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Classical physics
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Starting point: the (2D) Ising model
Simple model for liquid-gas or magnetic transition, the Ising model.

Hamiltonian

H = −J
∑
〈i,j〉

sisj , si = ±1
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H = −J
∑
〈i,j〉
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T � Tc T ≈ Tc T � Tc
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Phases of matter
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New states of matter:

Plasma
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Disorder in condensed matter
Consider magnetic systems: impurities in the form of non-magnetic sites,
lattice defects, random anisotropies etc. are omnipresent in laboratory samples.

Effects on phase transitions: zoology

I Weak disorder: long-range order is not destroyed and the nature of the
ordered phase is unchanged

I Disorder acting on the energy density (couplings): dilution, random bonds;
relevance predicted by the Harris criterion

I Disorder coupling to the order parameter (magnetization): random fields.

I Strong disorder: no long-range order, new phases of matter; typically
encompasses the presence of frustration — spin glasses.
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What is a spin glass?

Classical example of spin glass: noble metals weakly diluted with transition
metal ions, interacting via the RKKY interaction,

J(R) = J0
cos(2kFR+ φ0)

(kFR)3

I no long-range order
down to T = 0

I phase transition to
short-range ordered,
“glassy” phase

I diverging relaxation
times, memory,
rejuvenation etc.

R

0

J(R)
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The Edwards-Anderson model

Simplify to the essential properties, disorder and
frustration to yield the Edwards-Anderson (EA) model,

H = −1
2
∑
i,j

Jij si · sj , si ∈ O(n)

where Jij are quenched, random variables.

?
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?

Coupling distributions

Gaussian

-J JJij

P(Jij)

bimodal

-J JJij

P(Jij)
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The Edwards-Anderson model

Simplify to the essential properties, disorder and
frustration to yield the Edwards-Anderson (EA) model,

H = −1
2
∑
i,j

Jij si · sj , si ∈ O(n)

where Jij are quenched, random variables.

?

Has been investigated for ≈ 30 years, however no agreement on general case.
Mean-field model with

Jij = ±1√
N
,

known as Sherrington-Kirkpatrick (SK) model can be solved in the framework of
“replica-symmetry breaking” (RSB) (Parisi et al., 1979/80).
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Giorgio Parisi

Nobel Prize 2021
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The Edwards-Anderson model

Simplify to the essential properties, disorder and
frustration to yield the Edwards-Anderson (EA) model,

H = −1
2
∑
i,j

Jij si · sj , si ∈ O(n)

where Jij are quenched, random variables.

?

Applications
System has applications in a range of fields:
I possible role in high-Tc superconductors
I model of associative memory (Hopfield model), machine learning
I gene expression networks
I realized in D-Wave quantum computer
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Ground-state calculations
At low temperatures, there are several (many) competing, metastable states,
leading to very slow dynamics.

0E

E

"Configuration"

Spin-glasses and random-field systems have non-trivial states even T = 0.
Hence much can be understood looking at ground states.

Finding them, however, can be difficult. In some cases it is NP hard.
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Ising ground states as perfect matchings
System energy equals total weight of energy strings pairing frustrated
plaquettes (Toulouse, 1977),

E = −
∑

strings
|Jij |+ const.

I GS search corresponds to
minimum-weight perfect
matching problem (Bieche et al.,

1980)

I matching solution always
corresponds to spin
configuration for planar graphs

I can be solved in polynomial
time using the “blossom”
algorithm (Edmonds, 1965)

I space complexity is O(V 2)
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Ising spin glass in 2D
Complex energy landscape leads to slow relaxation: sizes restricted to L ≈ 128 (MC).

With suitably constructed combinatorial optimization methods we can treat large
system sizes up to 10 000× 10 000 spins exactly (for T = 0).

−→
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Fractal dimension
Fractal dimension of domain wall.
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Results
Perform calculations for periodic-free and periodic-periodic boundary
conditions.

PFBC PPBC
−e∞ 1.3147876(7) 1.314788(3)
θ -0.2793(3) -0.2788(11)
df 1.27319(9) 1.2732(5)

Results are fully consistent with each other.

Based on SLE and further assumptions, Amoruso et al. (2006) proposed

df = 1 + 3
4(3 + θ) .

df = 1.27319(9) would imply θ = −0.2546(9) which is not compatible with the
direct estimate.
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Random-field Ising model
How does the behavior of the Ising model change in the presence of quenched,
random fields?

H = −J
∑
〈i,j〉

sisj −
∑
i

hisi

hi quenched random variables drawn, e.g., from a Gaussian,

hi ∼ N (0, h)

or a bimodal distribution,

P (hi) = 1
2δhi,−1 + 1

2δhi,+1.
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Imry and Ma argument
Is the FM phase stable?

Following Imry and Ma (1975), consider a cluster of spins of (linear) size R. Overturning
it will cost a surface energy of

EJ ∼ JRd−1

but potentially yield a gain in random-field energy of

ERF ∼ hRd/2
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Imry and Ma argument (cont’d)
leading to a balance of

∆E(R) ∼ JRd−1 − hRd/2.

For large R, ∆E > 0 for d > 2 and ∆E < 0 for d < 2. Hence,
I FM order is stable in d ≥ 3.
I FM order is destroyed by random fields in d = 1.
I d = 2 is marginal.

Aizenman and Wehr (1989) proved unique Gibbs state for d ≤ 2, so no long-range order
in 2D.
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Domain-wall roughness
Binder (1983) considered the energy balance for a domain-wall, comparing the
interface energy 2JL and the gain in field energy, ∆U .

Taking the interface roughness into
account, he finds

∆U ∼ −(h2/J)L lnL/ lnn,

where n denotes the scale of resolution
for the interface.

U = 2JL−∆U changes sign at length
scale

Lb ∼ exp[c(J/h)2].

Lb is known as breakup length.
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Renormalization group

The critical behavior of the RFIM can be studied at T = 0, i.e., from ground
states!
Renormalization group flow equation for w = h/J (Bray and Moore, 1985),

dw/dl = −(ε/2)w +Aw3.
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Break-up length
Sample ground-state configurations for L = 512.

h = 0.6
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Break-up length
Sample ground-state configurations for L = 512.

h = 0.7
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Break-up length
Sample ground-state configurations for L = 512.

h = 0.8
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Break-up length
Sample ground-state configurations for L = 512.

h = 0.9
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Break-up length
Sample ground-state configurations for L = 512.

h = 1.0

M. Weigel (Chemnitz) Random-field models UOL 24 / 57



Break-up length
Sample ground-state configurations for L = 512.

h = 1.1
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Break-up length
Sample ground-state configurations for L = 512.

h = 1.2
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Break-up length
Sample ground-state configurations for L = 512.

h = 1.3
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Break-up length (cont’d)

0.4 0.5 0.6 0.7 0.8 0.9 1
∆

0

0.2
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0.6

0.8

1
P

F
M

(L
, 

∆
)

L = 32
L = 48
L = 64
L = 96
L = 128
L = 256
L = 512

1 1.5 2 2.5
1/∆

10
1

10
2

10
3

L
b q = 2

q = 3

q = 4

q = 3

Define Lb as system size such that 50% of disorder samples at given h are FM
(Seppälä et al., 1998).

What is the correct form?

Lb ∼ exp(A/h) or exp(A/h2)
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Break-up length (cont’d)

Seppälä et al., 1998

What is the correct form?
Lb ∼ exp(A/h2)
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Break-up length (cont’d)

Shrivastav et al. 2014

What is the correct form?

Lb ∼ exp(A/h2) or exp(A/h)

M. Weigel (Chemnitz) Random-field models UOL 26 / 57



Maximum flows and graph cuts
Split up Ising model Hamiltonian,

−H =
∑
〈ij〉

Jij sisj = W+ +W− −W± = K − 2W±, (1)

whereK =
∑
〈ij〉 Jij , and

W+ =
∑
〈ij〉

si=sj=+1

Jij , W− =
∑
〈ij〉

si=sj=−1

Jij , W± =
∑
〈ij〉
si 6=sj

Jij (2)

Then, a ground state is given by a
configuration with minimal cutW±,
which divides the spins between the
“up” and “down” states.
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Maximum flows and graph cuts (2)

The RFIM can be mapped onto a maximum flow problem (Picard & Ratliff, 1975) where

I all up spins are connected to the source, all down spins are connected to the sink
I a cut separates the two classes of sites, the energy of the configuration

corresponds to the weight of the cut
I due to the max-flow–min-cut theorem, the ground-state (min-cut) configuration

occurs for maximum flow through the network
I there are efficient (polynomial time) algorithms to solve maximum flow exactly

(Ford-Fulkerson, Edmonds-Karp, push relabel, ...)
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Numerical study
We use exact ground-state algorithms to study the breakup length `b and the
correlation lengths ξ and ξdis for 106 samples and lattice sizes L = 128, 256,
512, 1024, and 2048.
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Correlation length: triangular lattice
Strong evidence for ξ ∼ exp(A/h2) form on the square lattice.

Hayden, Raju and Sethna, 2019: since w = −w on non-bipartite lattices, the RG
equation should take the form

dw/dl = −(ε/2)w +Bw2 +Aw3 + . . . ,

implying a leading divergence ξ ∼ exp(A/h) for the triangular lattice.

Is this supported by the data?
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Correlation length: comparison
We find clear evidence for ξ ∼ exp(A/h2) for the connected and disconnected
correlation lengths in the square and triangular lattices.
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Random-field Potts model
Very little work to date:

Blankschtein, Shapir, Aharony, 1984
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Random-field Potts model
Very little work to date:

Goldschmidt and Xu, 1985/86

Most recent study by Eichhorn and Binder (1995/96): possible 2nd order
transition for 3D q = 3 model.
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Maximum flows and graph cuts (2)

The RFIM can be mapped onto a maximum flow problem (Picard & Ratliff, 1975) where
I all up spins are connected to the source, all down spins are connected to the sink
I a cut separates the two classes of sites, the energy of the configuration

corresponds to the weight of the cut
I due to the max-flow–min-cut theorem, the ground-state (min-cut) configuration

occurs for maximum flow through the network
I there are efficient (polynomial time) algorithms to solve maximum flow exactly

(Ford-Fulkerson, Edmonds-Karp, push relabel, ...)
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Graph cuts and the Potts model
We consider the Hamiltonian

H = −J
∑
〈ij〉

δsi,sj −
∑
i

q−1∑
α=0

hαi δsi,α,

The q = 2 case is equivalent to the RFIM,

H = −J2
∑
〈ij〉

[σiσj + 1]− 1
2
∑
i

[(h+
i − h

−
i )σi + (h+

i + h−i )],

The ground-state problem for q > 2 corresponds to a multi-terminal flow problem that is
NP hard.

We need to revert to approximation methods.
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Approximate graph cuts
Boykov, Veksler and Zabih (2001) propose a method for problems in computer vision:

E({si}) =
∑
i,j

Vij(si, sj) +
∑
i

Di(si).

It is based on solving an effective two-terminal (Ising) problem by freezing some
degrees of freedom.
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Boykov, Veksler and Zabih (2001) propose a method for problems in computer vision:

E({si}) =
∑
i,j

Vij(si, sj) +
∑
i

Di(si).

It is based on solving an effective two-terminal (Ising) problem by freezing some
degrees of freedom.
I α-β-swap move

picks two labels α 6= β ∈ {0, 1, . . . , q − 1} and freeze all labels apart from α and β
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Approximate graph cuts
Boykov, Veksler and Zabih (2001) propose a method for problems in computer vision:

E({si}) =
∑
i,j

Vij(si, sj) +
∑
i

Di(si).

It is based on solving an effective two-terminal (Ising) problem by freezing some
degrees of freedom.
I α expansion move

pick and freeze a label α; either keep or flip remaining pixels into α state

Works well in computer vision (paper has 10,000 citations!). How about the RFPM?
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Results: 3D q = 3 RFPM — initial conditions
Use repeated runs to increase success probabilities.
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L =64, ∆ = 1.7

Quantities converge in power laws:

b = 0.547(14) (∆ = 1.6), b = 0.262(15)
(∆ = 1.7)

O(n) = an−b(1 + cn−e) +O∗.
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Results: 3D q = 3 RFPM — magnetization
Sample thermodynamic quantities either for n = 100 or extrapolate.

Scaling form of the magnetization:

m∗(∆, L) = L−β/νM̃
[
(∆−∆c)L1/ν

]
,
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Results: 3D q = 3 RFPM — magnetization
Sample thermodynamic quantities either for n = 100 or extrapolate.

n ∆c 1/ν β/ν γ̄/ν S1 S2
1 1.636(2) 0.837(9) 0.0460(9) 2.9084(14) 2.30 2.38
5 1.626(3) 0.812(6) 0.0403(8) 2.9220(15) 1.82 1.69
10 1.623(5) 0.828(15) 0.0387(7) 2.9230(15) 1.28 1.58
50 1.617(4) 0.797(4) 0.0340(8) 2.9323(16) 1.25 1.38
100 1.616(1) 0.774(6) 0.0330(10) 2.9337(15) 1.20 1.36
∞ 1.606(3) 0.723(4) 0.0306(23) 2.9402(30) 0.82 0.87

Table: A summary of exponents from the FSS of them(L,∆, n) for finite as well as
infinite n. The numbers in the parenthesis denote the error bars in the last significant
digit.

Scaling form of the magnetization:

m∗(∆, L) = L−β/νM̃
[
(∆−∆c)L1/ν

]
,
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Results: 3D q = 3 RFPM — specific heat
No direct access to fluctuations in ground states. Hence consider

C(∆) = ∂[eJ(∆)]
∂∆ .
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Results: 3D q = 3 RFPM — specific heat
No direct access to fluctuations in ground states. Hence consider

C(∆) = ∂[eJ(∆)]
∂∆ .

n ∆c 1/ν α/ν ω Q1 Q2
1 1.644(6) 0.850(70) 0.023(12) 2.67(87) 0.74 0.71
5 1.626(3) 0.774(32) −0.002(11) 2.62(68) 0.32 0.70
10 1.621(3) 0.767(25) −0.019(13) 2.39(61) 0.14 0.52
50 1.620(2) 0.776(21) −0.046(20) 1.87(53) 0.12 0.50
100 1.620(2) 0.780(21) −0.049(20) 1.86(52) 0.15 0.49
∞ 1.611(4) 0.733(28) −0.059(20) 2.52(73) 0.14 0.93

Table: A summary of exponents from the fits of the peak positions ∆ps(L, n) and the
heights of the specific heat Cmax(L, n). Q1 is the quality of the fit for the data of
∆ps(L, n), and Q2 is the quality of the fit for the data of Cmax(L, n). The numbers in the
parenthesis denote the error bars in the last significant digits.

Cmax(L) = C0 + aLα/ν(1 + bL−ω).

M. Weigel (Chemnitz) Random-field models UOL 52 / 57



Results: 3D q = 3 RFPM — susceptibility
We cannot make use of a fluctuation-dissipation relation as the ground state is
unique (for continuous fields). Hence we could rely on

χµ(∆) =
[
∂Mµ({hαi }, H)

∂H

]
H=0

.

This requires ground-state calculations at a number of different field strengths
(numerical differentiation). It does not work for non-exact methods.

Instead, explicitly integrate the effect of the shift in the coupling distribution
(Schwartz and Soffer, 1985), leading to

χβ = lim
Hβ→0

1
N

[
∂〈Mβ〉
∂Hβ

]
av

= 1
∆2

[
〈mβ〉

∑
i

hβi

]
av

,

Without explicitly breaking the symmetry, however, there is no peak in this χ.
Scaling arguments imply that one should use a fieldH ∼ L3/2.
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Results: 3D q = 3 RFPM — susceptibility
Use repeated runs to increase success probabilities.

Consider the scaling form

χ(L,∆) = Lγ/ν χ̃
[
(∆−∆c)L1/ν

]
.
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Results: 3D q = 3 RFPM — exponents
In summary, we have the following estimates:

RFIM q = 3 RFPM
ν 1.38(10) 1.383(8)
α -0.16(35) -0.082(28)
β 0.019(4) 0.0423(32)
γ 2.05(15) 2.089(84)
η 0.5139(9) 0.49(6)
η̄ 1.028(2) 1.060(3)
θ 1.487(1) 1.43(6)

α+ 2β + γ 2.00(31) 2.08(9)

Consider Rushbrooke’s law:

α+ 2β + γ = 2.
RFIM:

α+ 2β + γ = 2.00(31).
RFPM:

α+ 2β + γ = 2.08(9).
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Conclusions

I hard optimization problems are ubiquitous in statistical mechanics
problems

I for the hardest problems, general-purpose techniques are not sufficient
I use results from combinatorial problems for non-combinatorial ones
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Conclusions

I hard optimization problems are ubiquitous in statistical mechanics
problems

I for the hardest problems, general-purpose techniques are not sufficient
I use results from combinatorial problems for non-combinatorial ones

2D spin glass:
I new mapping allows to treat huge systems up to 10 000× 10 000 spins
I strong scaling corrections in frustrated systems
I connection to stochastic Loewner evolution
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Conclusions

I hard optimization problems are ubiquitous in statistical mechanics
problems

I for the hardest problems, general-purpose techniques are not sufficient
I use results from combinatorial problems for non-combinatorial ones

2D RFIM:
I clear evidence for ∼ exp(A/h2) scaling predicted by Binder
I no violation of universality for different lattice structures
I complete lack of self-averaging of the correlation length
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Conclusions

I hard optimization problems are ubiquitous in statistical mechanics
problems

I for the hardest problems, general-purpose techniques are not sufficient
I use results from combinatorial problems for non-combinatorial ones

3D q = 3 RFPM:
I approximate ground states from graph cuts and α expansion
I systematic extrapolation to n→∞
I critical exponents close to, but potentially different from 3D RFIM
I two-exponent scaling, γ/ν = 2.904(30) ≈ 2γ/ν = 3.02(12)
I hyperscaling violation, (d− θ)ν = 2.17(8) ≈ 2− α = 2.08(10) with
θ = 1.43(6)
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