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Classification Extreme Events

No unique definition of the term ”extreme

events”!

”Dresden-Classification” of Extreme Events

We are interested in events,

which are rare

which occur irregularly due to a complex stochastic
or deterministic dynamic

which are recurrent (here: do not end the lifetime
of the system)

which are inherent to the system under study
(endogenous), not due to strong external
perturbation

to which we can assign a variable (”magnitude”)
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Key issues

What is the magnitude distribution of events?
What are the most extreme events in a given system?

Are there temporal (or spatial) correlations between EE?

What does a sequence of “records” tell about drifts or trends?

Can we predict the next EE?

What are the costs caused by wrong predictions?

Can one control/manipulate the system to avoid a predicted
event?

Answers require understanding of the dynamics of EE!
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Example: Trends from records

Records:

overcoming all prior values (e.g., sports, daily maximum
temperatures, floods)
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Does a sequence of ever increasing records reflect a trend?
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Example: Trends from records

Records:

overcoming all prior values (e.g., sports, daily maximum
temperatures, floods)
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world record 200m men

Does a sequence of ever increasing records reflect a trend?

Why potentially no trend?

Finite sample effect: Growing sample size implies an increase of
the observed largest (decrease of the smallest) number!
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Extreme Events in Time Series

General situation: event time series {Yn}, Yn ∈ {0, 1},
Observation time series {xn}.
Try to predict event with index n + 1 from observations up to time
index n.
Often: Events are defined on the observations {xn} themselves:
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Yn+1(η) =

{

1 : xn+k − xn ≥ η
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Extreme Value Statistics
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traditionally for i.i.d. random variables and block maxima

generalization for threshold crossings, and correlated variables
exist

asymptotics of the cumulative distribution function P(Mn ≤ z)

return levels zp, which are exceed on averaged every 1/p time
steps,

no forecast!

References: E. J. Gumbel, S. Coles
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Prediction

(Stochastic) dynamical system

State space plus evolution equations
Extreme event = large deviation from the system’s normal
behaviour
state vector far off its mean, but in a well defined subset of phase
space

Ideal situation: detailed physical model, observed current state

Run the model to predict the future (on short times).
- computing orbits of astrophysical objects (satellites, meteorits)
- weather forecasts (really?)

Less ideal but more relevant situation: time series data.
Useful?
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Prediction from time series data

general stochastic process

time series {xi}, i = 1, . . . ,N:
Process is fully characterised by
all joint probabilities p(xi1, xi2 , . . . , xil ).
future is determined by

conditional probabilities p(xi1 |xi2, . . . , xil ) :=
p(xi1

,xi2
,...,xil

)

p(xi2
,...,xil

)

Two more assumptions:
stationarity: only relative time indices are relevant
fast decay of dependence: good approximations by finite
conditioning (Markov property).

Events

Event time series {Yi}, i = 1, . . . ,N, Yi ∈ {0, 1}.
p(Y = 1|xi2 , . . . , xil ) describes probability of an event to happen.
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Prediction and cost functions
a) probabilistic forecasts

Probabilistic predictor

A map (xi , xi−1, . . . , xi−k+1) 7→ p̂,
probability of the event to happen, p̂ ∈ [0, 1]

Cost function (score)

Brier score: SB = 〈(p̂i − Yi)
2〉.

benchmark: constant prediction p̂ = r , where r = event rate,
then SB = r(1 − r).

Two problems

Brier score depends explicitly of rate r ,
Brier score has a bias towards trivial prediction for r → 0.



Prediction and scoring Results I Results II Summary

Prediction and cost functions
b) Deterministic forecasts

deterministic predictor

A map (xi , xi−1, . . . , xi−k+1) 7→ Ŷi ,
Predicts a value of the event series, Ŷi ∈ {0, 1}.

Classical cost function

root mean squared (rms) error (for real-valued variables)
ŝi prediction of si (the true observation)

ē =

√

√

√

√

1

N

N
∑

i=1

(ŝi − si)2

(for predicting chaos ([Farmer & Sidorowich 1987] and many
others).
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Prediction of extreme events as classification task

Three problems with rms-errors

- rare events contribute with a small weight
- involves a norm (symmetric)
- when Ŷ is inferred from x̂ , a small error in x may change the
value of Ŷ !

Prediction of the occurence of events involves two types of errors

no event predicted, event takes place (missed hit)
event predicted, no event takes place (false alarm)

These two types of errors might cause very different costs.
(consider earthquake striking a city, costs for evacuation)
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Prediction of events

Probabilistic prediction

convert predicted p̂n into a “warning” Ŷn by threshold pc :
if p̂n ≥ pc : Ŷn = 1 , p̂n < pc : Ŷn = 0

Deterministic prediction for Ŷn through precursors

Precursor: Specific pattern of m succesive observations xk which
typically preceeds an event Yn+1 = 1, called xpre .
Alarm volume Vδ is the δ-neighbourhood of xpre .
(max-norm: a tube of diameter δ around the pattern.)
Event is likely to occur at time n + 1 if xn ∈ Vδ.
Randomness:
not every event is preceeded by the precursor.
not always is the precursor followed by an event.
Notice: precursors xpre are elements of a delay embedding space.
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Receiver Operating Characteristics

hit rate = (number correctly predicted events)/(all events in data
set)
false alarm rate = (number of false alarms)/(all non-events in data
set)
ROC-statistics:
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How to find “good” precursors?

Strategy I (the “intuitive” one)

find all events in the data base, study the preceeding time series
segments.
define precursor as xpre : P(xpre |Y = 1) = max.

Strategy II

Study P(Y |x) for all possible values of x,
define the precursor as xpre : P(Y = 1|xpre ) = max.

Remark: p(a|b) = p(b|a) p(a)
p(b) Bayesian theorem.

Remark: Strategy I is used in machine learning (“learn pairs”).
Is this the best we can do? Theoretical motivation?
Optimize the ROC statistics!
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Result: Uniformly superior prediction scheme

Optimal probabilistic predictor

p̂n = P(Yn+1 = 1|sn,τ )
Possibly convert p̂n into Ŷn by threshold pc .

ρ(
Y

|x
)

pt1

pt2

x
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Result: Uniformly superior prediction scheme

Optimal precursor for deterministic prediction

Structure x which maximizes the conditional probability
P(Yn+1 = 1|xn,τ ) (Bayesian estimate for the optimal
precursor)

since τ is finite we neglect the past of the process, which is
farther away than τ steps (pragmatic approach)

superiority of P(Yn+1 = 1|xn,τ ) to P(xn,τ |Yn+1 = 1)

ρ(
Y

|x
)

pt1

pt2

x
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Numerical algorithm

Fix the “embedding window” τ .
Estimate the conditional probability P(Yn+1 = 1|xn,τ ) from data
record

Two possibilities:

τ is small: Binning and counting
τ large: kernel estimator with kernel width δ:
P(Yn+1 = 1|xn,τ ) ≈ 1

||Uǫ(xn)||

∑

k:xk∈Uδ(xn)
Yk+1

(relative number of events in neighbourhood of xn)
Notice: Order of the Markov model/ memory depth τ enters
through the definition of the neighbourhood Uǫ(xn)
Compare: zeroth order predictor [Farmer & Sidorowivh, 1987],
Local random analogue predictor [Paparella et al., 1997]
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Extreme increments in a simple AR(1) model

Extreme event: increment xk+1 − xk > η

process: xn+1 = axn + ξn, white noise ξk , |a| < 1.
Conditioning: m = 1, precursor is a single number
xk ∈ [xpre − δ, xpre + δ] → predict an event to follow at time k + 1.
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Extreme increments in a simple AR(1) model

Extreme event: increment xk+1 − xk > η

process: xn+1 = axn + ξn, white noise ξk , |a| < 1.
Conditioning: m = 1, precursor is a single number
xk ∈ [xpre − δ, xpre + δ] → predict an event to follow at time k + 1.

Analytical results
[Hallerberg et al. (2007)]

Strategy II superior to strategy I
The more extreme the increment to be
predicted (η), the better the
predictability.
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Extreme increments in simple models

More results:

Numerically equlivalent results for long-range correlated
Gaussian data.

more analytics (compute the slope of the ROC curve at the
origin and its derivative with respect to η):

symmetric exponential distribution: no systematic dependence
of predictability on η.

Power law tails: predictability drops with increasing η.
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Threshold crossing in simple models

Feed AR(1) model with noises of different distributions, define
events by threshold crossing:
Restrict prediction trials to situations where last observation is
below threshold.
Larger Magnitude events are always better predictable.
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A free-jet experiment

free jet data (C. Renner, J. Peinke, R. Friedrich, Experimental

indications for Markov properties of small-scale turbulence, J. Fluid
Mech. (2001))

(fluid.jku.at/hp/images/stories/research/jet.jpg)
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Free jet velocity increments

Use as time series data xn = vn+k − vn, velocity increments
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Prediction of free-jet velocity increments

transition:

”exponential ROC” ⇒ ”Gaussian ROC”
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Wind speed prediction

Lammefjord measurement site: recording wind velocity vectors

Data: modulus of horizontal wind speed measured 20 m and
30 m above ground with 8Hz resolution, 1 day of data
(691200 data items)

events:
a) threshold crossing from below at 2 time steps in the future

b) large positive incrments (wind gusts),
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Wind speed prediction
Results

Threshold crossings:
deterministic prediction: threshold on predicted probability:
Brier score is dominated by false alarm rate
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large increments (gusts): Conditioning improves forecasts,
comparison of m = 1 to m = 8:
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Predicting Failures of Weather Forecasts

joint work of S. Hallerberg with Jochen Broecker and Leonard A.

Smith, LSE, London

Absolute error of high resolution forecast h with respect to
verification y

Y =

{

0 if |y − h| < η
1 if |y − h| ≥ η

Predictions are made using the number of ensemble members
showing a large error ρ = #{i , |y − xi | ≥ η}
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Predicting Failures of Weather Forecasts

Distribution of |y − h| and |y − xi | exhibit gaussian behavior
for smaller η but have an exponential tail

Weather data sets consist of only 1800 data
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Predicting Failures of Weather Forecasts
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Conclusions

Complex dynamics generates rare and extreme events

pseudo-embedding strategies for stochastic dynamics

Different precursor strategies for predictions of extremes

Dynamics enters through P(X |x) and P(x|X )

The optimal strategy is different form standard machine
learning rules

Gaussian statistics: Larger events are better predictable than
smaller events

Statistically significant predictablity of wind speeds

General flaw of this approach: cannot predict previously
unobserved event magnitude
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How to measure the quality of a prediction?
Overview of different measures

Predictability study make use of the whole PDF

predictability P(Yj = 1|s) , for all s

Kullback-Leibler as a property of → do not consider the selection

distance the system of the precursor

Brier Score compare dependent on the

forecasts relative frequency of an event,

Ignorance and due to averaging

observation
P

j f (P(Yj=1|s))

N

ROC-curve of events independent on the relative

frequency of an event

⇒ we will use the Receiver Operator Characteristic Curve
(ROC-Curve)
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Predictability and Kullback- Leibler distance

Predictability

P(sn,Yn+τ ) = 1 +
H(Yn+τ )

H(sn)
− 2

H(sn,Yn+τ )

H(sn)

with H(sn) = −
∑

sn

p(sn)log2p(sn);

Kullback- Leibler distance (relative Entropy)

D(ρ(s|Y = 1)||ρ(s|Y = 0)) =
∑

s

ρ(s|Y = 1)log2

(

ρ(s|Y = 1)

ρ(s|Y = 0)

)

both measures average over the whole possible range of
precursory structures
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Scores

Brier score

b(sn, Yn+1) =
1

N

N
∑

n=0

(Yn+1 − ρ(Yn+1 = 1|sn))
2

Relative brier score brel = b0 − b/b0;
with b0 calculated from the relative frequency of events

Ignorance (for a binary forecast)

I (s, Y ) = −
1

N

N
∑

n=0

log [2ρ(Yn+1 = 1|sn)Yn+1 + 1 − Yn+1 − ρ(Yn+1 = 1|sn)]

Relative ignorance Irel = I0 − I/I0;
with I0 evaluated using the relative frequency of events
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The Receiver Operating Characteristic Curve

ROC-curve in signal detection theory (Egans 1975), medicine,
machine learning, multi-dim. classification problems
(Srinivasam 1999, Fieldsend et al. 2005)
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Comparison

Predictability study make use of the whole PDF

predictability P(Yj |s) , for all s

Kullback- Leibler as a property of → do not consider the selection

distance the system of the precursor

Brier Score compare dependent on the

forecasts relative frequency of an event,

Ignorance and due to averaging

observation
P

j f (P(Yj |s))

N

ROC-curve of events independent on the relative

frequency of an event

⇒ we will use the Receiver Operator Characteristic Curve
(ROC-Curve)
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