
Support Vector Decoder for
Constraint-Handling

in Distributed Real Power Planning — Jörg Bremer

Motivation Background

About me

• Home
• Department for Computing Science, Environmental Informatics

• Research interest
• Computational Intelligence
• Agent-based systems
• Smart Grid

• Current Project
• Smart Nord
• TP1: Decentralized co-ordination of active power provision

1

Motivation Background

Background

2

Motivation Background

The idea of a Smart Grid

3

Motivation Background

The idea of a Smart Grid

• Connect the electricity grid and ICT, to . . .
. . . build an intelligent energy network with interacting intelligent

generators, storages, loads and transportation equipment
. . . integrate new distributed resources ad hoc into control flow

• Enable self-x properties by agent-based control
• Self-organization of small units to jointly gain enough power

I Role of power plants

• Adopts flexibly to new developments
• Scales well with the expected huge number of controllable energy
entities

Lots of interesting computational problems, but. . .

3

Agenda

Motivation

Introduction
Distributed Real Power Planning
Basic Solution Idea

Solution
Constraints
SVDD
Decoder
Optimization

Evaluation

Conclusion

4

x1

x2

x3

x4
x6

x5

x7

Introduction Distributed Real Power Planning

Use case
Planning Real Power Provision with Coalitions

5

• Starting point: We already have a coalition with controllable
energy resources

• A coalition of energy units wants to jointly operate a given active
power schedule!
• Question: How can we coordinate the group to achive this?

-10

-5

0

5

10

15

20

Introduction Distributed Real Power Planning

Timeline

6

product is delivered

re-scheduling
in case of
unforeseen
events

schedule is
partitioned &
distributed
to all DER

negotiation
results in a
product

day-ahead
market

Intra-day
market &

rescheduling optimization

planning
period/ delivery

1st grid com-
patibility check

Introduction Distributed Real Power Planning

Setting

So, what do we have?

• Product from some energy market
• Defines time frame and schedule
• . . .

• A set of distributed energy resources
• µ-CHP, photovoltaics, batteries, controllable consumer, . . .
• Individually owned and operated
• Individually configured
• Setting mostly private
• Each may offer a set of operable schedules

7

Introduction Distributed Real Power Planning

Distributed Real Power Planning

• We want: Exactly one schedule for each unit in the coalition

• Combinatorial problem: Sum of these schedules should
resemble a wanted joint schedule

• Scheduling algorithm must know for each unit, which schedules
are operable and which are not

8

Introduction Basic Solution Idea

Basic idea

9

Question

How can we model these restricted search spaces s.t. search
algorithms can work on it independently of underlying unit?

Introduction Basic Solution Idea

Basic idea

9

Question

How can we model these restricted search spaces s.t. search
algorithms can work on it independently of underlying unit?

Solution

Learn topographic traits of the solution (sub-) space and
derive a decoder for constraint-free problem formulation!

Introduction Basic Solution Idea

Basic idea

9

Question

How can we model these restricted search spaces s.t. search
algorithms can work on it independently of underlying unit?

Solution

Learn topographic traits of the solution (sub-) space and
derive a decoder for constraint-free problem formulation!

Unit
simulation

Example
schedules

Search space
model

Decoder Optimization

Sampling
Machine
Learning

Space-
Mapping

Constraint-free
formulation

Introduction Basic Solution Idea

Stopover

Let’s start with the constraints!

Unit
simulation

Example
schedules

Search space
model

Decoder Optimization

Sampling
Machine
Learning

Space-
Mapping

Constraint-free
formulation

Solution Constraints

Geometric Constraint Interpretation

• What kind of constraints do we have to deal with?

• Operability of schedules (for given time frame) . . .
. . . is restricted by technical constraints (min/max power output,

buffer charging, etc.)

. . . may depend on economical or ecological limiting factors (start-up
cost, primary energy cost, user profiles, etc.)

. . . depends on current operational state

. . . let’s have a look at a single unit first. . .

10

Solution Constraints

Constraints (Example: µ-CHP)
Example: CHP

p1: Power in period 1 (% max.)

p 2
:P

o
w
er

in
p
er
io
d
2
(%

m
ax

.)

11

Illustrative example
• Each point in plane is
schedule for 2 time
periods

X-axis: Mean active
power during period 1
Y-axis: Mean active
power during period 2

• Output always between 0
and 100%

• Without further
constraints: each schedule
operable

Solution Constraints

Constraints (Example: µ-CHP)
Example: CHP

p1: Power in period 1 (% max.)

p 2
:P

o
w
er

in
p
er
io
d
2
(%

m
ax

.)

C1a

C1b

11

Constraint C1: Modulation

• Only within given range

• OFF is additional option
(exaggerated depiction)⇒ Red area drops off the
solution space

Solution Constraints

Constraints (Example: µ-CHP)
Example: CHP

p1: Power in period 1 (% max.)

p 2
:P

o
w
er

in
p
er
io
d
2
(%

m
ax

.)

C1a

C1b

C2b

C2a

11

Constraint C2: Inertia

• No instantaneous changes⇒ Additional areas drop off

Solution Constraints

Constraints (Example: µ-CHP)
Example: CHP

p1: Power in period 1 (% max.)

p 2
:P

o
w
er

in
p
er
io
d
2
(%

m
ax

.)

C1a

C1b

C2b

C2a

C3

11

Constraint C3: Buffer capacity

• Use or store concurrently
produced thermal energy

• But: Buffer store has
limited capacity

Solution Constraints

Constraints (Example: µ-CHP)
Example: CHP

p1: Power in period 1 (% max.)

p 2
:P

o
w
er

in
p
er
io
d
2
(%

m
ax

.)

C1a

C1b

C2b

C2a

C3

11

Superposition of all constraints

• Remaining region is
solution space

• Only take schedules from
this region

• Dimension: 96 and more
not unusual!

Solution Constraints

Stopover

How can we describe the solution space?

Unit
simulation

Example
schedules

Search space
model

Decoder Optimization

Sampling
Machine
Learning

Space-
Mapping

Constraint-free
formulation

Solution SVDD

Basic Idea of Description

• Solution space is a region in Rd

• Elements are active power schedules p = (p1, . . . , pd) ∈ Rd

• with mean active power during period 0 ≤ i ≤ d

• Structure is abstraction for
• The unit (or rather its future control capabilities)
• The set of constraints

Idea:

Have the region learned from a set of
example schedules

A support vector approach works very well here. . .

12

Solution SVDD

SVDD: Basic Idea

13

Rd

• Given: sample X ∈ Rd

• Here: set of schedules
• Wanted: enclosing surface

• not necessarily connected

Solution SVDD

SVDD: Basic Idea

13

Rd H(k)
Φ : X → H

• Step 1: Map to some Hilbert
spaceHk with k >> d

• LetΦ be a mapping that
can do it
• Φ is unknown
• And manyΦwould do

Solution SVDD

SVDD: Basic Idea

13

Rd

S

H(k)
Φ : X → H

• ∃ a hyper-sphere S , that
contains all images ofΦ(X)

• DifferentΦ imply different
spheres of different size

• But then, there is a smallest
one, so. . .

Solution SVDD

SVDD: Basic Idea

13

Rd H(k)
Φ : X → H

• Step 2: Find smallest sphere

• Minimize:
‖Φ(xi) − a‖2 ≤ R2 + ξi ∀i

• Use: Mercer’s theorem and
substitute dot-products inH
with kernel in Rd

• Result:
• Set of support vectors

I Mapped directly onto the
surface of the sphere

I Here: subset of example
schedules

• Distance-function

Solution SVDD

SVDD: Basic Idea

13

Rd H(k)
Φ : X → H

Φ−1(S)

Distance to center:

R2(x) = ‖Φ(x) − a‖2 = k(x , x) − 2
∑

i βi k(xi , x) +
∑

i,j βiβj k(xi , xj)

• Result:
• Set of support vectors

I Mapped directly onto the
surface of the sphere

I Here: subset of example
schedules

• Distance-function
I All calculations can be

done in data space
(Φ(x) ·Φ(y) = k(x , y))

I We only need support
vectors (non-zero weights)

Solution SVDD

SVDD: Basic Idea

13

Rd H(k)
Φ : X → H

Φ−1(S)

Distance to center:

R2(x) = ‖Φ(x) − a‖2 = k(x , x) − 2
∑

i βi k(xi , x) +
∑

i,j βiβj k(xi , xj)

• Step 3: Determine pre-image
of sphere

• Set of points {x |R2(x) ≤ R2(s)}
defines solution space

• Decision boundary separates
feasible and in-feasible
solutions

Solution SVDD

Modeling the Solution Space

14

• Model consists of:
• Set of support vectors SV = {xi ∈ X | βi 6= 0}
• Associated weights: w = (β1, . . . , βn) ∀β 6= 0
• Some additional unit parameters: e.g. max. power, . . .

• Model is a black-box
• Decision function: R2(x) = 1 − 2

∑
i wikG(si , x) +

∑
i,j wiwjkG(si , sj)

• Solution space: {x |R(x) ≤ RS }
• Decision: feasible or not

. . . and ordering according to proximity to feasibility

Sampling / SVDD Optimierung

Simulationsmodell

x1

x2

x3

x4

x6

x5

x7

Black-Box

Solution SVDD

Stopover

But, where does the sample come from?

Unit
simulation

Example
schedules

Search space
model

Decoder Optimization

Sampling
Machine
Learning

Space-
Mapping

Constraint-free
formulation

Solution Sampling

Sampling

• We need a set of example schedules
• As a stencil for the region that they reside in
• We have: simulation model of the respective unit that

. . . can check feasibility of given schedule

. . . and thus may serve as a characteristic function

• Naïve approach: Generate random schedule and check with
simulation model

• But:
• Example: if 1/3 is infeasible in each time period
• Then for a whole day, a fraction of (2

3)
96 ≈ 1.25× 10−17 is feasible⇒ Correct guessing very unlikely

15

Solution Sampling

Successive Sampling

• Solution: Successively build schedules for the sample
• In co-operation with simulation model:

• Guessing a 1-dimensional schedule correctly
. . . quite likely
. . . even more with more than one try

• Simulation model determines follow-up state
• Repeat until schedule complete
• Probability: Pd

(n) =
(∑n

i=1 B(i |P, n)
)d
, current example: 0.314

• Advantage: Interface only comprises evaluation of given
schedule

• For correct density: e.g. kernel density estimation

16

Solution Sampling

Stopover

How can we use this model for optimization?

Unit
simulation

Example
schedules

Search space
model

Decoder Optimization

Sampling
Machine
Learning

Space-
Mapping

Constraint-free
formulation

Solution Sampling

Optimization Problem

17

-10

-5

0

5

10

15

20

• Each unit delivers a search space model

• Search is defined on this set of models

Solution Sampling

Integration Problems

Problem

Integration of model into optimization showed up to be
not so easy!

• Use as blackbox model still implies a need for constraint
handling for each non-linear distance-function

• Using distance as external penalty mostly got stuck in infeasible
solutions
. . . too many penalties!

So, we went for another idea. . .

18

Solution Decoder

Decoder: Concept

Idea:

Build a decoder based on the SVDD-model!

• In general: A decoder gives hints on how to construct feasible
solutions

• Here: Build a mapping that
. . . makes an arbitrary solution feasible (solution repair)
. . . maps space of all schedules to feasible region for constraint free

problem formulation
. . . that can be automatically derived frommodel

19

Solution Decoder

Decoder: Idea

20

x ∈ [0, 1]d
Φ̂` - Ψ̂x ∈ H(`)

x∗ ∈ F[0,1] ⊆ [0, 1]d

γ

?
�

Φ∼1
`

�Ψx ∈ S(`) ∈ H(`)

Γa

?

x

Ψ̂x

�Ψx

x∗

Φ̂(`) Γa

Φ{1
`

γ

Construct: Mapping γ = Φ{1
` ◦ Γa ◦ Φ̂`

Step by step:

1. Empirical mapping into sub-space ofH
2. Adjustment towards sphere center

3. Find pre-image of adjusted image

Solution Decoder

Decoder: Implementation

21

x

• Let x be an arbitrary (infeasible) Solution candidate

Solution Decoder

Decoder: Implementation

21

x

Ψ̂x
Φ̂(`)

• Step 1: Map to kernel space
• spanned by support vectors

• Infeasible solution⇒ Image outside of sphere

Empirical kernel map

Φ̂`(x) : Rd → H(`)

x 7→ K− 1
2

k(s1, x)
. . .

k(s`, x)

Solution Decoder

Decoder: Implementation

21

x

Ψ̂x

Ψ̂x − a

a

Φ̂(`)

• Image, center and distance of image are known

Solution Decoder

Decoder: Implementation

21

x

Ψ̂x

�Ψx

Φ̂(`) Γa

• Step 2: Move image towards feasibility

Adjustment inH

Γa(Ψ̂x) : H(`) → H(`)

Ψ̂x 7→ a +
(Ψ̂x − a) · RS

Rx

Solution Decoder

Decoder: Implementation

21

x

Ψ̂x

�Ψx

x∗

Φ̂(`) Γa

Φ{1
`

• Step 3: Find pre-image

• Resulting in a point at outskirts of feasible region

Pre-image

Φ{1
` : H(`) → Rd

x∗n+1 =

∑`
i=1(�w

Γa
i e−‖si−x∗n ‖

2/2σ2
si)∑`

i=1(�w
Γa
i e−‖si−x∗n ‖2/2σ2

)

Solution Decoder

Decoder: Implementation

21

x

Ψ̂x

�Ψx

x∗

Φ̂(`) Γa

Φ{1
`

γ

• Concatenation yields the mapping

• But: so far only surface is used

Sought mapping

γ = Φ{1
` ◦ Γa ◦ Φ̂`

Solution Decoder

Decoder: Implementation

21

x

Ψ̂x

• Actually, we do not have really arbitrary points (Box-Constraint)
• Points are from [0, 1]d

Solution Decoder

Decoder: Implementation

21

x

Ψ̂x

Rmax

RS

• ∃ a larger sphere that contains all images

• Might be rescaled to the smaller one

Improvement

�Ψx = a +
RS

Rmax
· (Ψ̂x − a)

But: Rmax unknown!

Solution Decoder

Decoder: Implementation

21

x

Ψ̂x
Φ̂(`)

�Ψxx∗

Γ ′a

Φ{1
`

• Enables constraint free formulation

. . . by mapping to different search space

Improvement

�Ψx = a +
RS

Rmax
· (Ψ̂x − a)

But: Rmax unknown!

Solution Decoder

Decoder: Results

22

Solution Decoder

Decoder: Results

22

Solution Decoder

Decoder: Results

22

Solution Decoder

Decoder: Results

22

Solution Decoder

Decoder: Results

22

Solution Decoder

Decoder: Results

22

Solution Decoder

Stopover

Now we can integrate model and optimization!

Unit
simulation

Example
schedules

Search space
model

Decoder Optimization

Sampling
Machine
Learning

Space-
Mapping

Constraint-free
formulation

Solution Optimization

Optimization

• Involved: n distributed energy units→
• n search space models and
• thus n decoder mappings γ1 . . . γn

• Also given by market→ target schedule ζ

• Configuration: σ = (x1, . . . , xn), with xi ∈ [0, 1]d

• Error:H = ‖ζ−
∑

Pmax
i · γi(xi)‖

• Configuration may evolve in ([0, 1]d)n

• Let τ = (τ1, . . . , τn) be configuration with smallest found errorH

• Then, (Pmax
1 · γ1(τ1), . . . ,Pmax

n · γn(τn)) is solution

23

Solution Optimization

Optimization

• Involved: n distributed energy units→
• n search space models and
• thus n decoder mappings γ1 . . . γn

• Also given by market→ target schedule ζ

• Configuration: σ = (x1, . . . , xn), with xi ∈ [0, 1]d

• Error:H = ‖ζ−
∑

Pmax
i · γi(xi)‖

• Configuration may evolve in ([0, 1]d)n

• Let τ = (τ1, . . . , τn) be configuration with smallest found errorH

• Then, (Pmax
1 · γ1(τ1), . . . ,Pmax

n · γn(τn)) is solution

23

Solution Optimization

Optimization

• Involved: n distributed energy units→
• n search space models and
• thus n decoder mappings γ1 . . . γn

• Also given by market→ target schedule ζ

• Configuration: σ = (x1, . . . , xn), with xi ∈ [0, 1]d

• Error:H = ‖ζ−
∑

Pmax
i · γi(xi)‖

• Configuration may evolve in ([0, 1]d)n

• Let τ = (τ1, . . . , τn) be configuration with smallest found errorH

• Then, (Pmax
1 · γ1(τ1), . . . ,Pmax

n · γn(τn)) is solution

23

Solution Optimization

Optimization

• Involved: n distributed energy units→
• n search space models and
• thus n decoder mappings γ1 . . . γn

• Also given by market→ target schedule ζ

• Configuration: σ = (x1, . . . , xn), with xi ∈ [0, 1]d

• Error:H = ‖ζ−
∑

Pmax
i · γi(xi)‖

• Configuration may evolve in ([0, 1]d)n

• Let τ = (τ1, . . . , τn) be configuration with smallest found errorH

• Then, (Pmax
1 · γ1(τ1), . . . ,Pmax

n · γn(τn)) is solution

23

Solution Optimization

Advantages of the Decoder

• Using standard methods for optimization

• Algorithm does not need to know anything about unit, model or
constraints

• Equal treatment of different types of unit

• Integrate new, so far unknown units

. . . and distributed algorithms?

24

Solution Optimization

Distributed Greedy

25

• Use case: Distributed approach with multi-agent
system

• Blackboard approach
• ∃ commonly known joint solution

• Basic idea: every one does repeatedly his best for
solution improvement
• Difference between joint solution and own
solution part: what the others do

• Difference between target and ’what the others
do’: the missing part

. . . if this schedule is realizable: done!

Solution Optimization

Algorithm

26

A← List of all agents
starget ← target schedule
St

a ← This agents contribution (initially zero)
if is initiator then

S ← zeros(n)
else

S ←aggregated schedule
St+1

a ← γ(starget − (S − Sa))

S ← S − St
a + St+1

a

if no stop criterion met then
choose random agent A ∈ A
send message with S to A

else
publish solution S

end if
end if

Solution Optimization

Greedy Ansatz

27

p1: el. Leistung in Periode 1

p 1
:e

l.
Le

is
tu
n
g
in

P
er
io
d
e
2

γ

F1

F2

F3

∑n−3
i xi

xRest

Ziel

∆x

Solution Optimization

Greedy Ansatz

27

p1: el. Leistung in Periode 1

p 1
:e

l.
Le

is
tu
n
g
in

P
er
io
d
e
2

γ

∆
E

F1

F3

F2

∑n−3
i xi

xRest

Solution Optimization

Results for Distributed Greedy

28

• worst case operation

• target and achieved
schedule

• Remaining error
≈2.1% of worst case

Solution Optimization

Results for Distributed Greedy

28

• target and achieved
schedule for 100 CHP /
kW

• Error / kW

• individual schedules CHP
/ kW

• buffer temperature / °C

• grey areas: respective
feasible region

Solution Optimization

Zwischenstopp

What about evaluation criteria?

Solution Performance indicators

Extended model

Integrating individual performance indicators:

• We do have a many-objective problem

• Indicators must be assigned to individual schedules

Idea:

• Assumption: ∃ a (not necessarily known) relation between
schedule and indicator value

• Indicators are concatenated to schedule

• Model and decoder can be used without changes

• SVDD concurrently learns relationship

• Decoder reconstructs indicator values

29

Solution Performance indicators

Indicator results

30

Error: Difference between original and
reconstructed indicator value

d Rosenbrock therm. Puffer
16 7.940e-5±2.104e-4 1.652e-4±6.948e-5
32 8.756e-5±1.894e-4 1.517e-4±7.549e-5
48 1.368e-4±2.393e-4 1.513e-4±7.188e-5
64 1.300e-4±2.383e-4 1.441e-4±7.260e-5
80 1.051e-4±2.448e-4 1.461e-4±7.433e-5
96 1.019e-4±1.988e-4 1.500e-4±7.721e-5

Example indicators

• Cost

• Preserving degrees of freedom

• Final state (for re-scheduling)

. . .

Conclusion

Conclusion

• Support Vector Decoder
. . . flexible Model
. . . allows for easy integration into optimization
. . . supports many use cases

I Coaltion formation
I Re-scheduling
I Profit distribution

• Working prototype has been realized in Smart Nord

• Use case not restricted to power planning

31

Conclusion

Literature

Bremer, J., & Sonnenschein, M. (2013).

Constraint-Handling for Optimization with Support Vector Surrogate Models: A Noval Decoder Approach.
In Proceedings of the 5th International Conference on Agents and Artificial Intelligence (ICAART 2013) Barcelona, Spain

Bremer, J., & Sonnenschein, M. (2012).

A Distributed Greedy Algorithm for Constraint-based Scheduling of Energy Resources.
In 1st International Workshop on Smart Energy Networks & Multi-Agent Systems (SEN-MAS 2012)Wroclaw, Poland.

Bremer, J., Rapp, B., & Sonnenschein, M. (2011a).

Encoding distributed search spaces for virtual power plants.
In IEEE Symposium Series in Computational Intelligence 2011 (SSCI 2011) Paris, France.

Bremer, J., Rapp, B., & Sonnenschein, M. (2011b).

Including Environmental Performance Indicators into Kernel based Search Space Representations.
In Information Technologies in Environmental Engineering (ITEE 2011).

Bremer, J., Rapp, B., & Sonnenschein, M. (2010).

Support vector based encoding of distributed energy resources’ feasible load spaces.
In IEEE PES Conference on Innovative Smart Grid Technologies Europe Chalmers Lindholmen, Gothenburg, Sweden.

32

33

Vielen Dank für Ihre
Aufmerksamkeit!

Backup

Basisliteratur

Tax, David M. J. & Duin, R. P. W. (2004).

Support Vector Data Description.
In Journal of Machine Learning Kluwer Academic Publishers, Hingham, USA

B. Schölkopf and S. Mika and C. Burges and P. Knirsch and K.-R. Müller and G. Rätsch and A. Smola (1999).

Input space vs. feature space in kernel-based methods.
In IEEE Transactions on Neural Networks

Park, J., Kang, D., Kim, J., Kwok, J. T., Tsang,& Ivor W. (2007).

SVDD-Based Pattern Denoising.
In Journal of Neural ComputingMIT Press, Cambridge, USA

Kwok, J. T. Y. & Tsang, I. W. H. (2004).

The pre-image problem in kernel methods.
In IEEE Transactions on Neural Networks

Squire, W. (1975).

Computer implementation of the Schwarz-Christoffel transformation.
In Journal of the Franklin Institute Elsevier

Ben-Hur, A., Siegelmann, H.T., Horn, D., & Vapnik, V. (2001).

Support Vector Clustering.
In Journal of Machine Learning Research IEEE Computer Society, Los Alamitos, USA

Platt, J.C. (1998).

Fast training of support vector machines using sequential minimal optimization.
In Advances in Kernel MethodsMIT Press

33

Backup

Kerndichteschätzer (Beispiel)

33

Backup

Kerndichteschätzer (Beispiel)

33

Backup

Kerndichteschätzer (Beispiel)

33

Backup

Klassifikationsprinzip

33

− Klassifikation

R RS Abstandsbestimmung

k k k Vergleich

Supportvektoren

Eingabelastgang

sgn()

w1 w2 w3

Backup

Hypersphäre

33

φ(·) = 1

‖φ(x) − a‖ = R

a

SV1

SV2

Backup

Zustand

33

Backup

Anzahl

33

Backup

Optimierung

• Beteiligt: n dezentrale Anlagen→
• n Suchraummodelle und
• somit n Dekoderabbildungen γ1 . . . γn

• Ferner: Markt→ Ziellastgang ζ

• Lösungskonfiguration: σ = (x1, . . . , xn), wobei xi ∈ [0, 1]d

• Zu minimierender Fehler:H = ‖ζ−
∑

Pmax
i · γi(xi)‖

• Variation der Lösungskonfiguration kann in ([0, 1]d)n erfolgen

• Sei τ = (τ1, . . . , τn) die Konfiguration mit dem kleinsten
gefundenen FehlerH

• Dann ist (Pmax
1 · γ1(τ1), . . . ,Pmax

n · γn(τn)) die Lösung

33

Backup

Klassische Ansätze
. . . drei Beispiele

Constraintbasierte Optimierung

f (x1, x2, . . . , xn)→ min, s.t. Ri(xi) ≤ RSi , 0 ≤ i ≤ n

• Problem: Nicht-lineare Nebenbedingungen; so noch keine
Constraintbehandlung

Kombinatorisch (Multiple Choice Subset Sum)

f (x1, x2, . . . , xn)→ min, s.t. xi ∈ X2 ⊂ Fi , 0 ≤ i ≤ n

• Problem: Erzeugen von Lösungskandidaten schwierig

Optimierung mit Penalty

f (x1, x2, . . . , xn) + p(R1(x1),R2(x2), . . . ,Ri(xi))→ min

• Problem: Ungültige Lösungen möglich und mit wachsender
Problemgröße immer wahrscheinlicher

33

	Motivation
	Introduction
	Distributed Real Power Planning
	Basic Solution Idea

	Solution
	Constraints
	SVDD
	Decoder
	Optimization

	Evaluation
	Conclusion

