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	 Outline

• Introduction to spin glasses (disordered magnets)

• What are spin glasses?

• Why are they interesting?

• Equilibrium properties of spin glasses 
in a field

• Absence of an Almeida-Thouless 
line below upper critical dimension

• Nonequilibrium properties of spin glasses in a field

• Return and complementary point memory effects
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	 Introduction to spin glasses



	 Magnetic systems

• Prototype model for a magnet:

• Order parameter

• Disorder plays an integral role in nature:

• Properties of materials change.

• But often neglected.
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	 Spin glasses

• Phase transition into a glassy phase with no spatial order

• Complex energy landscape

• Slow dynamics

• Unexpected effects: aging, 
memory, hysteresis

• Problem: Only mean-field model solvable. Solution: Simulations.

• Numerically complex optimization problem, generally NP hard

• Many applications to other fields and problems:

• Physics: vortex glasses, disordered magnetic media, error 
correcting codes, structural glasses, ...

• Computer science and related fields: pattern recognition, 
combinatorial optimization, economics, ...

Still a lot to be understood!
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	 Brief history

• 1970: Canella & Mydosh see a cusp in        of Fe/Au alloys. The 
material has RKKY interactions

which introduces disorder and frustration, necessary in a spin glass.

• 1975: Introduction of the Edwards-Anderson Ising spin glass model:

• 1975: The mean-field Sherrington-Kirkpatrick model is introduced.

• 1979: Parisi solution (RSB) of the mean-field model.

• 1986: Fisher & Huse suggest the droplet picture (DP) to describe 
short-range spin glasses.
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	 Some open questions...

Universality Memory effect

Ultrametricity Spin-glass state in a field?
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	 Equilibrium properties in a field



	 Spin-glass state in a field?

• Two contradicting predictions:

• Replica Symmetry Breaking: Existence of an instability line [de 
Almeida & Thouless (78)] for mean-field glasses.

• Droplet Picture: there is no spin-glass state in a field.

Which of the above pictures is correct?
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	 What has been done?

• Theory:  de Almeida & Thouless (78) predict an instability line  for 
the SK model.

• Experiments:

• Katori & Ito (94): claim existence of an AT line.

• Mattson et al. (95): no AT line (study divergent relaxation times).

• Simulations:

• Study of the Binder cumulant [Bhatt & Young (85), Kawashima & 
Young (96)]: no AT line. Problem: Binder ratio not stable in a field.

• Out of equilibrium methods [Marinari et al. (98)]: signature of an 
AT line. Problem: Is the true equilibrium behavior probed?

• Simulations according to experimental protocols [Takayama & 
Hukushima (04)] show no AT line.

• Zero-T calculations [Houdayer & Martin (99), Krzakala et al. (02)] 
find not AT line. And...

Katzgraber & Young, 
PRL 93, 207203 (2004)
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	 First approach: 3D EA Ising spin-glass

• Edwards-Anderson Ising spin-glass model with random fields:

• Properties:

• Sum over nearest neighbors in 3D with Gaussian random bonds.

• The random fields are Gaussian distributed with zero mean and
                     . This corresponds to a uniform field      .

• For zero field                .

• Why do we choose random fields?

• Equilibration test for the Monte Carlo method

• Parallel tempering performs slightly better than in a uniform 
field.
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	 Parallel tempering Monte Carlo

• Simulate M copies of the system at different temperatures
with                  . 

• Allow swapping of neighboring temperatures: easy crossing
barriers!

• Fast equilibration with rough energy landscapes.

• The method obeys detailed balance
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	 Probing criticality: correlation length

• Ballesteros  et al. (00) reintroduce the use of the finite-size 
correlation length to study phase transitions in spin glasses. 
Calculation of     :

• Wave-vector-dependent connected spin-glass susceptibility:

• Ornstein-Zernicke approximation:

• Compensate for PBC and finite-size effects and solve for

• Finite-size scaling: 
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	 How well does this work for           ? 

• The data cross at
                in 
agreement with 
previous results.

• Evidence of a spin-
glass state for
              .

H = 0

Tc ≈ 0.95

T ≤ 0.95



	 Finite fields... No transition

• Using parallel 
tempering we can 
scan down to 
              .

• We perform slices 
at different fields.

• Krzakala predicts
                  .
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	 Finite fields... No transition

• Using parallel 
tempering we can 
scan down to 
              .

• We perform slices 
at different fields.
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	 Finite fields... No transition

• Using parallel 
tempering we can 
scan down to 
              .

• We perform slices 
at different fields.
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	 Finite fields... No transition

• Using parallel 
tempering we can 
scan down to 
              .

• We perform slices 
at different fields.

T = 0.23

H = 0.05

No AT line in 3D.

H

Tc T

SG

H

PM
AT

Does the 
method pick up 

the AT line?

What 
about higher 
dimensions?

Problem: 
small 

systems.

Maybe AT 
line for d > 6?



	 Solution: 1D chain

• The sum ranges over all spins.

• Gaussian random fields and 
power-law modulated random
bonds (SK model for         ):

                              The model allows for a large range of sizes.
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	 1D chain: zero field

• The data span a 
large range of sizes

• Transition in zero 
field for 

•
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	 1D chain: zero field

• The data span a 
large range of sizes
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	 1D chain: zero field

• The data span a 
large range of sizes

• Transition in zero 
field for 
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	 1D chain: zero field

• The data span a 
large range of sizes

• Transition in zero 
field for
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	 1D chain: finite field (H = 0.10)

• The data span a 
large range of sizes

• Mean-field behavior 
for

•
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	 1D chain: finite field (H = 0.10)

• The data span a 
large range of sizes

• Mean-field behavior 
for

• Crossover regime
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	 1D chain: finite field (H = 0.10)

• The data span a 
large range of sizes

• Mean-field behavior 
for

•  
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	 1D chain: finite field (H = 0.10)

• The data span a 
large range of sizes

• Mean-field behavior 
for

•
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	 What have we learned so far?

• The AT line vanishes when not in the mean-field regime.

• For short-range spin glasses below the upper critical dimension:

• Related work:

• Proposal by M. A. Moore (cond-mat/0508087) how RSB might be 
stable for d < 6 (Temesvari: RSB for d > 8).

• Proposal by de Dominicis (cond-mat/0509096) of a possible field 
theory for DP for d < 6.

• See also: http://jc-cond-mat.bell-labs.com/jc-cond-mat/
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	 Nonequilibrium properties in a field



	 Hysteresis in disordered spin systems?

• Due to the randomness the system has a rough energy landscape.

• The rough energy landscape has many metastable states responsible 
for the hysteresis.
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	 RPM & CPM

• Definitions:

• Complementary point memory:
Correlations between configurations
at          and        . 

• Return point memory:
Configurations at a given      are 
similar after n loop cycles.

• Example: Barkhausen noise.

• Recent experiments [Pierce et al. (05)] and numerical work 
[Deutsch & Mai (05), Jagla (05)] suggest the following:

• RPM and CPM             0 for decreasing disorder.

• CPM < RPM < 1 for systems with high disorder.
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∗

cond-mat/0509515 (2005)

Can we see these effects in simple models?



	 Previous results

• Experiments by Pierce et al. (05):

Measure the effects of disorder on Co/Pt multilayer films using X-ray 
speckle metrology.

• Simulations by Deutsch & Mai (05) [Jagla (05)] using LLG dynamics:

• Results of theory and simulation agree.
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H=−J
∑

〈i,j〉

SiSj − α
∑

i

(Sini)
2
− w

∑

i #=j

1

r3
ij

[3(Si ·eij)(Sj ·eij) − SiSj ] − H
∑

i

S
z
i

CPM < RPMRPM and CPM 
become better for 
increasing disorder



	 Models studied here

• Edwards-Anderson Ising spin glass (EASG):

• Gaussian-distributed bonds:                   and 

• Nearest neighbor interactions in two dimensions.

• From spin reversal symmetry expect: RPM = CPM = 1 for T = 0.
    

• Random-field Ising model (RFIM):

• Gaussian-distributed random fields                 and 

• Nearest neighbor interactions in two dimensions.

• No spin reversal symmetry: CPM < 1

• Due to the no passing property we expect RPM = 1 for T = 0.
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	 Algorithm

• T = 0

• Change the external field in small steps. Compute the local fields:

of each spin     . A spin is unstable if               . Dynamics:

• Flip a randomly chosen unstable spin.

• Update the local fields of the neighbors.

• Iterate until all spins are stable.
     

•  T > 0

• Change the external field in small steps.

• For each field step perform a finite-T Monte Carlo simulation.

• Iterate until the magnetization is independent of MCS.

hi =
∑

j

JijSj + H(t)

Si hiSi < 0

Average over
500 disorder 

realizations.



	 EASG: Qualitative behavior

• Intermediate disorder:

•   

• Red pixels denote differences
between configurations.

• RPM and CPM are not perfect
due to frustration.
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	 Overlaps to measure RPM & CPM

• Idea:

• Study correlations between 
configurations.

• Start the loop at positive saturation.

• Definition of overlaps: q measures 
the degree of memory configurations, 
q’ the uniqueness.

• CPM: 

• RPM:
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	 EASG: Overlap

• Data show strong 
correlations 
between 
configurations.

• Memory not 
perfect even at 
T = 0.

• Memory 
decreases with T.
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	 EASG: Overlap

• Correlations 
unique.

• Memory not 
perfect even at 
T = 0.

• Memory 
decreases with T.

• RPM = CPM.
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	 EASG: Overlap           disorder scan

• Data for T = 0.2.

• Memory better 
for increasing 
disorder.

• Variable

• Qualitative 
agreement with 
the experiments.
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	 RFIM: Overlap

• CPM < RPM.

• RPM = 1 (T = 0).

• CPM < 1 (T = 0).

•              ?

•
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	 RFIM: Overlap                            CPM

• Variable

• Data for T = 0.20

• CPM ~ 0

• Anticorrelations
for large disorder
(loops close). 

q(H∗)

q(H∗) = −

1

N

N∑

i=1

Si(H
∗

I )Si(−H∗

II)
σh



	 RFIM: Overlap                            RPM

• Variable

• Data for T = 0.20

• Memory better 
for higher 
disorder

• Narrow dips due 
to sharp loops 
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	 Summary & comparison

• Experiments of Pierce et al.:

• CPM < RPM < 1 for all T

• No error bars: CPM < RPM?

• RPM and CPM increase with
disorder.

• Edwards-Anderson Ising spin glass:

• Model has frustration and spin reversal symmetry.

• RPM = CPM for all T, RPM and CPM < 1 (also T = 0).

• RPM and CPM increase for increasing disorder.

• Random-field Ising model:

• No frustration and no spin reversal symmetry.

• RPM > CPM for all T, RPM = 1 for T = 0, CPM ~ 0 for all T.

• RPM increases for increasing disorder.

No perfect agreement.

Can we construct a minimal 
model which reproduces the 

experiments?



	 SG+RF: Overlap                CPM/RPM

• 5% random fields 
with 

• variable 

• CPM < RPM < 1

• Memory increases 
with increasing 
disorder

• The random fields 
break spin-
reversal symmetry

• Deutsch: break 
time-reversal 
symmetry.
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• Why does the memory increase with increasing disorder?

• Strong disorder            Rough energy landscape.

• Rough energy landscape            Pinning in configuration space.

• Pinning in Configuration space            Increased memory.

• Analogy: Colorado River vs Nile Basin.

	 Qualitative explanation



	 Concluding remarks

• Equilibrium properties:

• Simulations on the one-dimensional Ising chain suggest that short-
range spin glasses can have an AT line for d > 6.

• Nonequilibrium Properties:

• The random-field Ising model and the EA spin glass show memory 
effects.

• The SG+RF model is a minimal model which shows the same 
behavior as the experiments of Pierce et al.

• Future problems:

• Probe other characteristics of the mean-field model on short-
range systems, such as ultrametricity.

• Understand the nature of the spin-glass state (RSB favored in zero 
field, DP favored in a finite field).
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