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Motivation Background

About me

• Home
• Department for Computing Science, Environmental Informatics

• Research interest
• Computational Intelligence
• Agent-based systems
• Smart Grid

• Current Project
• Smart Nord
• TP1: Decentralized co-ordination of active power provision
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Motivation Background

The idea of a Smart Grid
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Motivation Background

The idea of a Smart Grid

• Connect the electricity grid and ICT, to . . .
. . . build an intelligent energy network with interacting intelligent

generators, storages, loads and transportation equipment
. . . integrate new distributed resources ad hoc into control flow

• Enable self-x properties by agent-based control
• Self-organization of small units to jointly gain enough power

I Role of power plants

• Adopts flexibly to new developments
• Scales well with the expected huge number of controllable energy
entities

Lots of interesting computational problems, but. . .

3



Agenda

Motivation

Introduction
Distributed Real Power Planning
Basic Solution Idea

Solution
Constraints
SVDD
Decoder
Optimization

Evaluation

Conclusion

4

x1

x2

x3

x4
x6

x5

x7



Introduction Distributed Real Power Planning

Use case
Planning Real Power Provision with Coalitions
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• Starting point: We already have a coalition with controllable
energy resources

• A coalition of energy units wants to jointly operate a given active
power schedule!
• Question: How can we coordinate the group to achive this?
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Introduction Distributed Real Power Planning

Timeline
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Introduction Distributed Real Power Planning

Setting

So, what do we have?

• Product from some energy market
• Defines time frame and schedule
• . . .

• A set of distributed energy resources
• µ-CHP, photovoltaics, batteries, controllable consumer, . . .
• Individually owned and operated
• Individually configured
• Setting mostly private
• Each may offer a set of operable schedules
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Introduction Distributed Real Power Planning

Distributed Real Power Planning

• We want: Exactly one schedule for each unit in the coalition

• Combinatorial problem: Sum of these schedules should
resemble a wanted joint schedule

• Scheduling algorithm must know for each unit, which schedules
are operable and which are not
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Introduction Basic Solution Idea

Basic idea
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Question

How can we model these restricted search spaces s.t. search
algorithms can work on it independently of underlying unit?
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Basic idea
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Question

How can we model these restricted search spaces s.t. search
algorithms can work on it independently of underlying unit?

Solution

Learn topographic traits of the solution (sub-) space and
derive a decoder for constraint-free problem formulation!



Introduction Basic Solution Idea

Basic idea

9

Question

How can we model these restricted search spaces s.t. search
algorithms can work on it independently of underlying unit?

Solution

Learn topographic traits of the solution (sub-) space and
derive a decoder for constraint-free problem formulation!
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Introduction Basic Solution Idea

Stopover

Let’s start with the constraints!

Unit 
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Solution Constraints

Geometric Constraint Interpretation

• What kind of constraints do we have to deal with?

• Operability of schedules (for given time frame) . . .
. . . is restricted by technical constraints (min/max power output,

buffer charging, etc.)

. . . may depend on economical or ecological limiting factors (start-up
cost, primary energy cost, user profiles, etc.)

. . . depends on current operational state

. . . let’s have a look at a single unit first. . .
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Solution Constraints

Constraints (Example: µ-CHP)
Example: CHP

p1: Power in period 1 (% max.)
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Illustrative example
• Each point in plane is
schedule for 2 time
periods

X-axis: Mean active
power during period 1
Y-axis: Mean active
power during period 2

• Output always between 0
and 100%

• Without further
constraints: each schedule
operable
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Constraint C1: Modulation

• Only within given range

• OFF is additional option
(exaggerated depiction)⇒ Red area drops off the
solution space



Solution Constraints
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Constraint C2: Inertia

• No instantaneous changes⇒ Additional areas drop off



Solution Constraints

Constraints (Example: µ-CHP)
Example: CHP
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Constraint C3: Buffer capacity

• Use or store concurrently
produced thermal energy

• But: Buffer store has
limited capacity



Solution Constraints

Constraints (Example: µ-CHP)
Example: CHP
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Superposition of all constraints

• Remaining region is
solution space

• Only take schedules from
this region

• Dimension: 96 and more
not unusual!



Solution Constraints

Stopover

How can we describe the solution space?
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Solution SVDD

Basic Idea of Description

• Solution space is a region in Rd

• Elements are active power schedules p = (p1, . . . , pd) ∈ Rd

• with mean active power during period 0 ≤ i ≤ d

• Structure is abstraction for
• The unit (or rather its future control capabilities)
• The set of constraints

Idea:

Have the region learned from a set of
example schedules

A support vector approach works very well here. . .
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Solution SVDD

SVDD: Basic Idea
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Rd

• Given: sample X ∈ Rd

• Here: set of schedules
• Wanted: enclosing surface

• not necessarily connected



Solution SVDD

SVDD: Basic Idea
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Rd H(k)
Φ : X → H

• Step 1: Map to some Hilbert
spaceHk with k >> d

• LetΦ be a mapping that
can do it
• Φ is unknown
• And manyΦwould do



Solution SVDD

SVDD: Basic Idea

13

Rd

S

H(k)
Φ : X → H

• ∃ a hyper-sphere S , that
contains all images ofΦ(X )

• DifferentΦ imply different
spheres of different size

• But then, there is a smallest
one, so. . .



Solution SVDD

SVDD: Basic Idea

13

Rd H(k)
Φ : X → H

• Step 2: Find smallest sphere

• Minimize:
‖Φ(xi) − a‖2 ≤ R2 + ξi ∀i

• Use: Mercer’s theorem and
substitute dot-products inH
with kernel in Rd

• Result:
• Set of support vectors

I Mapped directly onto the
surface of the sphere

I Here: subset of example
schedules

• Distance-function



Solution SVDD

SVDD: Basic Idea

13

Rd H(k)
Φ : X → H

Φ−1(S)

Distance to center:

R2(x) = ‖Φ(x) − a‖2 = k(x , x) − 2
∑

i βi k(xi , x) +
∑

i,j βiβj k(xi , xj )

• Result:
• Set of support vectors

I Mapped directly onto the
surface of the sphere

I Here: subset of example
schedules

• Distance-function
I All calculations can be

done in data space
(Φ(x) ·Φ(y) = k(x , y))

I We only need support
vectors (non-zero weights)



Solution SVDD

SVDD: Basic Idea

13

Rd H(k)
Φ : X → H

Φ−1(S)

Distance to center:

R2(x) = ‖Φ(x) − a‖2 = k(x , x) − 2
∑

i βi k(xi , x) +
∑

i,j βiβj k(xi , xj )

• Step 3: Determine pre-image
of sphere

• Set of points {x |R2(x) ≤ R2(s)}
defines solution space

• Decision boundary separates
feasible and in-feasible
solutions



Solution SVDD

Modeling the Solution Space
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• Model consists of:
• Set of support vectors SV = {xi ∈ X | βi 6= 0}
• Associated weights: w = (β1, . . . , βn) ∀β 6= 0
• Some additional unit parameters: e.g. max. power, . . .

• Model is a black-box
• Decision function: R2(x) = 1 − 2

∑
i wikG(si , x) +

∑
i,j wiwjkG(si , sj)

• Solution space: {x |R(x) ≤ RS }
• Decision: feasible or not

. . . and ordering according to proximity to feasibility

Sampling / SVDD Optimierung

Simulationsmodell

x1

x2

x3

x4

x6

x5

x7

Black-Box



Solution SVDD

Stopover

But, where does the sample come from?

Unit 
simulation 

Example 
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Solution Sampling

Sampling

• We need a set of example schedules
• As a stencil for the region that they reside in
• We have: simulation model of the respective unit that

. . . can check feasibility of given schedule

. . . and thus may serve as a characteristic function

• Naïve approach: Generate random schedule and check with
simulation model

• But:
• Example: if 1/3 is infeasible in each time period
• Then for a whole day, a fraction of ( 2

3 )
96 ≈ 1.25× 10−17 is feasible⇒ Correct guessing very unlikely
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Solution Sampling

Successive Sampling

• Solution: Successively build schedules for the sample
• In co-operation with simulation model:

• Guessing a 1-dimensional schedule correctly
. . . quite likely
. . . even more with more than one try

• Simulation model determines follow-up state
• Repeat until schedule complete
• Probability: Pd

(n) =
(∑n

i=1 B(i |P, n)
)d
, current example: 0.314

• Advantage: Interface only comprises evaluation of given
schedule

• For correct density: e.g. kernel density estimation

16



Solution Sampling

Stopover

How can we use this model for optimization?

Unit 
simulation 

Example 
schedules 

Search space 
model 

Decoder Optimization 

Sampling 
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Learning 
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Solution Sampling

Optimization Problem

17
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• Each unit delivers a search space model

• Search is defined on this set of models



Solution Sampling

Integration Problems

Problem

Integration of model into optimization showed up to be
not so easy!

• Use as blackbox model still implies a need for constraint
handling for each non-linear distance-function

• Using distance as external penalty mostly got stuck in infeasible
solutions
. . . too many penalties!

So, we went for another idea. . .

18



Solution Decoder

Decoder: Concept

Idea:

Build a decoder based on the SVDD-model!

• In general: A decoder gives hints on how to construct feasible
solutions

• Here: Build a mapping that
. . . makes an arbitrary solution feasible (solution repair)
. . . maps space of all schedules to feasible region for constraint free

problem formulation
. . . that can be automatically derived frommodel

19



Solution Decoder

Decoder: Idea

20

x ∈ [0, 1]d
Φ̂` - Ψ̂x ∈ H(`)

x∗ ∈ F[0,1] ⊆ [0, 1]d

γ

?
�

Φ∼1
`

�Ψx ∈ S(`) ∈ H(`)

Γa

?

x

Ψ̂x

�Ψx

x∗

Φ̂(`) Γa

Φ{1
`

γ

Construct: Mapping γ = Φ{1
` ◦ Γa ◦ Φ̂`

Step by step:

1. Empirical mapping into sub-space ofH
2. Adjustment towards sphere center

3. Find pre-image of adjusted image



Solution Decoder

Decoder: Implementation

21

x

• Let x be an arbitrary (infeasible) Solution candidate



Solution Decoder

Decoder: Implementation

21

x

Ψ̂x
Φ̂(`)

• Step 1: Map to kernel space
• spanned by support vectors

• Infeasible solution⇒ Image outside of sphere

Empirical kernel map

Φ̂`(x) : Rd → H(`)

x 7→ K− 1
2

k(s1, x)
. . .

k(s`, x)





Solution Decoder

Decoder: Implementation

21

x

Ψ̂x

Ψ̂x − a

a

Φ̂(`)

• Image, center and distance of image are known



Solution Decoder

Decoder: Implementation

21

x

Ψ̂x

�Ψx

Φ̂(`) Γa

• Step 2: Move image towards feasibility

Adjustment inH

Γa(Ψ̂x ) : H(`) → H(`)

Ψ̂x 7→ a +
(Ψ̂x − a) · RS

Rx



Solution Decoder

Decoder: Implementation

21

x

Ψ̂x

�Ψx

x∗

Φ̂(`) Γa

Φ{1
`

• Step 3: Find pre-image

• Resulting in a point at outskirts of feasible region

Pre-image

Φ{1
` : H(`) → Rd

x∗n+1 =

∑`
i=1(�w

Γa
i e−‖si−x∗n ‖

2/2σ2
si )∑`

i=1(�w
Γa
i e−‖si−x∗n ‖2/2σ2

)



Solution Decoder

Decoder: Implementation

21

x

Ψ̂x

�Ψx

x∗

Φ̂(`) Γa

Φ{1
`

γ

• Concatenation yields the mapping

• But: so far only surface is used

Sought mapping

γ = Φ{1
` ◦ Γa ◦ Φ̂`



Solution Decoder

Decoder: Implementation

21

x

Ψ̂x

• Actually, we do not have really arbitrary points (Box-Constraint)
• Points are from [0, 1]d



Solution Decoder

Decoder: Implementation

21

x

Ψ̂x

Rmax

RS

• ∃ a larger sphere that contains all images

• Might be rescaled to the smaller one

Improvement

�Ψx = a +
RS

Rmax
· (Ψ̂x − a)

But: Rmax unknown!



Solution Decoder

Decoder: Implementation

21

x

Ψ̂x
Φ̂(`)

�Ψxx∗

Γ ′a

Φ{1
`

• Enables constraint free formulation

. . . by mapping to different search space

Improvement

�Ψx = a +
RS

Rmax
· (Ψ̂x − a)

But: Rmax unknown!



Solution Decoder

Decoder: Results
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Solution Decoder

Stopover

Now we can integrate model and optimization!

Unit 
simulation 

Example 
schedules 

Search space 
model 

Decoder Optimization 

Sampling 
Machine 
Learning 

Space-
Mapping 

Constraint-free 
formulation 



Solution Optimization

Optimization

• Involved: n distributed energy units→
• n search space models and
• thus n decoder mappings γ1 . . . γn

• Also given by market→ target schedule ζ

• Configuration: σ = (x1, . . . , xn), with xi ∈ [0, 1]d

• Error:H = ‖ζ−
∑

Pmax
i · γi(xi)‖

• Configuration may evolve in ([0, 1]d)n

• Let τ = (τ1, . . . , τn) be configuration with smallest found errorH

• Then, (Pmax
1 · γ1(τ1), . . . ,Pmax

n · γn(τn)) is solution

23
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Solution Optimization

Advantages of the Decoder

• Using standard methods for optimization

• Algorithm does not need to know anything about unit, model or
constraints

• Equal treatment of different types of unit

• Integrate new, so far unknown units

. . . and distributed algorithms?

24



Solution Optimization

Distributed Greedy

25

• Use case: Distributed approach with multi-agent
system

• Blackboard approach
• ∃ commonly known joint solution

• Basic idea: every one does repeatedly his best for
solution improvement
• Difference between joint solution and own
solution part: what the others do

• Difference between target and ’what the others
do’: the missing part

. . . if this schedule is realizable: done!



Solution Optimization

Algorithm

26

A← List of all agents
starget ← target schedule
St

a ← This agents contribution (initially zero)
if is initiator then

S ← zeros(n)
else

S ←aggregated schedule
St+1

a ← γ(starget − (S − Sa))

S ← S − St
a + St+1

a

if no stop criterion met then
choose random agent A ∈ A
send message with S to A

else
publish solution S

end if
end if



Solution Optimization

Greedy Ansatz

27
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p 1
:e

l.
Le

is
tu
n
g
in

P
er
io
d
e
2

γ

F1

F2

F3

∑n−3
i xi

xRest

Ziel

∆x



Solution Optimization

Greedy Ansatz
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p1: el. Leistung in Periode 1
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Solution Optimization

Results for Distributed Greedy

28

• worst case operation

• target and achieved
schedule

• Remaining error
≈2.1% of worst case



Solution Optimization

Results for Distributed Greedy

28

• target and achieved
schedule for 100 CHP /
kW

• Error / kW

• individual schedules CHP
/ kW

• buffer temperature / °C

• grey areas: respective
feasible region



Solution Optimization

Zwischenstopp

What about evaluation criteria?



Solution Performance indicators

Extended model

Integrating individual performance indicators:

• We do have a many-objective problem

• Indicators must be assigned to individual schedules

Idea:

• Assumption: ∃ a (not necessarily known) relation between
schedule and indicator value

• Indicators are concatenated to schedule

• Model and decoder can be used without changes

• SVDD concurrently learns relationship

• Decoder reconstructs indicator values

29



Solution Performance indicators

Indicator results

30

Error: Difference between original and
reconstructed indicator value

d Rosenbrock therm. Puffer
16 7.940e-5±2.104e-4 1.652e-4±6.948e-5
32 8.756e-5±1.894e-4 1.517e-4±7.549e-5
48 1.368e-4±2.393e-4 1.513e-4±7.188e-5
64 1.300e-4±2.383e-4 1.441e-4±7.260e-5
80 1.051e-4±2.448e-4 1.461e-4±7.433e-5
96 1.019e-4±1.988e-4 1.500e-4±7.721e-5

Example indicators

• Cost

• Preserving degrees of freedom

• Final state (for re-scheduling)

. . .



Conclusion

Conclusion

• Support Vector Decoder
. . . flexible Model
. . . allows for easy integration into optimization
. . . supports many use cases

I Coaltion formation
I Re-scheduling
I Profit distribution

• Working prototype has been realized in Smart Nord

• Use case not restricted to power planning

31



Conclusion
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Kerndichteschätzer (Beispiel)
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Kerndichteschätzer (Beispiel)
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Backup

Klassifikationsprinzip

33

− Klassifikation

R RS Abstandsbestimmung

k k k Vergleich

Supportvektoren

Eingabelastgang

sgn( )

w1 w2 w3



Backup

Hypersphäre

33

φ(·) = 1

‖φ(x) − a‖ = R

a

SV1

SV2
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Zustand

33



Backup

Anzahl
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Backup

Optimierung

• Beteiligt: n dezentrale Anlagen→
• n Suchraummodelle und
• somit n Dekoderabbildungen γ1 . . . γn

• Ferner: Markt→ Ziellastgang ζ

• Lösungskonfiguration: σ = (x1, . . . , xn), wobei xi ∈ [0, 1]d

• Zu minimierender Fehler:H = ‖ζ−
∑

Pmax
i · γi(xi)‖

• Variation der Lösungskonfiguration kann in ([0, 1]d)n erfolgen

• Sei τ = (τ1, . . . , τn) die Konfiguration mit dem kleinsten
gefundenen FehlerH

• Dann ist (Pmax
1 · γ1(τ1), . . . ,Pmax

n · γn(τn)) die Lösung

33



Backup

Klassische Ansätze
. . . drei Beispiele

Constraintbasierte Optimierung

f (x1, x2, . . . , xn)→ min, s.t. Ri(xi) ≤ RSi , 0 ≤ i ≤ n

• Problem: Nicht-lineare Nebenbedingungen; so noch keine
Constraintbehandlung

Kombinatorisch (Multiple Choice Subset Sum)

f (x1, x2, . . . , xn)→ min, s.t. xi ∈ X2 ⊂ Fi , 0 ≤ i ≤ n

• Problem: Erzeugen von Lösungskandidaten schwierig

Optimierung mit Penalty

f (x1, x2, . . . , xn) + p(R1(x1),R2(x2), . . . ,Ri(xi))→ min

• Problem: Ungültige Lösungen möglich und mit wachsender
Problemgröße immer wahrscheinlicher

33
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