
Dynamical triangulations (and quadrangulations) in
statistical physics

Martin Weigel

Institut für Physik, KOMET 331
Johannes-Gutenberg-Universität Mainz

Kolloquium Theoretische Physik,
Carl von Ossietzky Universität Oldenburg,

June 19, 2008

M. Weigel (Mainz) Dynamical triangulations in statistical physics 19/06/2008 1 / 29



Outline

1 Dynamical triangulations as discrete approach to quantum gravity

2 Dynamical triangulations in statistical physics: computer simulations of
disordered systems

3 Dynamical triangulations and quenched disorder

4 Dynamical triangulations and annealed disorder

M. Weigel (Mainz) Dynamical triangulations in statistical physics 19/06/2008 2 / 29



Dynamical triangulations as discrete approach to quantum gravity

Outline

1 Dynamical triangulations as discrete approach to quantum gravity

2 Dynamical triangulations in statistical physics: computer simulations of
disordered systems

3 Dynamical triangulations and quenched disorder

4 Dynamical triangulations and annealed disorder

M. Weigel (Mainz) Dynamical triangulations in statistical physics 19/06/2008 3 / 29



Dynamical triangulations as discrete approach to quantum gravity

The dynamical triangulations approach
Einstein-Hilbert action is perturbatively non-renormalisable⇒ look for
non-perturbative approaches

Quantum gravity
Path-integral quantisation of (pure)
gravity:

Z =

Z
D[g]e−SEH [g]

=

Z
Dg

Vol(Diff)

Z
Dgx e−SEH [x,g],

with the Einstein-Hilbert action

SEH[g] =
1

16πGN

Z
dDx

p
|g| (−R + 2Λ)
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Dynamical triangulations as discrete approach to quantum gravity

The dynamical triangulations approach
Einstein-Hilbert action is perturbatively non-renormalisable⇒ look for
non-perturbative approaches

Quantum gravity
Path-integral quantisation of (pure)
gravity:

Z =

Z
D[g]e−SEH [g]

=

Z
Dg

Vol(Diff)

Z
Dgx e−SEH [x,g],

with the Einstein-Hilbert action

SEH[g] =
1

16πGN

Z
dDx

p
|g| (−R + 2Λ)

Many questions

What is
∫
D[g] supposed to

mean?
What about reparametrization
invariance?
Action is unbounded from
below.
Can this be rotated back to the
Lorentzian sector?
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Dynamical triangulations as discrete approach to quantum gravity

The dynamical triangulations approach
Einstein-Hilbert action is perturbatively non-renormalisable⇒ look for
non-perturbative approaches

Lattice regularisation
Approximate integral by sum over
discretised hyper-surfaces:Z

D[g]→
X
T

Two approaches:

Regge calculus: discretise
manifold with simplicial complex;
sum runs over the edge lengths;
connectivity fixed.

Dynamical triangulations (DTRS):
vary connectivity, keeping the
edge (cut-off) lengths uniformly
fixed.
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Dynamical triangulations as discrete approach to quantum gravity

The dynamical triangulations approach
Einstein-Hilbert action is perturbatively non-renormalisable⇒ look for
non-perturbative approaches

Lattice regularisation
Approximate integral by sum over
discretised hyper-surfaces:Z

D[g]→
X
T

Two approaches:

Regge calculus: discretise
manifold with simplicial complex;
sum runs over the edge lengths;
connectivity fixed.

Dynamical triangulations (DTRS):
vary connectivity, keeping the
edge (cut-off) lengths uniformly
fixed.

Discretized actions
Classical Regge calculus (sic!)
gives discretized Einstein-Hilbert
actions (for fixed topology):

SEH = κ4N4 − κ2N2 (4D),
SEH = κ3N3 − κ1N1 (3D),
SEH = κ2N2 (2D),
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Dynamical triangulations as discrete approach to quantum gravity

The dynamical triangulations approach
Einstein-Hilbert action is perturbatively non-renormalisable⇒ look for
non-perturbative approaches

Two dimensions
Due to the Gauß-Bonnet theorem,Z

M
d2xR = 4πχ = 8π(1− h)

one has for pure quantum gravity in 2D:

Z(µ) =

∞X
N=1

e−µNZ(N),

Z(N) =
X

T∈TN

1
CN
,

where CN = Vol(Aut(T)).

Discretized actions
Classical Regge calculus (sic!)
gives discretized Einstein-Hilbert
actions (for fixed topology):

SEH = κ4N4 − κ2N2 (4D),
SEH = κ3N3 − κ1N1 (3D),
SEH = κ2N2 (2D),
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Dynamical triangulations as discrete approach to quantum gravity

Matrix models
Consider the matrix integral

W(g,N) ≡
∫

dφ e−
1
2 Trφ2+ g

3
√

N
Trφ3

≡
∞∑

k=0

1
k!

(
g

3
√

N

)k 〈
Trφ3k〉 ,

with N ×N Hermitian matrix φ and the measure

dφ ≡
∏
α≤β

d Reφαβ
∏
α<β

d Imφαβ .

Then, the propagator (two-point function) is

〈φαβφα′β′〉 =
∫

dφ e−
1
2

P
αβ |φαβ |2φαβ

φα′β′ = δαβ′δβα′

β

γ

α
α

α

β

β

γ γ

1

1

1

2

2

2
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Dynamical triangulations as discrete approach to quantum gravity

Matrix models

Pure φ3 model (Brézin, Itzykson, Parisi, Zuber, 1978):

ZN =
8NΓ( 3

2 N)
(N + 2)!Γ( 1

2 N + 1)
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Dynamical triangulations as discrete approach to quantum gravity

How does it look like?

non-trivial Hausdorff dimension dh = 4
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DTRS in statistical physics: computer simulations

Outline

1 Dynamical triangulations as discrete approach to quantum gravity

2 Dynamical triangulations in statistical physics: computer simulations of
disordered systems

3 Dynamical triangulations and quenched disorder

4 Dynamical triangulations and annealed disorder
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DTRS in statistical physics: computer simulations

Disorder in statistical physics

KPZ/DDK

Dressed exponents

formula
from KPZ/DDK

Annealed Quenched

− QG graphs

− Voronoi/Delaunay

Correlated

Luck criterion:

(1−α)/(2−α) < β
− random bond model

Uncorrelated

Harris criterion:

α > 0

Disorder
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DTRS in statistical physics: computer simulations

Simulation method

For a a general simplicial complex, define the (k, l) moves,

a1 . . . alb1 . . . bk → a1 . . . alb1 . . . bk,

where k + l = D + 2, k = 1, . . . ,D + 1 and a1 . . . alb1 . . . bk ∈ K, b1 . . . bk 6∈ K.

(a)
(1,4)        (4,1)

 (2,3)          (3,2)
(b)

These can be shown to be ergodic in the space of homeomorphic simplicial
manifolds (for d < 4).
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DTRS in statistical physics: computer simulations

Simulation method

In two dimensions:
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(2,2) (1,3), (3,1)

Canonical move Grand-canonical move

Canonical move alone is ergodic for simulations in the canonical ensemble.
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DTRS in statistical physics: computer simulations

Simulation method

What about φ4 graphs and quadrangulations?

����

��
��
��
��

��
��
��
��

���� ����

��
��
��
��

�� �� ��

�
�
�
�

�
�
�
�

�
�
�
�

�� ��

�
�
�
�

����

��
��
��
��

��
��
��
��

����

�� ��

�
�
�
�

�
�
�
�

����

��
��
��
��

��
��
��
��

����

��
��
��
��

��

��
��
��
��

����������

�
�
�
�

(1,3), (3,1)(2,2)

Canonical move Grand-canonical move

Moves not ergodic in general!
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DTRS in statistical physics: computer simulations

Simulation method

What about φ4 graphs and quadrangulations?
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DTRS in statistical physics: computer simulations

Simulation method

What about φ4 graphs and quadrangulations?

⇒ One needs two-link flip to restore ergodicity

������������������
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DTRS in statistical physics: computer simulations

Simulation method

Non-local dynamics: “minimal-neck baby universe surgery”
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J. Ambjørn, B. Durhuus, and T. Jonsson, Quantum Geometry -- A
Statistical Field Theory Approach (Cambridge University Press,
Cambridge, 1997).

J. Ambjørn, M. Carfora, and A. Marzuoli, The Geometry of Dynamical

Triangulations (Springer, Berlin, 1997).
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Dynamical triangulations and quenched disorder

Outline

1 Dynamical triangulations as discrete approach to quantum gravity

2 Dynamical triangulations in statistical physics: computer simulations of
disordered systems

3 Dynamical triangulations and quenched disorder

4 Dynamical triangulations and annealed disorder
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Dynamical triangulations and quenched disorder

Disorder in statistical physics

KPZ/DDK

Dressed exponents

formula
from KPZ/DDK

Annealed Quenched

− QG graphs

− Voronoi/Delaunay

Correlated

Luck criterion:

(1−α)/(2−α) < β
− random bond model

Uncorrelated

Harris criterion:

α > 0

Disorder

M. Weigel (Mainz) Dynamical triangulations in statistical physics 19/06/2008 11 / 29



Dynamical triangulations and quenched disorder

The Harris-Luck criterion

Effects of coupling spin models to random graphs instead of regular lattices:
For sufficient connectivity, ordered phase should persist (at least for
ferromagnets).

Order of transition and universality class might change:

Regular lattice: Harris criterion
Variance of the coupling over a correlation volume:

σR(J) ∼ R−d/2 ⇒ σξ(J) ∼ ξ−d/2 ∼ tνd/2,

Disorder is relevant if:
νd/2 < 1, α > 0
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Dynamical triangulations and quenched disorder

The Harris-Luck criterion

Effects of coupling spin models to random graphs instead of regular lattices:
For sufficient connectivity, ordered phase should persist (at least for
ferromagnets).

Order of transition and universality class might change:

Regular lattice: Harris criterion, α > 0.
Random graph: consider average co-ordination number in patch of size R,

J(R) ≡ 1
B(R)

X
i∈P

qi.

Then,
σR(J) ≡ 〈|J(R)− J0|〉/J0 ∼ 〈B(R)〉−(1−ω) ∼ R−dh(1−ω),

and disorder is relevant if dhν(1− ω) > 1, where ω is the wandering
exponent of the random structure, with ω = 1− a/2dh,.

Equivalently, disorder is relevant if

α >
1− 2ω
1− ω .
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Dynamical triangulations and quenched disorder

Wandering exponents

Decay of the averaged fluctuation of coordination numbers:

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

1/<B(R)>

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

10
1

σ R
(J

)

dynamical triangulations

Delaunay triangulations
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Dynamical triangulations and quenched disorder

Voronoi-Delaunay triangulations
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Dynamical triangulations and quenched disorder

Wandering exponents

Decay of the averaged fluctuation of coordination numbers:

10
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-5

10
-4

10
-3

10
-2

10
-1

10
0

1/<B(R)>

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

10
1

σ R
(J

)

dynamical triangulations

Delaunay triangulations

Dynamical triangulations: ω = 0.7473(98) (ω = 3/4?) ⇒ disorder relevant
for

α & −2.

Voronoi-Delaunay triangulations: ω = 0.50096(55), exponentially decaying
correlations and the Harris criterion is recovered, i.e.,

α > 0.
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Dynamical triangulations and quenched disorder

Simulation results

Dynamical triangulations:
Exact result for percolation: α = −2/3, β = 5/36, γ = 43/18⇒ α = −2,
β = 1/2, γ = 3.
Monte Carlo simulations for the q = 2, 3, 4 states Potts models show a
change in universality class.
First-order phase transition in q = 10 Potts model is softened to a continuous
transition.
Full agreement with relevance criterion.
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Dynamical triangulations and quenched disorder

Simulation results

Dynamical triangulations:
Exact result for percolation: α = −2/3, β = 5/36, γ = 43/18⇒ α = −2,
β = 1/2, γ = 3.
Monte Carlo simulations for the q = 2, 3, 4 states Potts models show a
change in universality class.
First-order phase transition in q = 10 Potts model is softened to a continuous
transition.
Full agreement with relevance criterion.

Voronoi-Delaunay triangulations:
No change for the 2D Ising model, but marginal since α = 0.
Surprisingly, however, also apparently no change for q = 3 Potts model with
α = 1/3 > 0, in contradicition to relevance criterion.

Lattice xε(1/2ν) xε(α/2ν) xσ(β/2ν) xσ(γ/2ν)

Voronoi 0.8003(67) 0.7799(27) 0.1234(27) 0.1282(12)
Regular 0.8000 0.8000 0.1333̄ 0.1333̄

Possible connection to structure of weakly connected regions.
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Dynamical triangulations and quenched disorder

Frustration from dynamical triangulations

Effect on ferromagnets is rather weak. What about antiferromagnets, where
frustration comes to play?

Regular lattices

square lattice: Néel order
with phase transition
equivalent to the ferromagnet
as seen from the Mattis
transformation of one
sub-lattice
triangular lattice:
paramagnet down to zero
temperature (Wannier, 1950)

M. Weigel (Mainz) Dynamical triangulations in statistical physics 19/06/2008 17 / 29



Dynamical triangulations and quenched disorder

Frustration from dynamical triangulations

Effect on ferromagnets is rather weak. What about antiferromagnets, where
frustration comes to play?

Regular lattices

square lattice: Néel order
with phase transition
equivalent to the ferromagnet
as seen from the Mattis
transformation of one
sub-lattice
triangular lattice:
paramagnet down to zero
temperature (Wannier, 1950)

M. Weigel (Mainz) Dynamical triangulations in statistical physics 19/06/2008 17 / 29



Dynamical triangulations and quenched disorder

Frustration from dynamical triangulations

Effect on ferromagnets is rather weak. What about antiferromagnets, where
frustration comes to play?

Regular lattices

square lattice: Néel order
with phase transition
equivalent to the ferromagnet
as seen from the Mattis
transformation of one
sub-lattice
triangular lattice:
paramagnet down to zero
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Dynamical triangulations and quenched disorder

Frustration from dynamical triangulations

Effect on ferromagnets is rather weak. What about antiferromagnets, where
frustration comes to play?

Regular lattices

square lattice: Néel order
with phase transition
equivalent to the ferromagnet
as seen from the Mattis
transformation of one
sub-lattice
triangular lattice:
paramagnet down to zero
temperature (Wannier, 1950)

order depends on bipartiteness
?
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Dynamical triangulations and quenched disorder

Frustration from dynamical triangulations

Effect on ferromagnets is rather weak. What about antiferromagnets, where
frustration comes to play?

Fat graphs

Type Bipartite Annealed Quenched

quadrangulations X equivalent to FM equivalent to FM

triangulations – all triangles are frus-
trated, even at T = 0
⇒ PM everywhere

PM everywhere

φ4 graphs – ground state is
square lattice with
Néel order ⇒ finite-T
phase transition?

spin-glass order at
T = 0?

φ3 graphs – GS is honeycomb lat.
with Néel order

spin-glass order at
T = 0?
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Dynamical triangulations and quenched disorder

Spin stiffness and zero-temperature scaling

Ferromagnet (Peierls)

LDW

∆E ∼ Ld−1 resp. Ld−2
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Dynamical triangulations and quenched disorder

Spin stiffness and zero-temperature scaling

Ferromagnet (Peierls)

LDW

∆E ∼ Ld−1 resp. Ld−2

Spin glass (Bray/Moore, 1987)

Distribution of couplings evolving under
RG transformations, asymptotic width
scales as

J(L) ∼ JLθ(d).

Spin-stiffness exponent θ determines
lower critical dimension. For θ < 0,

ξ ∼ T−ν , ν = −1/θ.

Numerically, θ can be determined from
inducing droplets or domain walls with
a change of boundary conditions,

∆E = |EAP − EP| ∼ Lθ.
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Dynamical triangulations and quenched disorder

Spin stiffness and zero-temperature scaling

2D Ising

ground-state problem is
polynomial→ large systems
tractable

Spin glass (Bray/Moore, 1987)

Distribution of couplings evolving under
RG transformations, asymptotic width
scales as

J(L) ∼ JLθ(d).

Spin-stiffness exponent θ determines
lower critical dimension. For θ < 0,

ξ ∼ T−ν , ν = −1/θ.

Numerically, θ can be determined from
inducing droplets or domain walls with
a change of boundary conditions,

∆E = |EAP − EP| ∼ Lθ.
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Dynamical triangulations and quenched disorder

Spin stiffness and zero-temperature scaling

2D Ising

ground-state problem is
polynomial→ large systems
tractable

(Hartmann/Young, 2001)

Spin glass (Bray/Moore, 1987)

Distribution of couplings evolving under
RG transformations, asymptotic width
scales as

J(L) ∼ JLθ(d).

Spin-stiffness exponent θ determines
lower critical dimension. For θ < 0,

ξ ∼ T−ν , ν = −1/θ.

Numerically, θ can be determined from
inducing droplets or domain walls with
a change of boundary conditions,

∆E = |EAP − EP| ∼ Lθ.
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Dynamical triangulations and quenched disorder

Spin stiffness and zero-temperature scaling

2D Ising

ground-state problem is
polynomial→ large systems
tractable, θ ≈ −0.28 resp. θ = 0

Spin glass (Bray/Moore, 1987)

Distribution of couplings evolving under
RG transformations, asymptotic width
scales as

J(L) ∼ JLθ(d).

Spin-stiffness exponent θ determines
lower critical dimension. For θ < 0,

ξ ∼ T−ν , ν = −1/θ.

Numerically, θ can be determined from
inducing droplets or domain walls with
a change of boundary conditions,

∆E = |EAP − EP| ∼ Lθ.
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Dynamical triangulations and quenched disorder

Antiferromagnet and spin glass on DTRS
Spin stiffness for the random-lattice case.

KPZ/DDK
If the spin glass on a regular lattice
corresponds to a c = 0 CFT, then

∆̃ =
√

1 + 24∆− 1
4

.

Conjecture for θs/dh:

Bonds Regular KPZ c = 0

±J 0 0

Gauss -0.1422 -0.0886
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Dynamical triangulations and quenched disorder

Antiferromagnet and spin glass on DTRS
Spin stiffness for the random-lattice case.

KPZ/DDK
If the spin glass on a regular lattice
corresponds to a c = 0 CFT, then

∆̃ =
√

1 + 24∆− 1
4

.

Conjecture for θs/dh:

Bonds Regular KPZ c = 0

±J 0 0

Gauss -0.1422 -0.0886

64
2

128
2

192
2

256
2

N

0.4

0.6

0.8

1.0

|∆
E

D
W

|

±J spin glass
antiferromagnet

E0 = 0.472(44)

E0 = 0.599(23)
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Dynamical triangulations and quenched disorder

Antiferromagnet and spin glass on DTRS
Spin stiffness for the random-lattice case.

KPZ/DDK
If the spin glass on a regular lattice
corresponds to a c = 0 CFT, then

∆̃ =
√

1 + 24∆− 1
4

.

Conjecture for θs/dh:

Bonds Regular KPZ c = 0

±J 0 0

Gauss -0.1422 -0.0886

16
2
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2

128
2

256
2

32
2

N

0.2

0.3

0.4

0.5

|∆
E

D
W

|

Gaussian spin glass

θs/dh = -0.0684(25)
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Dynamical triangulations and annealed disorder

Outline

1 Dynamical triangulations as discrete approach to quantum gravity

2 Dynamical triangulations in statistical physics: computer simulations of
disordered systems

3 Dynamical triangulations and quenched disorder

4 Dynamical triangulations and annealed disorder
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Dynamical triangulations and annealed disorder

Disorder in statistical physics

KPZ/DDK

Dressed exponents

formula
from KPZ/DDK

Annealed Quenched

− QG graphs

− Voronoi/Delaunay

Correlated

Luck criterion:

(1−α)/(2−α) < β
− random bond model

Uncorrelated

Harris criterion:

α > 0

Disorder
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Dynamical triangulations and annealed disorder

The KPZ/DDK framework

Liouville field theory predicts dressing of conformal weights of critical matter
coupled to quantum gravity:

∆̃ =
√

1− c + 24∆−
√

1− c√
25− c−

√
1− c

i.e., in terms of statistical mechanics: disorder is relevant in all those cases.
E.g., for the (2D) Ising model:

α β γ
regular lattice 0 1/8 7/4

DTRS -1 1/2 2

For c ≤ 1, this framework breaks down. c = 1 is marginal case with different
realizations:

single massless scalar field
4-states Potts model
6-vertex model

Marginality entails logarithmic corrections to all scaling relations.
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Vertex models on random graphs

Allow six arrow configurations on the square lattice:
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Vertex weights

ωi = exp (−εi/kbT) , i = 1, . . . , 6,
a = ω1 = ω2,
b = ω3 = ω4,
c = ω5 = ω6,
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Vertex weights

ωi = exp (−εi/kbT) , i = 1, . . . , 6,
a = ω1 = ω2,
b = ω3 = ω4,
c = ω5 = ω6,
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Vertex models on random graphs

Allow six arrow configurations on the square lattice:
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F model

a = b = e−K , c = 1

Undergoes a Kosterlitz-Thouless
phase transition on the square
lattice.

Is marginal with c = 0 in the
KPZ/DDK framework.

What happens on a DTRS?

Phase diagram for the square lattice
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Simulation results

Monte Carlo simulations of the six-vertex F model coupled to dynamical
quadrangulations.

Polarizability
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Results

Critical high-temperature phase
terminating at βc = β = ln 2.

Kosterlitz-Thouless critical point at βc
with additional logarithmic corrections.

Critical exponents

γ/dhν = 0
β/dhν = 1/2

Hausdorff dimension dh = 4,
independent of temmperature.

String-susceptibility exponent shifted
from γ = −1/2 to γ = 0.
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Frustration from dynamical triangulations
Effect on ferromagnets is rather weak. What about antiferromagnets, where
frustration comes to play?

Fat graphs

Type Bipartite Annealed Quenched

quadrangulations X equivalent to FM equivalent to FM

triangulations – all triangles are frus-
trated, even at T = 0
⇒ PM everywhere

PM everywhere

φ4 graphs – ground state is
square lattice with
Néel order ⇒ finite-T
phase transition?

spin-glass order at
T = 0?

φ3 graphs – GS is honeycomb lat.
with Néel order

spin-glass order at
T = 0?
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Ising antiferromagnet on φ3 graphs
Monte Carlo simulation of the combined system (Pachner moves plus spin
flips).

Magnetic susceptibility
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Ising antiferromagnet on φ3 graphs
Monte Carlo simulation of the combined system (Pachner moves plus spin
flips).

Magnetic susceptibility
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Kosterlitz-Thouless type phase transition?

M. Weigel (Mainz) Dynamical triangulations in statistical physics 19/06/2008 26 / 29



Dynamical triangulations and annealed disorder

Forced bipartite phase
Antiferromagnetic interaction forces graphs into a bipartite phase composed
of squares, hexagons etc.

Co-ordination number distribution
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Conclusions

Dynamical triangulations (and quadrangulations) provide an ideal laboratory for
studying the effects of connectivity disorder on spin models.
Quenched disorder:

Connectivity disorder from DTRS relevant for virtually all types of coupled matter.
Ferromagnets experience a change of critical exponents, but ordered phase is stable.
Frustration exerted through DTRS on antiferromagnets changes critical behaviour, but
might also wipe out ordered phase.
Antiferromagnet becomes equivalent to ±J spin glass on triangulations.

Annealed disorder:
Critical exponents always change according to KPZ/DDK formula, no Fisher
renormalization.
In ferromagnets, ordered phase is stable against the random perturbation.
Frustration in induced in antiferromagnets yields wide range of behavior from pure
paramagnets to disorder-induced bipartite phases.
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