‘‘residual’’ mean first passage time
described in [26]. As shown in Fig. 2, the approximation of
Eq. (9) is accurate as long as lp is small (that is ! & 1).

We next consider the case where the persistence length is
much larger than the target size, that is lp ) 1, or equiv-
alently ! ! 1. In this regime the search time reads in the
case d ¼ 2:

h !Ti¼2ðX"1Þ
1"!

þðX"1Þ2
2

þð1"!ÞðX"1ÞðXþ3ÞðX"2Þ
12

þO½ð1"!Þ2(: (11)

Figure 2 shows that this expression provides a good
approximation of the exact result of Eq. (7) for lp ) 1.
Note that the search time diverges for lp ! 1 (or ! ! 1)
because the searcher can then be trapped in extremely long
unsuccessful ballistic excursions.

Both asymptotics ! ! 0 and ! ! 1 clearly show that the
search time can be minimized as a function of ! or equiv-
alently lp, as seen in Fig. 2. The minimum can be obtained
from the analysis of the exact expression (7), and reveals
that the search time is minimized in the case d ¼ 2 for
lp ¼ l*p +X!1 #2X with #2 ’ 0:14 . . . . Note that the
asymptotic expression (11) yields a good analytical ap-
proximate of this minimum. This defines the optimal strat-
egy for a persistent random searcher, which is realized
when the persistence length has the same order of magni-
tude as the typical system size. In particular, for large
system sizes the optimal persistence length becomes
much larger than the target size. We stress however that
the numerical factor # is nontrivial and notably small. This
optimal strategy can be understood as follows. In the
regime lp & X, the random walk behaves as a regular
diffusion and is therefore recurrent for d ¼ 2. The explo-
ration of space is therefore redundant and yields a search
time that scales in this regime as V lnV [27]. On the
contrary for lp ) 1 exploration is transient at the scale
of lp and therefore less redundant. As soon as lp + X one
therefore expects the search time to scale as V [27]. Taking
lp too large however becomes unfavorable since the
searcher can be trapped in extremely long unsuccessful
ballistic excursions, so that one indeed expects an optimum
in the regime lp + X. This argument suggests the following
scaling of the optimal search time scaled by the nonpersis-
tent case in the case d ¼ 2:

h !Til*p
h !Ti0

/ 1= lnðVÞ; (12)

which can indeed be derived from the asymptotic expres-
sion (11) (see also Fig. 3). This shows the efficiency of the

0 0.2 0.4 0.6 0.8 1
lp/X

0

1

<T
>/

<T
> 0

FIG. 2 (color online). Search time for a two-dimensional per-
sistent random walker h !Ti normalized by the search time for a
nonpersistent walker (h !Ti0) as a function of the rescaled persis-
tence length, forX ¼ 10 (upper set of curves) andX ¼ 100 (lower
set of curves). The red line stands for the exact result of Eq. (7), the
dotted lines for the approximation ! & 1 of Eq. (9), the dashed
lines for the approximation! ! 1 ofEq. (11).Weused the identity
lp ¼ ½2d=ð2d" 1Þ(=ð1" !Þ.
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Non-Markovian random walks with n-step memory 

Conditional transition probabilities:  

constraints, we recover the results for the persistent random
walk introduced in Ref. [39] by Tejedor and co-workers.
Then we use this formalism to determine for a given n the
optimal conditional transition probabilities that minimize
the MFPT. Finally, we analyze the search efficiency of the
autochemotactic walker and determine the optimal cou-
pling of the searcher to the self-generated chemotactic
concentration field.
In this Letter, we consider a minimal model for a non-

Markovian searcher: a random walk on a discrete lattice of
lateral size L and with transition probabilities depending on
the steps it made before. Formally, this stochastic process
is defined by the hierarchy of conditional transition
probabilities pðekjei0 ;…; ein−1Þ, where ek is the jump
direction in the next step and fei0 ;…; ein−1g the jump
directions of the last n steps. This allows one to write a
backward equation of motion for the average first-passage
time Tnðr; rT ; ei0 ;…; ein−1Þ to reach the target at position rT
for a walker starting at position r with the n past directions
fei0 ;…; ein−1g:

Tnðr; rT ; ei0 ;…; ein−1Þ ¼ 1þ
X

k

pðekjei0 ;…; ein−1Þ

× Tðrþ ek; rT ; ei1 ;…; ein−1 ; ekÞ:
ð1Þ

The sum runs over all z nearest-neighbor sites the searcher
can jump to, with z the coordination number of the lattice.
A sketch of Eq. (1) is shown in Fig. 1. We assumed periodic
boundary conditions, which is equivalent to an infinite
lattice with periodically arranged targets. In addition,
Eq. (1) also holds for reflecting boundary conditions if
one assumes that the target is placed at the center of the
domain and that the probabilities pðekjei0 ;…; ein−1Þ are
mirror symmetric as we discuss in more detail below.
Finally, Eq. (1) is obviously not correct if r ¼ rT , for which
the average passage time is trivially 0. In this case, the
right-hand side yields the average return time on the site rT ,
equal to V ≡ Ld [40]. By applying a discrete Fourier

transformation f̃ðqÞ ¼
P

r∈L fðrÞe−iq·r with qi ¼
2πni=L and ni ∈ ⟦0; L − 1⟧ and properly accounting for
the case r ¼ rT , a closed set of linearly coupled equa-
tions for T̃nðq; rT ; ei0 ;…; ein−1Þ for all possible paths
fei0 ;…; ein−1g is obtained, which can be cast into a matrix
equation.
Let sn be a vector of size zn containing all possible paths

fei0 ;…; ein−1g and t̃n a vector of equal size whose entries
are defined as t̃nαðq; rTÞ ¼ Tnðq; rT ; snαÞ. The solution of
the matrix equation then is

t̃nðq; rTÞ ¼ V½δðqÞ − e−iq·rT &½I − PnEnðqÞ&−1un: ð2Þ

Here, un is a vector of size zn, all entries of which are equal
to 1, EnðqÞ is a square diagonal matrix whose elements are
the complex exponentials eiq·ek , and Pn is a square matrix
containing all conditional probabilities pðekjei0 ;…; ein−1Þ.
Note that this matrix has only znþ1 nonzero elements,
whose positions in the matrix depend on the ordering of the
vector sn [41].
Fourier inversion and averaging over all possible initial

positions yields

htni ¼
X

q≠0
½I − PnEnðqÞ&−1un: ð3Þ

The mean first-passage time is finally computed by sum-
ming all entries of this averaged vector hti, weighted by the
probability of the respective paths. These weights are found
using the identity

pðei0 ;…; ein−1Þ

¼
X

i−1

pðein−1 jei−1 ; ei0 ;…; ein−2Þpðei−1 ;…; ein−2Þ ð4Þ

together with the normalization constraint
P

i0;…;in−1 ×
pðei0 ;…; ein−1Þ ¼ 1. These equations can again be cast
into a matrix form: Mnpn ¼ vn. Here, pn is a vector
containing all entries of pðei0 ;…; ein−1Þ. Mn is equal to
I − PT

n except for the last row, all elements of which are 1.
Finally, vn is a vector containing only zeros except the last
element being 1. The mean first-passage time is, therefore,
obtained as the dot product hTni ¼ pn · htni. This general
formalism allows one to infer the mean first-passage time of
any non-Markovian random walk, provided the n-step
conditional probability pðekjei0 ;…; ein−1Þ is known [42].
One intuitively expects that the number of steps n kept in

memory has a major impact on the search efficiency. As the
case n ¼ 0 consists in a blind random walk, the asymptotic
case n → ∞ corresponds to a walk where the walker
remembers all the sites it has visited and could, thus,
elaborate a strategy to never visit twice the same site. To
quantify this effect, one determines the optimal search
strategy that maximizes the search efficiency for a certain

FIG. 1. Sketch of a lattice walk illustrating the backward
equation (1). The dotted lines indicate all possible sites the
walker can jump to from its current position r, given its past
path ei0 ;…; ein−1 .
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constraints, we recover the results for the persistent random
walk introduced in Ref. [39] by Tejedor and co-workers.
Then we use this formalism to determine for a given n the
optimal conditional transition probabilities that minimize
the MFPT. Finally, we analyze the search efficiency of the
autochemotactic walker and determine the optimal cou-
pling of the searcher to the self-generated chemotactic
concentration field.
In this Letter, we consider a minimal model for a non-

Markovian searcher: a random walk on a discrete lattice of
lateral size L and with transition probabilities depending on
the steps it made before. Formally, this stochastic process
is defined by the hierarchy of conditional transition
probabilities pðekjei0 ;…; ein−1Þ, where ek is the jump
direction in the next step and fei0 ;…; ein−1g the jump
directions of the last n steps. This allows one to write a
backward equation of motion for the average first-passage
time Tnðr; rT ; ei0 ;…; ein−1Þ to reach the target at position rT
for a walker starting at position r with the n past directions
fei0 ;…; ein−1g:
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× Tðrþ ek; rT ; ei1 ;…; ein−1 ; ekÞ:
ð1Þ

The sum runs over all z nearest-neighbor sites the searcher
can jump to, with z the coordination number of the lattice.
A sketch of Eq. (1) is shown in Fig. 1. We assumed periodic
boundary conditions, which is equivalent to an infinite
lattice with periodically arranged targets. In addition,
Eq. (1) also holds for reflecting boundary conditions if
one assumes that the target is placed at the center of the
domain and that the probabilities pðekjei0 ;…; ein−1Þ are
mirror symmetric as we discuss in more detail below.
Finally, Eq. (1) is obviously not correct if r ¼ rT , for which
the average passage time is trivially 0. In this case, the
right-hand side yields the average return time on the site rT ,
equal to V ≡ Ld [40]. By applying a discrete Fourier

transformation f̃ðqÞ ¼
P

r∈L fðrÞe−iq·r with qi ¼
2πni=L and ni ∈ ⟦0; L − 1⟧ and properly accounting for
the case r ¼ rT , a closed set of linearly coupled equa-
tions for T̃nðq; rT ; ei0 ;…; ein−1Þ for all possible paths
fei0 ;…; ein−1g is obtained, which can be cast into a matrix
equation.
Let sn be a vector of size zn containing all possible paths

fei0 ;…; ein−1g and t̃n a vector of equal size whose entries
are defined as t̃nαðq; rTÞ ¼ Tnðq; rT ; snαÞ. The solution of
the matrix equation then is

t̃nðq; rTÞ ¼ V½δðqÞ − e−iq·rT &½I − PnEnðqÞ&−1un: ð2Þ

Here, un is a vector of size zn, all entries of which are equal
to 1, EnðqÞ is a square diagonal matrix whose elements are
the complex exponentials eiq·ek , and Pn is a square matrix
containing all conditional probabilities pðekjei0 ;…; ein−1Þ.
Note that this matrix has only znþ1 nonzero elements,
whose positions in the matrix depend on the ordering of the
vector sn [41].
Fourier inversion and averaging over all possible initial

positions yields

htni ¼
X

q≠0
½I − PnEnðqÞ&−1un: ð3Þ

The mean first-passage time is finally computed by sum-
ming all entries of this averaged vector hti, weighted by the
probability of the respective paths. These weights are found
using the identity

pðei0 ;…; ein−1Þ

¼
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i−1
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pðei0 ;…; ein−1Þ ¼ 1. These equations can again be cast
into a matrix form: Mnpn ¼ vn. Here, pn is a vector
containing all entries of pðei0 ;…; ein−1Þ. Mn is equal to
I − PT

n except for the last row, all elements of which are 1.
Finally, vn is a vector containing only zeros except the last
element being 1. The mean first-passage time is, therefore,
obtained as the dot product hTni ¼ pn · htni. This general
formalism allows one to infer the mean first-passage time of
any non-Markovian random walk, provided the n-step
conditional probability pðekjei0 ;…; ein−1Þ is known [42].
One intuitively expects that the number of steps n kept in

memory has a major impact on the search efficiency. As the
case n ¼ 0 consists in a blind random walk, the asymptotic
case n → ∞ corresponds to a walk where the walker
remembers all the sites it has visited and could, thus,
elaborate a strategy to never visit twice the same site. To
quantify this effect, one determines the optimal search
strategy that maximizes the search efficiency for a certain
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constraints, we recover the results for the persistent random
walk introduced in Ref. [39] by Tejedor and co-workers.
Then we use this formalism to determine for a given n the
optimal conditional transition probabilities that minimize
the MFPT. Finally, we analyze the search efficiency of the
autochemotactic walker and determine the optimal cou-
pling of the searcher to the self-generated chemotactic
concentration field.
In this Letter, we consider a minimal model for a non-

Markovian searcher: a random walk on a discrete lattice of
lateral size L and with transition probabilities depending on
the steps it made before. Formally, this stochastic process
is defined by the hierarchy of conditional transition
probabilities pðekjei0 ;…; ein−1Þ, where ek is the jump
direction in the next step and fei0 ;…; ein−1g the jump
directions of the last n steps. This allows one to write a
backward equation of motion for the average first-passage
time Tnðr; rT ; ei0 ;…; ein−1Þ to reach the target at position rT
for a walker starting at position r with the n past directions
fei0 ;…; ein−1g:

Tnðr; rT ; ei0 ;…; ein−1Þ ¼ 1þ
X
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pðekjei0 ;…; ein−1Þ

× Tðrþ ek; rT ; ei1 ;…; ein−1 ; ekÞ:
ð1Þ

The sum runs over all z nearest-neighbor sites the searcher
can jump to, with z the coordination number of the lattice.
A sketch of Eq. (1) is shown in Fig. 1. We assumed periodic
boundary conditions, which is equivalent to an infinite
lattice with periodically arranged targets. In addition,
Eq. (1) also holds for reflecting boundary conditions if
one assumes that the target is placed at the center of the
domain and that the probabilities pðekjei0 ;…; ein−1Þ are
mirror symmetric as we discuss in more detail below.
Finally, Eq. (1) is obviously not correct if r ¼ rT , for which
the average passage time is trivially 0. In this case, the
right-hand side yields the average return time on the site rT ,
equal to V ≡ Ld [40]. By applying a discrete Fourier

transformation f̃ðqÞ ¼
P

r∈L fðrÞe−iq·r with qi ¼
2πni=L and ni ∈ ⟦0; L − 1⟧ and properly accounting for
the case r ¼ rT , a closed set of linearly coupled equa-
tions for T̃nðq; rT ; ei0 ;…; ein−1Þ for all possible paths
fei0 ;…; ein−1g is obtained, which can be cast into a matrix
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Let sn be a vector of size zn containing all possible paths

fei0 ;…; ein−1g and t̃n a vector of equal size whose entries
are defined as t̃nαðq; rTÞ ¼ Tnðq; rT ; snαÞ. The solution of
the matrix equation then is

t̃nðq; rTÞ ¼ V½δðqÞ − e−iq·rT &½I − PnEnðqÞ&−1un: ð2Þ

Here, un is a vector of size zn, all entries of which are equal
to 1, EnðqÞ is a square diagonal matrix whose elements are
the complex exponentials eiq·ek , and Pn is a square matrix
containing all conditional probabilities pðekjei0 ;…; ein−1Þ.
Note that this matrix has only znþ1 nonzero elements,
whose positions in the matrix depend on the ordering of the
vector sn [41].
Fourier inversion and averaging over all possible initial

positions yields

htni ¼
X

q≠0
½I − PnEnðqÞ&−1un: ð3Þ

The mean first-passage time is finally computed by sum-
ming all entries of this averaged vector hti, weighted by the
probability of the respective paths. These weights are found
using the identity

pðei0 ;…; ein−1Þ

¼
X

i−1

pðein−1 jei−1 ; ei0 ;…; ein−2Þpðei−1 ;…; ein−2Þ ð4Þ

together with the normalization constraint
P

i0;…;in−1 ×
pðei0 ;…; ein−1Þ ¼ 1. These equations can again be cast
into a matrix form: Mnpn ¼ vn. Here, pn is a vector
containing all entries of pðei0 ;…; ein−1Þ. Mn is equal to
I − PT

n except for the last row, all elements of which are 1.
Finally, vn is a vector containing only zeros except the last
element being 1. The mean first-passage time is, therefore,
obtained as the dot product hTni ¼ pn · htni. This general
formalism allows one to infer the mean first-passage time of
any non-Markovian random walk, provided the n-step
conditional probability pðekjei0 ;…; ein−1Þ is known [42].
One intuitively expects that the number of steps n kept in

memory has a major impact on the search efficiency. As the
case n ¼ 0 consists in a blind random walk, the asymptotic
case n → ∞ corresponds to a walk where the walker
remembers all the sites it has visited and could, thus,
elaborate a strategy to never visit twice the same site. To
quantify this effect, one determines the optimal search
strategy that maximizes the search efficiency for a certain
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equation (1). The dotted lines indicate all possible sites the
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constraints, we recover the results for the persistent random
walk introduced in Ref. [39] by Tejedor and co-workers.
Then we use this formalism to determine for a given n the
optimal conditional transition probabilities that minimize
the MFPT. Finally, we analyze the search efficiency of the
autochemotactic walker and determine the optimal cou-
pling of the searcher to the self-generated chemotactic
concentration field.
In this Letter, we consider a minimal model for a non-

Markovian searcher: a random walk on a discrete lattice of
lateral size L and with transition probabilities depending on
the steps it made before. Formally, this stochastic process
is defined by the hierarchy of conditional transition
probabilities pðekjei0 ;…; ein−1Þ, where ek is the jump
direction in the next step and fei0 ;…; ein−1g the jump
directions of the last n steps. This allows one to write a
backward equation of motion for the average first-passage
time Tnðr; rT ; ei0 ;…; ein−1Þ to reach the target at position rT
for a walker starting at position r with the n past directions
fei0 ;…; ein−1g:
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× Tðrþ ek; rT ; ei1 ;…; ein−1 ; ekÞ:
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The sum runs over all z nearest-neighbor sites the searcher
can jump to, with z the coordination number of the lattice.
A sketch of Eq. (1) is shown in Fig. 1. We assumed periodic
boundary conditions, which is equivalent to an infinite
lattice with periodically arranged targets. In addition,
Eq. (1) also holds for reflecting boundary conditions if
one assumes that the target is placed at the center of the
domain and that the probabilities pðekjei0 ;…; ein−1Þ are
mirror symmetric as we discuss in more detail below.
Finally, Eq. (1) is obviously not correct if r ¼ rT , for which
the average passage time is trivially 0. In this case, the
right-hand side yields the average return time on the site rT ,
equal to V ≡ Ld [40]. By applying a discrete Fourier

transformation f̃ðqÞ ¼
P

r∈L fðrÞe−iq·r with qi ¼
2πni=L and ni ∈ ⟦0; L − 1⟧ and properly accounting for
the case r ¼ rT , a closed set of linearly coupled equa-
tions for T̃nðq; rT ; ei0 ;…; ein−1Þ for all possible paths
fei0 ;…; ein−1g is obtained, which can be cast into a matrix
equation.
Let sn be a vector of size zn containing all possible paths

fei0 ;…; ein−1g and t̃n a vector of equal size whose entries
are defined as t̃nαðq; rTÞ ¼ Tnðq; rT ; snαÞ. The solution of
the matrix equation then is

t̃nðq; rTÞ ¼ V½δðqÞ − e−iq·rT &½I − PnEnðqÞ&−1un: ð2Þ

Here, un is a vector of size zn, all entries of which are equal
to 1, EnðqÞ is a square diagonal matrix whose elements are
the complex exponentials eiq·ek , and Pn is a square matrix
containing all conditional probabilities pðekjei0 ;…; ein−1Þ.
Note that this matrix has only znþ1 nonzero elements,
whose positions in the matrix depend on the ordering of the
vector sn [41].
Fourier inversion and averaging over all possible initial

positions yields

htni ¼
X

q≠0
½I − PnEnðqÞ&−1un: ð3Þ

The mean first-passage time is finally computed by sum-
ming all entries of this averaged vector hti, weighted by the
probability of the respective paths. These weights are found
using the identity

pðei0 ;…; ein−1Þ

¼
X

i−1

pðein−1 jei−1 ; ei0 ;…; ein−2Þpðei−1 ;…; ein−2Þ ð4Þ

together with the normalization constraint
P

i0;…;in−1 ×
pðei0 ;…; ein−1Þ ¼ 1. These equations can again be cast
into a matrix form: Mnpn ¼ vn. Here, pn is a vector
containing all entries of pðei0 ;…; ein−1Þ. Mn is equal to
I − PT

n except for the last row, all elements of which are 1.
Finally, vn is a vector containing only zeros except the last
element being 1. The mean first-passage time is, therefore,
obtained as the dot product hTni ¼ pn · htni. This general
formalism allows one to infer the mean first-passage time of
any non-Markovian random walk, provided the n-step
conditional probability pðekjei0 ;…; ein−1Þ is known [42].
One intuitively expects that the number of steps n kept in

memory has a major impact on the search efficiency. As the
case n ¼ 0 consists in a blind random walk, the asymptotic
case n → ∞ corresponds to a walk where the walker
remembers all the sites it has visited and could, thus,
elaborate a strategy to never visit twice the same site. To
quantify this effect, one determines the optimal search
strategy that maximizes the search efficiency for a certain
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equation (1). The dotted lines indicate all possible sites the
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constraints, we recover the results for the persistent random
walk introduced in Ref. [39] by Tejedor and co-workers.
Then we use this formalism to determine for a given n the
optimal conditional transition probabilities that minimize
the MFPT. Finally, we analyze the search efficiency of the
autochemotactic walker and determine the optimal cou-
pling of the searcher to the self-generated chemotactic
concentration field.
In this Letter, we consider a minimal model for a non-

Markovian searcher: a random walk on a discrete lattice of
lateral size L and with transition probabilities depending on
the steps it made before. Formally, this stochastic process
is defined by the hierarchy of conditional transition
probabilities pðekjei0 ;…; ein−1Þ, where ek is the jump
direction in the next step and fei0 ;…; ein−1g the jump
directions of the last n steps. This allows one to write a
backward equation of motion for the average first-passage
time Tnðr; rT ; ei0 ;…; ein−1Þ to reach the target at position rT
for a walker starting at position r with the n past directions
fei0 ;…; ein−1g:
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X

k

pðekjei0 ;…; ein−1Þ

× Tðrþ ek; rT ; ei1 ;…; ein−1 ; ekÞ:
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The sum runs over all z nearest-neighbor sites the searcher
can jump to, with z the coordination number of the lattice.
A sketch of Eq. (1) is shown in Fig. 1. We assumed periodic
boundary conditions, which is equivalent to an infinite
lattice with periodically arranged targets. In addition,
Eq. (1) also holds for reflecting boundary conditions if
one assumes that the target is placed at the center of the
domain and that the probabilities pðekjei0 ;…; ein−1Þ are
mirror symmetric as we discuss in more detail below.
Finally, Eq. (1) is obviously not correct if r ¼ rT , for which
the average passage time is trivially 0. In this case, the
right-hand side yields the average return time on the site rT ,
equal to V ≡ Ld [40]. By applying a discrete Fourier
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r∈L fðrÞe−iq·r with qi ¼
2πni=L and ni ∈ ⟦0; L − 1⟧ and properly accounting for
the case r ¼ rT , a closed set of linearly coupled equa-
tions for T̃nðq; rT ; ei0 ;…; ein−1Þ for all possible paths
fei0 ;…; ein−1g is obtained, which can be cast into a matrix
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Let sn be a vector of size zn containing all possible paths

fei0 ;…; ein−1g and t̃n a vector of equal size whose entries
are defined as t̃nαðq; rTÞ ¼ Tnðq; rT ; snαÞ. The solution of
the matrix equation then is

t̃nðq; rTÞ ¼ V½δðqÞ − e−iq·rT &½I − PnEnðqÞ&−1un: ð2Þ

Here, un is a vector of size zn, all entries of which are equal
to 1, EnðqÞ is a square diagonal matrix whose elements are
the complex exponentials eiq·ek , and Pn is a square matrix
containing all conditional probabilities pðekjei0 ;…; ein−1Þ.
Note that this matrix has only znþ1 nonzero elements,
whose positions in the matrix depend on the ordering of the
vector sn [41].
Fourier inversion and averaging over all possible initial

positions yields

htni ¼
X

q≠0
½I − PnEnðqÞ&−1un: ð3Þ

The mean first-passage time is finally computed by sum-
ming all entries of this averaged vector hti, weighted by the
probability of the respective paths. These weights are found
using the identity

pðei0 ;…; ein−1Þ

¼
X

i−1

pðein−1 jei−1 ; ei0 ;…; ein−2Þpðei−1 ;…; ein−2Þ ð4Þ

together with the normalization constraint
P

i0;…;in−1 ×
pðei0 ;…; ein−1Þ ¼ 1. These equations can again be cast
into a matrix form: Mnpn ¼ vn. Here, pn is a vector
containing all entries of pðei0 ;…; ein−1Þ. Mn is equal to
I − PT

n except for the last row, all elements of which are 1.
Finally, vn is a vector containing only zeros except the last
element being 1. The mean first-passage time is, therefore,
obtained as the dot product hTni ¼ pn · htni. This general
formalism allows one to infer the mean first-passage time of
any non-Markovian random walk, provided the n-step
conditional probability pðekjei0 ;…; ein−1Þ is known [42].
One intuitively expects that the number of steps n kept in

memory has a major impact on the search efficiency. As the
case n ¼ 0 consists in a blind random walk, the asymptotic
case n → ∞ corresponds to a walk where the walker
remembers all the sites it has visited and could, thus,
elaborate a strategy to never visit twice the same site. To
quantify this effect, one determines the optimal search
strategy that maximizes the search efficiency for a certain
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walker can jump to from its current position r, given its past
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constraints, we recover the results for the persistent random
walk introduced in Ref. [39] by Tejedor and co-workers.
Then we use this formalism to determine for a given n the
optimal conditional transition probabilities that minimize
the MFPT. Finally, we analyze the search efficiency of the
autochemotactic walker and determine the optimal cou-
pling of the searcher to the self-generated chemotactic
concentration field.
In this Letter, we consider a minimal model for a non-

Markovian searcher: a random walk on a discrete lattice of
lateral size L and with transition probabilities depending on
the steps it made before. Formally, this stochastic process
is defined by the hierarchy of conditional transition
probabilities pðekjei0 ;…; ein−1Þ, where ek is the jump
direction in the next step and fei0 ;…; ein−1g the jump
directions of the last n steps. This allows one to write a
backward equation of motion for the average first-passage
time Tnðr; rT ; ei0 ;…; ein−1Þ to reach the target at position rT
for a walker starting at position r with the n past directions
fei0 ;…; ein−1g:

Tnðr; rT ; ei0 ;…; ein−1Þ ¼ 1þ
X
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pðekjei0 ;…; ein−1Þ

× Tðrþ ek; rT ; ei1 ;…; ein−1 ; ekÞ:
ð1Þ

The sum runs over all z nearest-neighbor sites the searcher
can jump to, with z the coordination number of the lattice.
A sketch of Eq. (1) is shown in Fig. 1. We assumed periodic
boundary conditions, which is equivalent to an infinite
lattice with periodically arranged targets. In addition,
Eq. (1) also holds for reflecting boundary conditions if
one assumes that the target is placed at the center of the
domain and that the probabilities pðekjei0 ;…; ein−1Þ are
mirror symmetric as we discuss in more detail below.
Finally, Eq. (1) is obviously not correct if r ¼ rT , for which
the average passage time is trivially 0. In this case, the
right-hand side yields the average return time on the site rT ,
equal to V ≡ Ld [40]. By applying a discrete Fourier

transformation f̃ðqÞ ¼
P

r∈L fðrÞe−iq·r with qi ¼
2πni=L and ni ∈ ⟦0; L − 1⟧ and properly accounting for
the case r ¼ rT , a closed set of linearly coupled equa-
tions for T̃nðq; rT ; ei0 ;…; ein−1Þ for all possible paths
fei0 ;…; ein−1g is obtained, which can be cast into a matrix
equation.
Let sn be a vector of size zn containing all possible paths

fei0 ;…; ein−1g and t̃n a vector of equal size whose entries
are defined as t̃nαðq; rTÞ ¼ Tnðq; rT ; snαÞ. The solution of
the matrix equation then is

t̃nðq; rTÞ ¼ V½δðqÞ − e−iq·rT &½I − PnEnðqÞ&−1un: ð2Þ

Here, un is a vector of size zn, all entries of which are equal
to 1, EnðqÞ is a square diagonal matrix whose elements are
the complex exponentials eiq·ek , and Pn is a square matrix
containing all conditional probabilities pðekjei0 ;…; ein−1Þ.
Note that this matrix has only znþ1 nonzero elements,
whose positions in the matrix depend on the ordering of the
vector sn [41].
Fourier inversion and averaging over all possible initial

positions yields

htni ¼
X

q≠0
½I − PnEnðqÞ&−1un: ð3Þ

The mean first-passage time is finally computed by sum-
ming all entries of this averaged vector hti, weighted by the
probability of the respective paths. These weights are found
using the identity

pðei0 ;…; ein−1Þ

¼
X

i−1

pðein−1 jei−1 ; ei0 ;…; ein−2Þpðei−1 ;…; ein−2Þ ð4Þ

together with the normalization constraint
P

i0;…;in−1 ×
pðei0 ;…; ein−1Þ ¼ 1. These equations can again be cast
into a matrix form: Mnpn ¼ vn. Here, pn is a vector
containing all entries of pðei0 ;…; ein−1Þ. Mn is equal to
I − PT

n except for the last row, all elements of which are 1.
Finally, vn is a vector containing only zeros except the last
element being 1. The mean first-passage time is, therefore,
obtained as the dot product hTni ¼ pn · htni. This general
formalism allows one to infer the mean first-passage time of
any non-Markovian random walk, provided the n-step
conditional probability pðekjei0 ;…; ein−1Þ is known [42].
One intuitively expects that the number of steps n kept in

memory has a major impact on the search efficiency. As the
case n ¼ 0 consists in a blind random walk, the asymptotic
case n → ∞ corresponds to a walk where the walker
remembers all the sites it has visited and could, thus,
elaborate a strategy to never visit twice the same site. To
quantify this effect, one determines the optimal search
strategy that maximizes the search efficiency for a certain
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equation (1). The dotted lines indicate all possible sites the
walker can jump to from its current position r, given its past
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constraints, we recover the results for the persistent random
walk introduced in Ref. [39] by Tejedor and co-workers.
Then we use this formalism to determine for a given n the
optimal conditional transition probabilities that minimize
the MFPT. Finally, we analyze the search efficiency of the
autochemotactic walker and determine the optimal cou-
pling of the searcher to the self-generated chemotactic
concentration field.
In this Letter, we consider a minimal model for a non-

Markovian searcher: a random walk on a discrete lattice of
lateral size L and with transition probabilities depending on
the steps it made before. Formally, this stochastic process
is defined by the hierarchy of conditional transition
probabilities pðekjei0 ;…; ein−1Þ, where ek is the jump
direction in the next step and fei0 ;…; ein−1g the jump
directions of the last n steps. This allows one to write a
backward equation of motion for the average first-passage
time Tnðr; rT ; ei0 ;…; ein−1Þ to reach the target at position rT
for a walker starting at position r with the n past directions
fei0 ;…; ein−1g:

Tnðr; rT ; ei0 ;…; ein−1Þ ¼ 1þ
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pðekjei0 ;…; ein−1Þ

× Tðrþ ek; rT ; ei1 ;…; ein−1 ; ekÞ:
ð1Þ

The sum runs over all z nearest-neighbor sites the searcher
can jump to, with z the coordination number of the lattice.
A sketch of Eq. (1) is shown in Fig. 1. We assumed periodic
boundary conditions, which is equivalent to an infinite
lattice with periodically arranged targets. In addition,
Eq. (1) also holds for reflecting boundary conditions if
one assumes that the target is placed at the center of the
domain and that the probabilities pðekjei0 ;…; ein−1Þ are
mirror symmetric as we discuss in more detail below.
Finally, Eq. (1) is obviously not correct if r ¼ rT , for which
the average passage time is trivially 0. In this case, the
right-hand side yields the average return time on the site rT ,
equal to V ≡ Ld [40]. By applying a discrete Fourier
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P

r∈L fðrÞe−iq·r with qi ¼
2πni=L and ni ∈ ⟦0; L − 1⟧ and properly accounting for
the case r ¼ rT , a closed set of linearly coupled equa-
tions for T̃nðq; rT ; ei0 ;…; ein−1Þ for all possible paths
fei0 ;…; ein−1g is obtained, which can be cast into a matrix
equation.
Let sn be a vector of size zn containing all possible paths

fei0 ;…; ein−1g and t̃n a vector of equal size whose entries
are defined as t̃nαðq; rTÞ ¼ Tnðq; rT ; snαÞ. The solution of
the matrix equation then is

t̃nðq; rTÞ ¼ V½δðqÞ − e−iq·rT &½I − PnEnðqÞ&−1un: ð2Þ

Here, un is a vector of size zn, all entries of which are equal
to 1, EnðqÞ is a square diagonal matrix whose elements are
the complex exponentials eiq·ek , and Pn is a square matrix
containing all conditional probabilities pðekjei0 ;…; ein−1Þ.
Note that this matrix has only znþ1 nonzero elements,
whose positions in the matrix depend on the ordering of the
vector sn [41].
Fourier inversion and averaging over all possible initial

positions yields

htni ¼
X

q≠0
½I − PnEnðqÞ&−1un: ð3Þ

The mean first-passage time is finally computed by sum-
ming all entries of this averaged vector hti, weighted by the
probability of the respective paths. These weights are found
using the identity

pðei0 ;…; ein−1Þ

¼
X

i−1

pðein−1 jei−1 ; ei0 ;…; ein−2Þpðei−1 ;…; ein−2Þ ð4Þ

together with the normalization constraint
P

i0;…;in−1 ×
pðei0 ;…; ein−1Þ ¼ 1. These equations can again be cast
into a matrix form: Mnpn ¼ vn. Here, pn is a vector
containing all entries of pðei0 ;…; ein−1Þ. Mn is equal to
I − PT

n except for the last row, all elements of which are 1.
Finally, vn is a vector containing only zeros except the last
element being 1. The mean first-passage time is, therefore,
obtained as the dot product hTni ¼ pn · htni. This general
formalism allows one to infer the mean first-passage time of
any non-Markovian random walk, provided the n-step
conditional probability pðekjei0 ;…; ein−1Þ is known [42].
One intuitively expects that the number of steps n kept in

memory has a major impact on the search efficiency. As the
case n ¼ 0 consists in a blind random walk, the asymptotic
case n → ∞ corresponds to a walk where the walker
remembers all the sites it has visited and could, thus,
elaborate a strategy to never visit twice the same site. To
quantify this effect, one determines the optimal search
strategy that maximizes the search efficiency for a certain
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equation (1). The dotted lines indicate all possible sites the
walker can jump to from its current position r, given its past
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constraints, we recover the results for the persistent random
walk introduced in Ref. [39] by Tejedor and co-workers.
Then we use this formalism to determine for a given n the
optimal conditional transition probabilities that minimize
the MFPT. Finally, we analyze the search efficiency of the
autochemotactic walker and determine the optimal cou-
pling of the searcher to the self-generated chemotactic
concentration field.
In this Letter, we consider a minimal model for a non-

Markovian searcher: a random walk on a discrete lattice of
lateral size L and with transition probabilities depending on
the steps it made before. Formally, this stochastic process
is defined by the hierarchy of conditional transition
probabilities pðekjei0 ;…; ein−1Þ, where ek is the jump
direction in the next step and fei0 ;…; ein−1g the jump
directions of the last n steps. This allows one to write a
backward equation of motion for the average first-passage
time Tnðr; rT ; ei0 ;…; ein−1Þ to reach the target at position rT
for a walker starting at position r with the n past directions
fei0 ;…; ein−1g:

Tnðr; rT ; ei0 ;…; ein−1Þ ¼ 1þ
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pðekjei0 ;…; ein−1Þ

× Tðrþ ek; rT ; ei1 ;…; ein−1 ; ekÞ:
ð1Þ

The sum runs over all z nearest-neighbor sites the searcher
can jump to, with z the coordination number of the lattice.
A sketch of Eq. (1) is shown in Fig. 1. We assumed periodic
boundary conditions, which is equivalent to an infinite
lattice with periodically arranged targets. In addition,
Eq. (1) also holds for reflecting boundary conditions if
one assumes that the target is placed at the center of the
domain and that the probabilities pðekjei0 ;…; ein−1Þ are
mirror symmetric as we discuss in more detail below.
Finally, Eq. (1) is obviously not correct if r ¼ rT , for which
the average passage time is trivially 0. In this case, the
right-hand side yields the average return time on the site rT ,
equal to V ≡ Ld [40]. By applying a discrete Fourier
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P

r∈L fðrÞe−iq·r with qi ¼
2πni=L and ni ∈ ⟦0; L − 1⟧ and properly accounting for
the case r ¼ rT , a closed set of linearly coupled equa-
tions for T̃nðq; rT ; ei0 ;…; ein−1Þ for all possible paths
fei0 ;…; ein−1g is obtained, which can be cast into a matrix
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Let sn be a vector of size zn containing all possible paths

fei0 ;…; ein−1g and t̃n a vector of equal size whose entries
are defined as t̃nαðq; rTÞ ¼ Tnðq; rT ; snαÞ. The solution of
the matrix equation then is

t̃nðq; rTÞ ¼ V½δðqÞ − e−iq·rT &½I − PnEnðqÞ&−1un: ð2Þ

Here, un is a vector of size zn, all entries of which are equal
to 1, EnðqÞ is a square diagonal matrix whose elements are
the complex exponentials eiq·ek , and Pn is a square matrix
containing all conditional probabilities pðekjei0 ;…; ein−1Þ.
Note that this matrix has only znþ1 nonzero elements,
whose positions in the matrix depend on the ordering of the
vector sn [41].
Fourier inversion and averaging over all possible initial

positions yields

htni ¼
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q≠0
½I − PnEnðqÞ&−1un: ð3Þ

The mean first-passage time is finally computed by sum-
ming all entries of this averaged vector hti, weighted by the
probability of the respective paths. These weights are found
using the identity

pðei0 ;…; ein−1Þ

¼
X

i−1

pðein−1 jei−1 ; ei0 ;…; ein−2Þpðei−1 ;…; ein−2Þ ð4Þ

together with the normalization constraint
P

i0;…;in−1 ×
pðei0 ;…; ein−1Þ ¼ 1. These equations can again be cast
into a matrix form: Mnpn ¼ vn. Here, pn is a vector
containing all entries of pðei0 ;…; ein−1Þ. Mn is equal to
I − PT

n except for the last row, all elements of which are 1.
Finally, vn is a vector containing only zeros except the last
element being 1. The mean first-passage time is, therefore,
obtained as the dot product hTni ¼ pn · htni. This general
formalism allows one to infer the mean first-passage time of
any non-Markovian random walk, provided the n-step
conditional probability pðekjei0 ;…; ein−1Þ is known [42].
One intuitively expects that the number of steps n kept in

memory has a major impact on the search efficiency. As the
case n ¼ 0 consists in a blind random walk, the asymptotic
case n → ∞ corresponds to a walk where the walker
remembers all the sites it has visited and could, thus,
elaborate a strategy to never visit twice the same site. To
quantify this effect, one determines the optimal search
strategy that maximizes the search efficiency for a certain
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constraints, we recover the results for the persistent random
walk introduced in Ref. [39] by Tejedor and co-workers.
Then we use this formalism to determine for a given n the
optimal conditional transition probabilities that minimize
the MFPT. Finally, we analyze the search efficiency of the
autochemotactic walker and determine the optimal cou-
pling of the searcher to the self-generated chemotactic
concentration field.
In this Letter, we consider a minimal model for a non-

Markovian searcher: a random walk on a discrete lattice of
lateral size L and with transition probabilities depending on
the steps it made before. Formally, this stochastic process
is defined by the hierarchy of conditional transition
probabilities pðekjei0 ;…; ein−1Þ, where ek is the jump
direction in the next step and fei0 ;…; ein−1g the jump
directions of the last n steps. This allows one to write a
backward equation of motion for the average first-passage
time Tnðr; rT ; ei0 ;…; ein−1Þ to reach the target at position rT
for a walker starting at position r with the n past directions
fei0 ;…; ein−1g:

Tnðr; rT ; ei0 ;…; ein−1Þ ¼ 1þ
X

k

pðekjei0 ;…; ein−1Þ

× Tðrþ ek; rT ; ei1 ;…; ein−1 ; ekÞ:
ð1Þ

The sum runs over all z nearest-neighbor sites the searcher
can jump to, with z the coordination number of the lattice.
A sketch of Eq. (1) is shown in Fig. 1. We assumed periodic
boundary conditions, which is equivalent to an infinite
lattice with periodically arranged targets. In addition,
Eq. (1) also holds for reflecting boundary conditions if
one assumes that the target is placed at the center of the
domain and that the probabilities pðekjei0 ;…; ein−1Þ are
mirror symmetric as we discuss in more detail below.
Finally, Eq. (1) is obviously not correct if r ¼ rT , for which
the average passage time is trivially 0. In this case, the
right-hand side yields the average return time on the site rT ,
equal to V ≡ Ld [40]. By applying a discrete Fourier

transformation f̃ðqÞ ¼
P

r∈L fðrÞe−iq·r with qi ¼
2πni=L and ni ∈ ⟦0; L − 1⟧ and properly accounting for
the case r ¼ rT , a closed set of linearly coupled equa-
tions for T̃nðq; rT ; ei0 ;…; ein−1Þ for all possible paths
fei0 ;…; ein−1g is obtained, which can be cast into a matrix
equation.
Let sn be a vector of size zn containing all possible paths

fei0 ;…; ein−1g and t̃n a vector of equal size whose entries
are defined as t̃nαðq; rTÞ ¼ Tnðq; rT ; snαÞ. The solution of
the matrix equation then is

t̃nðq; rTÞ ¼ V½δðqÞ − e−iq·rT &½I − PnEnðqÞ&−1un: ð2Þ

Here, un is a vector of size zn, all entries of which are equal
to 1, EnðqÞ is a square diagonal matrix whose elements are
the complex exponentials eiq·ek , and Pn is a square matrix
containing all conditional probabilities pðekjei0 ;…; ein−1Þ.
Note that this matrix has only znþ1 nonzero elements,
whose positions in the matrix depend on the ordering of the
vector sn [41].
Fourier inversion and averaging over all possible initial

positions yields

htni ¼
X

q≠0
½I − PnEnðqÞ&−1un: ð3Þ

The mean first-passage time is finally computed by sum-
ming all entries of this averaged vector hti, weighted by the
probability of the respective paths. These weights are found
using the identity

pðei0 ;…; ein−1Þ

¼
X

i−1

pðein−1 jei−1 ; ei0 ;…; ein−2Þpðei−1 ;…; ein−2Þ ð4Þ

together with the normalization constraint
P

i0;…;in−1 ×
pðei0 ;…; ein−1Þ ¼ 1. These equations can again be cast
into a matrix form: Mnpn ¼ vn. Here, pn is a vector
containing all entries of pðei0 ;…; ein−1Þ. Mn is equal to
I − PT

n except for the last row, all elements of which are 1.
Finally, vn is a vector containing only zeros except the last
element being 1. The mean first-passage time is, therefore,
obtained as the dot product hTni ¼ pn · htni. This general
formalism allows one to infer the mean first-passage time of
any non-Markovian random walk, provided the n-step
conditional probability pðekjei0 ;…; ein−1Þ is known [42].
One intuitively expects that the number of steps n kept in

memory has a major impact on the search efficiency. As the
case n ¼ 0 consists in a blind random walk, the asymptotic
case n → ∞ corresponds to a walk where the walker
remembers all the sites it has visited and could, thus,
elaborate a strategy to never visit twice the same site. To
quantify this effect, one determines the optimal search
strategy that maximizes the search efficiency for a certain

FIG. 1. Sketch of a lattice walk illustrating the backward
equation (1). The dotted lines indicate all possible sites the
walker can jump to from its current position r, given its past
path ei0 ;…; ein−1 .
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value of n by finding the set of conditional probabilities
pðekjei0 ;…; ein−1Þ that minimizes the MFPT. For a lattice
with coordination number z, using the normalization
constraint and assuming isotropic walks, this consists in
finding the global minimum of a function of zn−1ðz − 1Þ
variables. Using a method of coordinate descent with
constraint [44] for the MFPT optimization, we obtain the
following for a square lattice (z ¼ 4). (i) For n ¼ 1, the
optimal search strategy is found to be mirror symmetric.
More specifically, the probabilities pl and pr of turning left
or right are found to be equal, while the probability of going
forward is given pf ¼ qð1Þ0 ¼ 1–2pr;l. The optimal one-
step memory process is, therefore, found to prevent going
backward. Note that qð1Þ0 depends on the system size L and
approaches 1 as L → ∞. (ii) For n ¼ 2, the optimal strategy
is mirror asymmetric and follows the diagram shown in
Fig. 2. Only one step in the cycle is chosen probabilisti-
cally, with probability pð2Þ

0 that also depends on the system
size. The resulting MFPT turns out to be much lower than
the optimal one-step memory process, as it is reduced by a
factor of ∼0.75. If mirror symmetry is imposed, the optimal
search process is governed by two parameters, qð2Þ0 and qð1Þ0 .
However, this constraint makes the MFPT almost equal to
the one-step case. (iii) For n ¼ 3, the optimal strategy is
again mirror asymmetric and governed by only one
probabilistic parameter pð3Þ

0 . The corresponding diagram
is shown in Fig. 2 and the MFPT is again reduced by a
factor of ∼0.86 with respect to n ¼ 2. In all these cases, the
MFPT scales proportionally to L2 as L → ∞, while it

scales as L2 lnL for a diffusive blind random walk [13].
This explains the monotonically decreasing trend of the
curves in Fig. 2. More precisely, it appears that hT1i ≃ L2,
hT2i ≃ 3L2=4, and hT3i ≃ 2L2=3 as L → ∞ for the optimal
strategies, although the values of these prefactors are to this
day not fundamentally understood.
In addition, the dependence of the probabilities pðnÞ

0 and
qðnÞ0 on the system size obeys a power law of the form

pðnÞ
0 ¼L→∞

1 − aL−1 for n > 1. The origin of this scaling and
of the particular value for a can be understood by decom-
posing the optimal search procedures for n > 1 into two
elementary building blocks, i.e., a preferred path SðnÞ

0 and
an alternative one SðnÞ

þ (see the left panel in Fig. 2). As the
best strategy is to avoid visiting twice the same site, it is
preferable to repeat the primary, longer path SðnÞ

0 over the
entire length of the system and then turn to the alternative
one in order to avoid looping on itself. By imposing
kðnÞc lðnÞc ¼ L, where lðnÞc is the end-to-end distance of the
path SðnÞ

0 and kðnÞc is the value of k for which the probability
of repeating k consecutive times the path SðnÞ

0 is 1=2, we
obtain at first order in 1=L the fairly accurate estimation
pðnÞ
0 ≃ 1 − lðnÞc = lnð2ÞL (see the thin full lines in the inset in

Fig. 2, right panel).
As a comparison, the optimal MFPT found with our

method is significantly lower than the result obtained by
Tejedor et al. in Ref. [39], where a 2D search with a one-
step memory is considered, and the probability of going
forward is favored by an amount ϵ to the three other

FIG. 2. Optimal search strategies on a two-dimensional lattice for n ¼ 1, 2, 3 (left panel). In the diagrams, the sum of all arrows
coming out of one box is equal to 1; therefore, only the necessary coefficients are shown, and all others can be deduced from the
normalization constraint. For n ¼ 2, 3, the mirror-asymmetric strategies can be decomposed into successions of two different cycles,
indicated by the loops (the dashed loops correspond to the least probable cycles). The corresponding MFPT normalized by the MFPT for
a blind random walk [45], together with the optimal parameters in the inset, is shown as a function of the system size (right panel). For
comparison, the optimal MFPT found by Tejedor et al. in Ref. [39] is plotted.
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value of n by finding the set of conditional probabilities
pðekjei0 ;…; ein−1Þ that minimizes the MFPT. For a lattice
with coordination number z, using the normalization
constraint and assuming isotropic walks, this consists in
finding the global minimum of a function of zn−1ðz − 1Þ
variables. Using a method of coordinate descent with
constraint [44] for the MFPT optimization, we obtain the
following for a square lattice (z ¼ 4). (i) For n ¼ 1, the
optimal search strategy is found to be mirror symmetric.
More specifically, the probabilities pl and pr of turning left
or right are found to be equal, while the probability of going
forward is given pf ¼ qð1Þ0 ¼ 1–2pr;l. The optimal one-
step memory process is, therefore, found to prevent going
backward. Note that qð1Þ0 depends on the system size L and
approaches 1 as L → ∞. (ii) For n ¼ 2, the optimal strategy
is mirror asymmetric and follows the diagram shown in
Fig. 2. Only one step in the cycle is chosen probabilisti-
cally, with probability pð2Þ

0 that also depends on the system
size. The resulting MFPT turns out to be much lower than
the optimal one-step memory process, as it is reduced by a
factor of ∼0.75. If mirror symmetry is imposed, the optimal
search process is governed by two parameters, qð2Þ0 and qð1Þ0 .
However, this constraint makes the MFPT almost equal to
the one-step case. (iii) For n ¼ 3, the optimal strategy is
again mirror asymmetric and governed by only one
probabilistic parameter pð3Þ

0 . The corresponding diagram
is shown in Fig. 2 and the MFPT is again reduced by a
factor of ∼0.86 with respect to n ¼ 2. In all these cases, the
MFPT scales proportionally to L2 as L → ∞, while it

scales as L2 lnL for a diffusive blind random walk [13].
This explains the monotonically decreasing trend of the
curves in Fig. 2. More precisely, it appears that hT1i ≃ L2,
hT2i ≃ 3L2=4, and hT3i ≃ 2L2=3 as L → ∞ for the optimal
strategies, although the values of these prefactors are to this
day not fundamentally understood.
In addition, the dependence of the probabilities pðnÞ

0 and
qðnÞ0 on the system size obeys a power law of the form

pðnÞ
0 ¼L→∞

1 − aL−1 for n > 1. The origin of this scaling and
of the particular value for a can be understood by decom-
posing the optimal search procedures for n > 1 into two
elementary building blocks, i.e., a preferred path SðnÞ

0 and
an alternative one SðnÞ

þ (see the left panel in Fig. 2). As the
best strategy is to avoid visiting twice the same site, it is
preferable to repeat the primary, longer path SðnÞ

0 over the
entire length of the system and then turn to the alternative
one in order to avoid looping on itself. By imposing
kðnÞc lðnÞc ¼ L, where lðnÞc is the end-to-end distance of the
path SðnÞ

0 and kðnÞc is the value of k for which the probability
of repeating k consecutive times the path SðnÞ

0 is 1=2, we
obtain at first order in 1=L the fairly accurate estimation
pðnÞ
0 ≃ 1 − lðnÞc = lnð2ÞL (see the thin full lines in the inset in

Fig. 2, right panel).
As a comparison, the optimal MFPT found with our

method is significantly lower than the result obtained by
Tejedor et al. in Ref. [39], where a 2D search with a one-
step memory is considered, and the probability of going
forward is favored by an amount ϵ to the three other

FIG. 2. Optimal search strategies on a two-dimensional lattice for n ¼ 1, 2, 3 (left panel). In the diagrams, the sum of all arrows
coming out of one box is equal to 1; therefore, only the necessary coefficients are shown, and all others can be deduced from the
normalization constraint. For n ¼ 2, 3, the mirror-asymmetric strategies can be decomposed into successions of two different cycles,
indicated by the loops (the dashed loops correspond to the least probable cycles). The corresponding MFPT normalized by the MFPT for
a blind random walk [45], together with the optimal parameters in the inset, is shown as a function of the system size (right panel). For
comparison, the optimal MFPT found by Tejedor et al. in Ref. [39] is plotted.
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The auto-chemotactic searcher

Philosophy:
try to avoid sites already visited!

Searcher releases chemo-repulsive
diffusive cue ci 

Transition probabilities:

directions. The gray dashed line in Fig. 2, also scaling as
∝ L2, corresponds to the value of ϵ that minimizes the
MFPT in this model.
For n > 3, the minimization procedure becomes com-

putationally expensive, but nothing indicates that mirror-
symmetric search strategies would become more favorable.
In the limit of infinite memory, the optimal strategy can be
simply guessed. For n ≥ L2, the walker can, in fact, simply
scan all sites by going row by row, which is a highly mirror-
asymmetric process for which the MFPTwould be equal to
ðL2 − 1Þ=2. Note that, for d ¼ 3, both the MFPT for a blind
walk and the optimal one with infinite memory scale
proportionally to L3 [13,39]. We, therefore, expect to
observe the same scaling for finite values of n.
These results prove that memory can be useful to

enhance the search efficiency of random walks. Such
effects, although they might not be perfectly optimized,
actually exist in some real systems, such as, e.g., chemo-
tactic walks.
Next, we consider the autochemotactic searcher and

focus on chemorepulsive searcher-cue interactions, since
they avoid repeated visits of already scanned areas and
thereby increase the search efficiency. A simple lattice
model for an autochemorepulsive walk can be constructed
as an adaptation of the true self-avoiding walk with
chemical diffusion [46,47]. A concentration field c is
defined on the lattice and diffuses at each time step
according to a discretized diffusion equation, with diffusion
constant Dc. After the diffusive step, the searcher moves
from site i to site j with probability

pi→j ¼
!
1þ

X
k≠j exp ½−βðck − cjÞ&

"−1
; ð5Þ

where the sum runs over all neighbors of i, except j. Here, β
quantifies the coupling between the walker and the con-
centration field: For β → 0, the process reduces to a
unbiased blind random walk, while the limit β → ∞
corresponds to the case where the walker always jumps
to the neighboring site with the lowest concentration.
Finally, once the walker has jumped to the site j, it adds
an amount δc to the concentration field at this site.
Because the profile of the concentration field at a

certain time depends on the entire path of the walker,
this model is obviously a non-Markovian process. We
determine the conditional probabilities after n steps,
pðekjei0 ;…; ein−1 ; t ¼ nÞ, starting from a zero concentra-
tion field, ci ¼ 0 on all sites i. These probabilities for all
possible n-step paths are then used as inputs for the
formalism introduced in the previous paragraph, and the
MFPT can therefore be estimated. This approach is
obviously more accurate for larger values of n, but the
exponential computational cost forbids one to implement it
for very large values. Still, relatively low values of n can
predict the qualitative behavior of the MFPT.

Figure 3 shows the mean first-passage time of the
autochemorepulsive walk for a two-dimensional lattice
of size L ¼ 100, using the formalism presented in this
Letter, together with simulation results (each point accounts
for 104 trajectories) [48]. From both theory and simula-
tions, it appears clearly that, for a certain value of Dc, there
exists an optimal value for β that minimizes the search time.
At low values of β, the MFPT slowly decreases as the
process goes from a blind random walk to a smarter walk in
which the chemical information from the environment is
used. However, as β gets larger, the MFPT abruptly
increases. This effect can be understood as follows:
After the walker has jumped to a certain site, and because
it has released some cue behind it, the chemical concen-
tration is expected to be lower on the forward site than on
the left and right sites and even more than on the backward
site. For large values of β, as the walker jumps on the
neighboring site with the lowest concentration with prob-
ability p ∼ 1, it will thus tend to go forward, and so over
very long distances, turning its motion into an almost
ballistic behavior. Fully ballistic trajectories are obviously
not efficient for a search process, which we observe here
with the very large values for the MFPT for β → ∞. This
transition from diffusive to ballistic behavior can be
quantified by the persistence length lp, defined as the
mean number of consecutive steps in the same direction,
and which is shown in Fig. 4 (numerical vs analytical
estimates [49]). It confirms that the walker’s persistence
length strongly increases for large values β. To optimize its
search, an autochemotactic particle must find the right
balance between a blind search that makes use of no

FIG. 3. MFPT as a function of β for an autochemorepulsive
walk, with Dc ¼ 0.1 and L ¼ 100, from simulation (full lines
with error bars were computed via jackknife resampling [50]) and
theory for various values of n (dotted lines). Inset: sketch of the
autochemorepulsive searcher. The size of the arrows corresponds
to pi→j and the color code to concentration values of cj.
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directions. The gray dashed line in Fig. 2, also scaling as
∝ L2, corresponds to the value of ϵ that minimizes the
MFPT in this model.
For n > 3, the minimization procedure becomes com-

putationally expensive, but nothing indicates that mirror-
symmetric search strategies would become more favorable.
In the limit of infinite memory, the optimal strategy can be
simply guessed. For n ≥ L2, the walker can, in fact, simply
scan all sites by going row by row, which is a highly mirror-
asymmetric process for which the MFPTwould be equal to
ðL2 − 1Þ=2. Note that, for d ¼ 3, both the MFPT for a blind
walk and the optimal one with infinite memory scale
proportionally to L3 [13,39]. We, therefore, expect to
observe the same scaling for finite values of n.
These results prove that memory can be useful to

enhance the search efficiency of random walks. Such
effects, although they might not be perfectly optimized,
actually exist in some real systems, such as, e.g., chemo-
tactic walks.
Next, we consider the autochemotactic searcher and

focus on chemorepulsive searcher-cue interactions, since
they avoid repeated visits of already scanned areas and
thereby increase the search efficiency. A simple lattice
model for an autochemorepulsive walk can be constructed
as an adaptation of the true self-avoiding walk with
chemical diffusion [46,47]. A concentration field c is
defined on the lattice and diffuses at each time step
according to a discretized diffusion equation, with diffusion
constant Dc. After the diffusive step, the searcher moves
from site i to site j with probability

pi→j ¼
!
1þ

X
k≠j exp ½−βðck − cjÞ&

"−1
; ð5Þ

where the sum runs over all neighbors of i, except j. Here, β
quantifies the coupling between the walker and the con-
centration field: For β → 0, the process reduces to a
unbiased blind random walk, while the limit β → ∞
corresponds to the case where the walker always jumps
to the neighboring site with the lowest concentration.
Finally, once the walker has jumped to the site j, it adds
an amount δc to the concentration field at this site.
Because the profile of the concentration field at a

certain time depends on the entire path of the walker,
this model is obviously a non-Markovian process. We
determine the conditional probabilities after n steps,
pðekjei0 ;…; ein−1 ; t ¼ nÞ, starting from a zero concentra-
tion field, ci ¼ 0 on all sites i. These probabilities for all
possible n-step paths are then used as inputs for the
formalism introduced in the previous paragraph, and the
MFPT can therefore be estimated. This approach is
obviously more accurate for larger values of n, but the
exponential computational cost forbids one to implement it
for very large values. Still, relatively low values of n can
predict the qualitative behavior of the MFPT.

Figure 3 shows the mean first-passage time of the
autochemorepulsive walk for a two-dimensional lattice
of size L ¼ 100, using the formalism presented in this
Letter, together with simulation results (each point accounts
for 104 trajectories) [48]. From both theory and simula-
tions, it appears clearly that, for a certain value of Dc, there
exists an optimal value for β that minimizes the search time.
At low values of β, the MFPT slowly decreases as the
process goes from a blind random walk to a smarter walk in
which the chemical information from the environment is
used. However, as β gets larger, the MFPT abruptly
increases. This effect can be understood as follows:
After the walker has jumped to a certain site, and because
it has released some cue behind it, the chemical concen-
tration is expected to be lower on the forward site than on
the left and right sites and even more than on the backward
site. For large values of β, as the walker jumps on the
neighboring site with the lowest concentration with prob-
ability p ∼ 1, it will thus tend to go forward, and so over
very long distances, turning its motion into an almost
ballistic behavior. Fully ballistic trajectories are obviously
not efficient for a search process, which we observe here
with the very large values for the MFPT for β → ∞. This
transition from diffusive to ballistic behavior can be
quantified by the persistence length lp, defined as the
mean number of consecutive steps in the same direction,
and which is shown in Fig. 4 (numerical vs analytical
estimates [49]). It confirms that the walker’s persistence
length strongly increases for large values β. To optimize its
search, an autochemotactic particle must find the right
balance between a blind search that makes use of no

FIG. 3. MFPT as a function of β for an autochemorepulsive
walk, with Dc ¼ 0.1 and L ¼ 100, from simulation (full lines
with error bars were computed via jackknife resampling [50]) and
theory for various values of n (dotted lines). Inset: sketch of the
autochemorepulsive searcher. The size of the arrows corresponds
to pi→j and the color code to concentration values of cj.
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chemical information and a strong coupling with the cue
that makes it go in a straight line.
In order to compare the optimal strategy of the autoch-

emotactic search with the optimal n-step search strategies
we discussed in the first part, we compute the conditional
probabilities pðekjei0 ;…; ein−1Þ of the optimal autochemo-
tactic search in the stationary regime as follows: The
number of steps in a particular direction ek following a
particular n-step path fei0 ;…; ein−1g is sampled, and its
average over the four possible values of ek yields the
corresponding transitional probability. Note that these
stationary probabilities will be different from the proba-
bilities computed for our theoretical estimation, where the
n-step path was initialized with a zero concentration
field. Also note that the autochemotactic walk is not
fully described by the n-step conditional probabilities
pðekjei0 ;…; ein−1Þ but by an infinite hierarchy of condi-
tional probabilities, which we truncate after n steps.
For the optimal point fDc ¼ 0.1; L ¼ 100; β ¼ 0.01g,

this analysis performed with n ¼ 2, 3 shows that the
autochemotactic search for the optimal value of β does
not mimic the optimal search strategies in Fig. 2 [51]. A few
major differences can be noticed. First, while the optimal
strategies allow only very few transitional probabilities to
be different from 0 and 1, the best autochemotactic search is
intrinsically more random, as more of those quantities have
intermediate values. Second, the autochemotactic walk is
by definition mirror symmetric. Finally, the optimal strat-
egy for n ¼ 3 allows the walker to turn in the same
direction twice in a row, but this move is never observed
in the best autochemotactic search. As a comparison, we
show in Fig. 3 the value of the MFPT obtained using the
optimal n-step strategies presented in the previous para-
graphs, for n ¼ 2, 3. For Dc ¼ 0.1, the optimal value for β
in the autochemotactic does not beat the optimal asym-
metric strategies, but it does result in a slightly lower MFPT
than the optimal symmetric strategy with a two-step
memory. The autochemotactic walk can, therefore, still
be considered as an efficient search strategy.

The results presented in this Letter clearly indicate that
non-Markovian features of search processes can be tuned in
order to maximize search efficiency. Optimal search strat-
egies are found to be mirror asymmetric and more efficient
with longer memory. However, search processes in nature
are not necessarily as optimal, but the physical parameters
that govern them can still be adjusted to improve effici-
ency. The formal and systematic tool introduced in this
Letter should be useful for other biologically relevant
applications, many of which present non-negligible non-
Markovian effects.
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FIG. 4. Persistence length for the autochemotactic walk as a
function of β. The limit value lð0Þp ¼ 4=3 is subtracted. Discrep-
ancies between theory (dotted lines) and simulations (full lines)
as β → ∞ are mostly finite-size effects.
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Collective Search:

Chemotactic Walker



N searcher / M targets

N independent, non-communicating random walkers, 1 target:

FPT1(t) ~e-t/𝜏 ⟹  MFPT1 ~ 𝜏  ⟹   MFPTN ~ 𝜏/N 

1 random walker, M randomly distributed targets:

Consider confined 2d space, area A:

MFPTfirst target ~ 1/M𝛽,  with 𝛽~1.

MFPTall targets ~ cover time(A)  for M/A -> 1.



N chemotactic searchers, 1 target

Optimal coupling 𝛽 to chemotactic field c 

Figure 7: Persistence length as a function of � for various values of the density of walkers
⇢w = Nw/L

2. The inset shows the persistence length lp1 reached in the deterministic regime
� ! 1 as a function of ⇢w.

Figure 8: Sketch of the

10

Figure 6: Left: MFPT as a function of � for various values of Nw, for Dc = 0.1 and L = 100.
Right: Flatness parameter and �min as a function of Nw for Dc = 0.1 and L = 100.

minimizes the MFPT, for a given value of the chemical di↵usion constant Dc. In the case of
multiple walkers, we can naturally ask what happens to this optimal point. In particular, it is
known that the existence of the optimum in the single-walker case is due to the fact that the
limit � ! 1 corresponds to the highly ine�cient ballistic regime. However, as more walkers
are introduced in the system, this ballistic limit disappears because of interactions between
the walkers mediated by the chemotactic field. We can therefore expect that the optimal
chemotactic coupling strength also disappears. We show in figure 7 the MFPT as a function
of � for various values of Nw, with Dc = 0.1 and L = 100. As planned, the optimal point still
exists as the density of walkers is still low, but it progressively disappears for larger densities.
We quantify this e↵ect by defining a flatness parameter ✏ defined as

✏ =
T1 � T (�min)

(T1 + T (�min)/ 2
(15)

and which quantifies how much the optimal value for � improves the MFPT compared to the
limit � ! 1. As seen on figure 7, the optimal point becomes less and less advantageous as �
gets larger.

As mentioned, a larger concentration of walkers implies a shorter persistence length. We
show this on figure

3.3 Existence of a ballistic regime

Let us now evaluate whether a collective ballistic regime can be sustained in the limit � ! 1
for a certain density of walkers. Consider a configuration where the walkers are arranged such
that they all move with the same velocity and each walker has a neighbour in front of it and
behind it at a distance dk, and neighbours on its left and right at a distance d?. Given a
density of walkers ⇢, it holds

⇢dkd? = 1 (16)

Now, consider the process where all walkers keep going in the same direction and deposit a
di↵using chemical field (as in the original system) starting from an empty field. As t ! 1 the
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Persistence length vs. coupling 𝛽

optimal coupling

lp(𝛽 → ∞) vs N

[Meyer, HR: t.b.p]



N chemotactic searchers, 1 target

hT (N,L)i with
D
T (1, L/

p
N

E
. We show in figure 5 the ratio ⌘ = hT (N,L)i /

D
T (1, L/

p
N

E

as a function of the walker density ⇢ = Nw/L
2 for Dc = 0.1, L = 100 and various values of �.

The following pattern appears clearly.
For low values of �, ⌘ is larger than 1 and grows with Nw. This implies that interactions

between walkers do not improve the search process. In fact, in the limit � ⌧ 1, each walker
performs a blind di↵usive random walk and do not feel the presence of other walkers apart
from their hardcore interactions. There, the ratio ⌘ compares the e�ciency of N simultaneous
random walks scanning the same large domain and the e�ciency of N parallel random walks
scanning smaller domains. We therefore intuitively understand that the latter will be more
e�cient, yielding ⌘ > 1.

On the other side of the spectrum, as � � 1, we obtain ⌘ < 1 decreasing with Nw. Here,
the 1-walker process is known to be very ine�cient as the walker tends to move ballistically.
However, in a system with N walkers interacting via the chemotactic field, the ballistic regime
is never reached. Therefore the search benefits greatly from the interactions between walkers
in the limit � ! 1. Assuming ⌘ is a monotonic function of Nw for all values of �, there
must exist a value �

⇤ of � such that ⌘ = 1 for any Nw. This quantity constitutes a threshold
intearction strength indicating whether interactions between walkers are good or bad for a
collective search.

Figure 5: Ratio hT (N,L)i /
D
T (1, L/

p
N

E
as a function of the walker density ⇢ = Nw/L

2 for

Dc = 0.05, L = 100 and various values of �

3.2 Optimal coupling

The last observation pointed out the importance of the coupling with the chemotactic field
for the search e�ciency of the N-walker process. As we discussed earlier, there exists for
the single walker case an optimal coupling between the walker and the chemotactic field that

8

Compare MFPT(N,L2)  (N searcher in area L2) 
    with MFPT(1,L2/N)  (1 searcher in area (L2/N))

the only first-passage time T might not be a meaningful quantity of the overall cost. As our
searchers are active walkers, one might for instance be interested in the total amount of ”fuel”
consumed during the search, which is proportional to NwT . In addition, when modeling killing
process, the total time of the process consists in the time of a search plus the time for the killing
itself once the target is found. Given a killing time ⌧k, we therefore define the search cost ⌘ as

⌘ = Nw (T + ⌧k) (14)

This shift of the total time makes even more sense in our particular model where volume
exclusion imposes that two walkers can not occupy the same lattice site. In this case, the FPT
would always be 0 for Nw = L

2 as all sites would be occupied from the beginning. Without
considering a killing time ⌧k > 0, the cost NwT would always be minimal and equal to 0 when
there are as many walkers as the system size, which is not satisfactory. We therefore expect a
minimum by considering ⌧k > 0. Physically speaking, this optimal point would correspond to
compromise between a very low number of walkers for which the search process is very long
and therefore ine�cient, and a very high number of searchers where the search is very quick
but the total fuel needed for the entire swarm during the killing process becomes prohibitive.

We show in figure 4 how a non-vanishing killing time changes dramatically the behaviour of
the search cost as a function of Nw. For Nt = 1, L = 100 and T = 0, ⌘ decreases monotonically
with increasing Nw if no killing time is added, while a minimum is observed if ⌧k = 1.

Figure 4: Search cost ⌘ as a function of Nw, for Dc = 0.1, � = 100 and L = 100 and various
values of the killing time ⌧k. The inset shows the optimal value N

⇤
w as a function of ⌧k.

An other evaluation of the e↵ect of adding more searches on the overall search e�ciency
can be performed by comparing the actual MFPT obtained in a process with N interacting
walkers and the MFPT that one would obtain by dividing space into N equally sized domain and
assigning a domain to each searcher without interaction between them. Formally, given T (N,L)
the MFPT of a process withN interacting walkers in a domain of size L⇥L, we want to compare

7

Cost for N-walker search:
N*MFPT + N*𝜏k , 𝜏k=cost for 1 searcher

better

worse

optimal N

[Meyer, HR: t.b.p]



Optimal Searcher Number in a Costly Search

2

GENERAL FRAMEWORK

Formalism and definition of search cost

Let us consider a process where a target is located at
a random position and a searcher is initialized at posi-
tion moves to find it. The first-passage time distribu-
tion for this process is noted ⇢(t) and the single-agent
survival probability (SASP) of the target is given by
s(t) =

R1
t ⇢(t)dt. Now, we consider the following pro-

cess. At time ti, a i-th searcher is introduced in the
system and performs an independent search without in-
teracting with the searchers introduced previously. The
entire process is stopped whenever one of the searchers
finds the target. The question that we are raising here
is: what are the optimal introduction times ti that make
the search most e�cient ? To answer this, we need to
be more specific on the meaning of search e�ciency. Of
course, setting all introduction times ti to 0 will definitely
reduce the search time drastically as all searchers will be
in the system from the very beginning. However, creat-
ing a searcher and sustaining it during the search might
have a global cost. We therefore define the search cost K
as

K = JT T̄ + JN T̄ +KN N̄ (1)

where T̄ is the mean search time, T̄ is the mean sum
of times spent by all searchers in the system until the
target is found, and N̄ is the mean number of searchers
introduced in the system until the target is found. JT ,
JN an KN are parameters that weight each contribution
to the search cost. They can be interpreted as follows:

JT is the target cost rate: it quantifies a cost as-
sociated only due to the presence of the target re-
gardless of the presence of searchers and can be
thought of as rate of damage due to the presence
of the target.

JN is the searcher survival rate: it quantifies
the amount of resources required to sustain one
searcher per unit time.

KN is the searcher hiring cost: it quanti-
fies the amount of resources required to cre-
ate/produce/introduce a searcher in the system.

The optimal search strategy is then defined by the set of
introduction times ti that minimize K. For compactness,
we introduce the normalized parameters � = JN/JT and
 = KN/JT and set JT = 1 as our cost rate unit for the
rest of the paper.

To calculate T̄ , T̄ and N̄ , we first need to formalize
the target survival probability, i.e. the probability that
neither of the searchers has found it yet. In the time
interval [tn, tn+1[, there are n searchers in the system,
such that S(t) is given by S(t) = s(t)s(t � t2) · · · s(t �

tn). Accounting for all time intervals, and considering
an infinite reservoir of searchers, we obtain the general
formula

S(t) =
1X

n=1

⇥(t� tn)⇥(tn+1 � t)Sn(t) (2)

where ⇥(t) is the Heaviside function, and Sn is defined
as

Sn(t) =
nY

k=1

s(t� tk) (3)

Note that we choose by convention t1 = 0+ as the time
origin, i.e. the time at which the search starts. Note
that at this point, both S and s share the same level
of averaging with respect to the initial positions of the
target and of the searchers. If s e↵ectively depends on
these positions, S will depend on them as well and will
correspond to the survival probability if all searchers are
initialized at the same position and look for the same
target.

The overall first-passage time distribution R(t) is ob-
tained as R(t) = �dS(t)/dt and its first moment yields
the mean first-passage time T̄ . Using integration by
parts, we have

T̄ =

Z 1

0
dtS(t) =

1X

n=1

Z tn+1

tn

Sn(t)dt (4)

Similarly, we obtain T̄ as the mean value of ⌧(t) =P1
n=1(t� tn)⇥(t� tn) averaged over R(t). We obtain

T̄ =
1X

n=1

n

Z tn+1

tn

Sn(t)dt (5)

Finally, we obtain N̄ as the mean value of N(t) =P1
n=1 ⇥(t � tn). Again using integration by parts, we

have

N̄ =
1X

n=1

Sn(tn) (6)

such that the search cost finally reads

K =
1X

n=1


(1 + n�)

Z tn+1

tn

Sn(t)dt+ Sn(tn)

�
(7)

Finally, note that this framework can be used to model a
finite number of searchers N simply by imposing tp ! 1
for p > N . In this case, we note the search cost KN .

Condition for simultaneous introduction

Consider a process with a total reservoir of N
searchers. We first want to know whether it is favor-
able to introduce the searchers simultaneously at t = 0
or if one should introduce them one after the other.

Total search cost:

JT target cost rate
JN searcher support cost
KN searcher creation cost

,𝑇 mean search time (MFPT)
.𝔗 sum of the times spent by all searchers
.𝑁 number of searcher created

Independent searcher result:
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searchers introduced at t1, t2, …, tn, ….
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1X

n=1

Sn(tn) (6)

such that the search cost finally reads

K =
1X

n=1


(1 + n�)

Z tn+1

tn

Sn(t)dt+ Sn(tn)

�
(7)

Finally, note that this framework can be used to model a
finite number of searchers N simply by imposing tp ! 1
for p > N . In this case, we note the search cost KN .

Condition for simultaneous introduction

Consider a process with a total reservoir of N
searchers. We first want to know whether it is favor-
able to introduce the searchers simultaneously at t = 0
or if one should introduce them one after the other.

r(t) FPT distribution

s(t) survival probability 

Exponential survival probability
Nopt searcher must be introduced all at once

Algebraic survival probability
Nopt searcher must be introduced in fixed time intervals[Meyer, HR, t.b.p.]



Collective Search:

Chemotactic ABPs



N active Brownian particles (ABPs), M targets

Active Brownian particles 
(ABP’s)

·ri(t) = V0ei(t) + 1
γt ∑

j≠i
fji

·φi(t) = 2Drηi(t)

Position:

Orientation:

Disk-like particle with radius �a

Motion with constant speed �  along �V0 ei = (cos φi
sin φi)

Excluded volume interaction

Gaussian white noise

ABPs:
Disk-like particles with radius a
Motion with velocity v0 along 

Position:

excluded volume

Gaussian white noise

Orientation:

[Wysocki, HR: t.b.p]
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N chemotactic active Brownian particles (ABPs), M targetsChemotactic particles (CTP’s) 
with self-generated gradients 
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[Wysocki, HR: t.b.p]



Chemorepulsion

[Wysocki, HR: t.b.p]



Repulsive chemotactic particles search faster

[Wysocki, HR: t.b.p]



Chemo-repulsion leads to persistent motion

⟨𝐞(𝑡) ⋅ 𝐞(0)⟩ ∼ exp −𝐷"#$$𝑡 ⟹ Pe#$$ =
%!

&"#$$' [Wysocki, HR: t.b.p]
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Mean first passage time MFPT 

MFPT = <T> = ∫(
)𝑑𝑡 𝐹𝑃𝑇(𝑡) 

1 A guided visit into the random world

We have introduced the first-passage observables, we will now see how to compute them ana-
lytically.

1.2.2 Renewal equation and Green functions

To compute the first-passage observables, we will introduce the Green functions, that will be
extensively used in this thesis. Instead of just defining them, we will see how they appear
“naturally” when computing the mean first-passage time.

To do so, we will consider a Markovian random walker. As previously, we note P (rT , t|rS) the
propagator, namely the probability that the random walker is in position rT at time t starting
from rS at time t = 0, and FPT(t) the first-passage density from rS to rT . The renewal equation
links those two quantities:

P (rT , t|rS) = �t,0�rT ,rS +

Z
t

0
FPT(t0)P (rT , t � t0|rT )dt0 (1.65)

This equation means that the probability to be at rT at time t is equal to the probability to
hit rT for the first time at any time t0 2 [0, t], and to come back in the same position rT at time
t � t0. The first term of the right hand side is the correction if t = 0 and rT = rS . � is here the
Kronecker symbol: �x,y = 1 if x = y, and 0 else. Since we have here a simple convolution, we can
obtain a simple equation after a Laplace transform:

eP (rT , s|rS) = �rT ,rS + ]FPT(s). eP (rT , s|rT ) (1.66)

We can develop those Laplace transforms into s series, assuming that all moments exist:

]FPT(s) =

Z 1

0
e�stFPT(t)dt =

1X

n=0

(�1)n

✓Z 1

0
tnFPT(t)dt

◆
sn =

1X

n=0

(�1)n
hTn

isn (1.67)

where hTn
i is the nth moment of the first-passage time.

We cannot use directly the same formalism for the propagator: in a confined environment,
when t ! 1, the propagator does not converge to 0 but to the stationary probability Pstat:

eP (rT , s|rS) =

Z 1

0
e�stP (rT , t|rS)dt

=

Z 1

0
e�st (P (rT , t|rS) � Pstat(rT )) dt +

Pstat(rT )

s

=
1X

n=0

(�1)n

✓Z 1

0
tn (P (rT , t|rS) � Pstat(rT )) dt

◆
sn +

Pstat(rT )

s
(1.68)

At last, we can obtain the mean first-passage time, by identification of the s term in equation
(1.66):

hTi =

Z 1

0
(P (rT , t|rT ) � Pstat(rT )) dt �

Z 1

0
(P (rT , t|rS) � Pstat(rT )) dt

Pstat(rT )
(1.69)

We will define the pseudo-Green function as:

H(rT |rS) =

Z 1

0
(P (rT , t|rS) � Pstat(rT )) dt (1.70)
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Renewal equation:

Markovian processes:   P(rn+1,tn+1| rn,tn;...;r1,t1) = P(rn+1,tn+1| rn,tn)   for all tn+1>tn>…>t1
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where hTn
i is the nth moment of the first-passage time.
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when t ! 1, the propagator does not converge to 0 but to the stationary probability Pstat:
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At last, we can obtain the mean first-passage time, by identification of the s term in equation
(1.66):

hTi =

Z 1

0
(P (rT , t|rT ) � Pstat(rT )) dt �

Z 1

0
(P (rT , t|rS) � Pstat(rT )) dt
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We will define the pseudo-Green function as:

H(rT |rS) =

Z 1

0
(P (rT , t|rS) � Pstat(rT )) dt (1.70)

20

1.2 First-passage properties

Using this notation, we can write the MFPT in a most compact way:

hTi =
H(rT |rT ) � H(rT |rS)

Pstat(rT )
(1.71)

This expression was found first by Aldous [6] (chapter 2, Lemma 12), then by Noh & Rieger
[148] and later by [91]. We found during my Master thesis [66] that this expression was not only
a formal notation: it has a huge potential since we can compute those pseudo-Green functions,
either exactly or with very good approximations, for a very wide range of random walks.

1.2.3 Results already known

We will present two papers that we will intensively use in this manuscript. The first one [65]
links splitting probabilities and related first-passage observables with pseudo-Green function, and
gives exact expressions as well as some approximations for pseudo-Green functions. The second
one [67] was part of my Master thesis, and gives an extension for occupation times and related
observables.

Two targets problem

The first paper [65] introduces a way to link splitting probabilities and related quantities with
pseudo-Green functions. So far, we know that MFPT can be expressed, for a Markovian random
walker evolving on a regular lattice, as:

hTi =
H(rT |rT ) � H(rT |rS)

Pstat(rT )
(1.72)

When there is more than one target available, we can extend this result, and compute the splitting
probabilities. To do so, we will consider a network where two targets rT1 and rT2 exist, and use the
so-called “electrical analogy” developed in [79]. The relationship between the flux, the potential
and the mean first-passage time have been investigated in [57].

We will consider that a constant incoming flux of particles J comes from rS , and that an
outcoming flux of particles J1 exits in T1, and J2 in T2. We suppose that we have reached the
equilibrium state, such that J , J1 and J2 are constant. In particular, since all particles are
eventually absorbed, either by T1 or T2, we have J = J1 + J2. In this model, the splitting
probability, namely the probability to reach target i before touching target j 6= i is Pi = Ji/J .
The total number of particles N present in the domain is N = JhTi, where hTi is the mean
first-passage time by any of the target. Since we have reached equilibrium, we can write that the
average number of particle in ri, ⇢(ri) satisfies:

⇢(ri) =
X

j

!ij⇢(rj) + J�iS � J1�iT1 � J2�iT2 . (1.73)

This equation means that to be in ri, the particle must come from a neighbor j, except in S
where we have to add the incoming flux J , and in Ti, where we have to remove the outcoming
flux Ji. Here, � is the Kronecker delta function: �xy = 1 if x = y, 0 else.

To solve this problem, we use the pseudo-Green function H [14, 65], which satisfies:

H(ri|rj) =
X

k

!ikH(rk|rj) + �ij �
1

N
, (1.74)
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Non-Markovian search

Optimal Non-Markovian Search Strategies with n-Step Memory

Hugues Meyer * and Heiko Rieger
Department of Theoretical Physics and Center for Biophysics, Saarland University, 66123 Saarbrücken, Germany
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Stochastic search processes are ubiquitous in nature and are expected to become more efficient when
equipped with a memory, where the searcher has been before. A natural realization of a search process with
long-lasting memory is a migrating cell that is repelled from the diffusive chemotactic signal that it secretes
on its way, denoted as an autochemotactic searcher. To analyze the efficiency of this class of non-
Markovian search processes, we present a general formalism that allows one to compute the mean first-
passage time (MFPT) for a given set of conditional transition probabilities for non-Markovian random
walks on a lattice. We show that the optimal choice of the n-step transition probabilities decreases the
MFPT systematically and substantially with an increasing number of steps. It turns out that the optimal
search strategies can be reduced to simple cycles defined by a small parameter set and that mirror-
asymmetric walks are more efficient. For the autochemotactic searcher, we show that an optimal coupling
between the searcher and the chemical reduces the MFPT to 1=3 of the one for a Markovian random walk.

DOI: 10.1103/PhysRevLett.127.070601

The term search processes encompasses all phenomena
in which an agent scans a domain, looking for a target to
reach. Search for prey and/or wild food resources by
animals, known as foraging [1–3], is one of the major
examples of such processes. They can take various forms
(blind or guided, individual or collective, random or
deterministic, etc.), but they all aim at being efficient, that
is, at minimizing the overall cost of the searching process.
Several definitions for such a cost exist, depending on the
context, but it often simply reduces to the total duration of
the search. In terms of statistical physics, the efficiency is
usually quantified using first-passage time distributions:
Given all possible trajectories of the process considered,
what is the probability that the agents will find the target in
a certain amount of time? Optimizing the search efficiency,
therefore, translates into minimizing of the first-passage
time. The main statistical estimate is the mean first-passage
time (MFPT), although there are situations in which the
whole FPT distribution is relevant [4,5].
Many biological organisms, from bacteria to mammals,

have evolved in such a way that their searching strategies
are optimized in a certain way [6]. Modeling these
phenomena in quantitative terms is a challenge that has
motivated many studies. Recently, various ways to trans-
form simple blind random walks into efficient search
processes have been suggested. Among other works,
Bénichou and co-workers have, e.g., shown that alternating
periods of diffusive and ballistic motion can dramatically
reduce first-passage times [7,8], and this strategy has
actually been observed in various animal species. The
effect of resetting on mean first-passage times and its
efficiency as a search strategy have also been recently
investigated [9,10]. Other aspects such as the impact of

confinement [11,12] or the topology of the scanned domain
[13] have also been studied in different contexts.
Memory of a stochastic process is also expected to affect

the MFPT [14–18]. A natural realization of a search process
with a long-lasting memory is a migrating cell that is
repelled from the diffusive chemotactic signal that it
secretes on its way, denoted as an autochemotactic searcher.
Chemotaxis, a process in which a migrating cell changes its
motion direction due to a chemical gradient of a chemical
cue in its immediate surrounding, has been extensively
studied, by biologists as well as chemists and physicists
[19–30], and is, for instance, used by immune cells to guide
themselves toward areas of infection or to tumors [31].
Experimental as well as theoretical studies of autochemo-
taxis are currently intensively studied in biophysics, as it
can help to understand the efficiency of a variety of
biological processes [32–38]. Mathematically, these search
processes are non-Markovian, since the searcher uses the
chemical information it has released along its past path in
order to move ahead.
A systematic study of the first-passage properties of

stochastic non-Markovian search processes with n-step
memory has not been performed yet, which is what we
will present here: We will analyze the efficiency of non-
Markovian search processes, in general, and of the autoch-
emotactic, in particular, and present results for the optimal
search strategies. We first introduce a general formalism
that allows one to compute the MFPT for a given set of
conditional transition probabilities for non-Markovian
random walks on a lattice, which is based on the backward
equation for the MFPT and on the conditional probability
for the walker to go in a certain direction given its n past
directions. In the special case n ¼ 1 with additional

PHYSICAL REVIEW LETTERS 127, 070601 (2021)
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Auto-chemotactic searcher

Figure 3: Optimal inverse temperature range �
⇤ as a function of Dc (black dashed line) with

error range (red dotted line), together with equation (10) for l⇤p = 5. The inset shows the value
of the persistence length at the optimal point (�⇤

, Dc).

Assuming there is a critical value l⇤p for the persistence length above which the searching process
becomes ine�cient, we can define a critical inverse temperature �

⇤ as

�
⇤ = D

�2
c ln

�
2l⇤p � 4

�
(13)

Although this critical �⇤ is not the optimal inverse temperature that minimizes the mean catch
time T̄ , it does follow the same trend, as shown in figure 3. There we have chosen l

⇤
p = 5,

which roughly corresponds to the optimal persistence length for searching processes according
to Tejedor et al. [4] for a lattice size L = 100. Because the curvature of the MFPT as a function
of � is very small around this minimum, it is di�cult to accurately evaluate this minimum
from simulations. In figure 3 we show the upper and lower bounds of the optimal temperature
T
⇤ as a function of Dc that we have determined as the range in which the lower error bar for

the MFPT is not larger the lowest higher error bar (computed via Jackknife resampling as
mentioned previously).

3 Multiple walkers

3.1 Optimizing the killing cost by adjusting the number of walkers

Here, we would like to quantify how interactions between searchers might improve the search1.
In the case of multiple walkers, the definition of the search e�ciency is questioned. In fact,

1Note that it is not obvious to quantify MFPTs in term of the density of walkers only as the density of
targets also matters. Scaling the system size, the number of walkers and the number of targets all with the
same factor does not lead to the same MFPT.
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Figure 2: Persistence length as a function of � = 1/T , for various values of Dc, and with

L = 100, Nw = 1 and �c = 1. The limit value l
(0)
p = 4/3 was subtracted from it for better

visualisation. The dotted lines display equation (10).

Now, using ↵ = 1/q3 we get
P

n=3 nq
2�n
3 = (3q3 � 2) (q3 � 1)�2. We therefore get

lp =1 + p1

✓
1 +

p2

1� p3

◆
(9)

which finally yields

lp = 1 +
1

1 + e�� + e�3�Dc + e��D2
c

"
1 +

1 + e
�� + 2e��D2

c

�
1 + e�� + e�7�D2

c + e��D2
c
� �

e�� + 2e��D2
c
�
#

(10)

This result is valid in the infinite lattice limit, for low values of Dc. This covers however a
large range of our simulations, as shown on figure 2 where the persistence length computed in
our simulations is plotted as function of �, together with the formula (10).

We now investigate the asymptotic limits of lp. At high temperatures (for � ! 0), in the
limit Dc ! 0, we have

lp =
4

3
+ �


1

9
� 11

36
Dc �

23

12
D

2
c +O

�
D

3
c

��
+O

�
�
2
�

(11)

This was obtained by adding all order up to D
2
c in equation (6). Moreover, at large values of

� we have

lp ' 2 +
e
�D2

c

2
(12)
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Figure 3: Optimal inverse temperature range �
⇤ as a function of Dc (black dashed line) with

error range (red dotted line), together with equation (10) for l⇤p = 5. The inset shows the value
of the persistence length at the optimal point (�⇤

, Dc).

Assuming there is a critical value l⇤p for the persistence length above which the searching process
becomes ine�cient, we can define a critical inverse temperature �

⇤ as

�
⇤ = D

�2
c ln

�
2l⇤p � 4

�
(13)

Although this critical �⇤ is not the optimal inverse temperature that minimizes the mean catch
time T̄ , it does follow the same trend, as shown in figure 3. There we have chosen l

⇤
p = 5,

which roughly corresponds to the optimal persistence length for searching processes according
to Tejedor et al. [4] for a lattice size L = 100. Because the curvature of the MFPT as a function
of � is very small around this minimum, it is di�cult to accurately evaluate this minimum
from simulations. In figure 3 we show the upper and lower bounds of the optimal temperature
T
⇤ as a function of Dc that we have determined as the range in which the lower error bar for

the MFPT is not larger the lowest higher error bar (computed via Jackknife resampling as
mentioned previously).

3 Multiple walkers

3.1 Optimizing the killing cost by adjusting the number of walkers

Here, we would like to quantify how interactions between searchers might improve the search1.
In the case of multiple walkers, the definition of the search e�ciency is questioned. In fact,

1Note that it is not obvious to quantify MFPTs in term of the density of walkers only as the density of
targets also matters. Scaling the system size, the number of walkers and the number of targets all with the
same factor does not lead to the same MFPT.
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Are the search areas uniformly distributed ?

Are the search areas 
uniformly distributed?  

�  is the standard deviation 
of the normalized areas �   

of Poisson Voronoi cells. 

σPoission
𝒜 ≈ 0.5292

𝒜 = A /⟨A⟩

Wikimedia Commons



Spatial order correlates with search efficiency

Spatial order correlates with  
search efficiency

Ordered if �  
Clustered if �  

σ𝒜 < σPoisson
𝒜

σ𝒜 > σPoisson
𝒜
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