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* Lenz and Ising (~ 1922)

* How do you model a ferromagnet?

- Idea: Locate "atoms” at the sites of a subset of A c Z<.
+ Each of them has a magnetic dipole, a spin € {—1,+1}




+ These spins need to cooperate, to create a magnetic behavior.
* Introduce an energy function

* Hy(o) = — Z(i,j)EA 0ioi(—h} ;en05),0 € {x13*

+ and a probability measure

 palo) = 6_2{/‘;”) (Gibbs measure)

* With Zy g = 3 e qqaya e 2D
* and g > 0.




* The model is uninteresting in dimension d = 1 (Right!)
+ It also does not model magnetic behavior in d = 2 Wrong!

* Indeed, the model does show a phase transition from
paramagentic to magnetic behavior in higher dimensions.




* An even simpler model with magnetic behavior:

Replace interaction of o; and other a;-s

by interaction of o; with an average spin: |Tlx| ZjeAj g
* The energy function becomes

1 N
HN = —m Z 0303

ij=1

« This is known as the Curie-Weiss model

Advantage: Hy is a function of the mean magnetization
N
my (o) = % D i=10i-



» The Curie-Weiss model exhibits a phase transition at 5 =1

» This can be in various ways, e.g.

« For g < 1: my converges to 0 under py 3

* For g > 1: The distribution of mx under py 3 converges to
29:(8) + 0_z(p)

+ where z(/3) is the largest solution of

z = tanh(Bz).



Spin glasses

In the early 1970’s:
Add randomness to the interactions

* i.e., consider the new energy function

H(O’) = = Z 0'1'0']'!]1"7‘
63

* where J;; are random variables with
° EJZ‘J‘ =0
tossed in advance
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Spin glasses _

+ Spin glasses are on another level of difficulty
+ compared to ferromagnets
+ Basic reason: frustration

Spin Glass

ya
A

+ Result: Ground states cannot be easily read off
* Many metastable states



Spin glasses _

Edwards-Anderson model

Disordered Ising model

* Ha(o) = = Xiijyer 0i03Jij

+ with e.g. J;; i.i.d. N(0,1)

+ and the corresponding Gibbs measure
Way to difficult
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Spin glasses _

+ Sherrington-Kirkpatrick model (SK model)

+ "Mean-field Spin glass”

* Hy(0) = — = Yimicjon 0i03 ;5

+ with again J;; i.i.d. N(0,1)

+ and the corresponding Gibbs measure

» still very difficult

» ”"Solved” by the physicists by the replica method”



Spin glasses _

* Hopfield model

* Another "Mean-field Spin glass”

+ with a device to tune the difficulty of the model
* Hy(0) = = > 1icj<n 0i05Jij

- with J;; = & 0L, ghet

+ and ¢! i.i.d. Bernoulli random variables

« with P(¢' = £1) = 3

+ and M may and will depend on N



Spin glasses _

* For M =1 = Curie-Weiss model
* For M = N, morally

1A
Jij = NZQHE;‘L

+ with standard Gaussian random variables G;;

* Hence Hopfield model and SK-model can be expected to behave
similarly.



Spin glasses _

+ The Hopfield model has various interpretations:
* As a spin glass (Pastur and Figotin, 1976)
* As a neural network (Hopfield 1982)

» Here the vectors £* are interpreted as information to be stored in a
brain

+ so-called patterns
* |t can be shown, that for
* f>1land M <« N

* the measure uy g is concentrated on small balls centered in the
+&# (Bovier/Gayrard)



Spin glasses _

+ The Hopfield can also be interpreted as a model of social choice
(Cont/L. 2003 and 2009).

* Here the o are decisions to be made.

« The ¢! are characteristics of the i'th individual.
The more two individuals resemble

the more likely is it, that their decision is the same.



Spin glasses _

+ The Random Energy Model (REM)
* Introduced by Derrida (1984)

+ Basic idea: The energy function in the SK-model is a Gaussian
process in the o

+ Ignore its covariance structure

» Then we obtain an energy function of the form
* Hy(0) =vNX,

+ and the corresponding Gibbs measure

+ This is a caricature of a spin glass.



Fluctuations

* Let X, be a sequence of random variables (possibly in several
dimensions)

Assume there is a Law of Large Numbers on a scale a,
. i.e. f—: converges to some point or deterministic vector
We distinguish the following three types of fluctuations



Fluctuations

» There is a scale b, < a,, such that

* X, /b, converges to a non-degenerate distribution
+ generic example (of course)

* X, isasum of ni.i.d. random variables

*and b, = /n
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Fluctuations _

+ We say that X,, obey a Large Deviations Principle(LDP), if
+ there exists a lower semi-continuous function I(-)

+ with compact level sets {z : I(z) < L}

+ such that for all measurable sets A

* and some scale a,,
. P | o
;2& I(z) < liminf o log P(X,,/a, € A°)

1 _
< limsup -~ logP(X,/an € A) < inf I(z)
n €A

Example: Cramérs theorem



Fluctuations _

+ We say that X,, obey a Moderate Deviations Principle(MDP), if
there exists a lower semi-continuous function J(-)

+ with compact level sets {z : J(z) < L}

such that for all measurable sets A

+ and scales ¢, and v,

inf I'(x) < liminf 1 logP((X,, — EX,,)/cn € A®)

€A Yn
1 —
< limsup —log P((X, —EX,)/c, € A) < inf I(z)
Tn z€A



Fluctuations _

General folklore (?):

+ Often, most often, always (?)

If a centered sequence X,, obeys an LDP with rate function 7
and there is a CLT on scale b,, with limiting d.f. F, s.t.
1—F(z) ~ f(x) for z large

Then there is also an MDP with rate function J and

J(x) = log f()

+ and similarly for the large deviations: I(z) ~ J(z) for  small.



Fluctuations in the REM _

» Important quantity in statistical physics: the free energy

* Pyp=ylogZng
* In disordered systems, this is a random variable in the disorder

Consider the expected free energy

1
fn(B) = NElog ZN
+ and its thermodynamical limit
() = Jim fy



Fluctuations in the REM _

* Inthe REM Zy 5 = & 3 cpuqyv eV Xe
+ Then one can proof the following result:

Theorem (Derrida?, Talagrand, Bovier)

In the REM:
f_{ B%/2 ifB < B
B /8c2/2+(6_/30)/80 ifb>,80

where 5. = \/21log2



Fluctuations in the REM _

» This theorem constitutes a phase transition in the REM
+ This phase transition is of third order, as
+ the limiting free energy has a jump in its second derivative



Fluctuations in the REM _

» But even in the high temperature regime there is another surprise

Theorem
The free energy of the REM has the following fluctuations:

« If B < \/log2/2, then

o3 (log2—F) | _ZNfB % 0,1).

* IfB=+/In2/2, then

Z
e (o828 160 N B pr(g 1/2).
EZng



Fluctuations in the REM _

Theorem

* Leta = F/+2log2. If \/log2/2 < p < /2log?2, then

%(\/ZIOg —B)%+< (In(N log 2)+log 4) log —0F ZNﬁ
EZy 5

—>/ P(dz) — e *dz),

where P denotes the Poisson point process on R with intensity
measure e *dzx.



Fluctuations in the REM _

» This means, there is a second phase transition in the REM

catf=+/log2/2 = p./2.
For 8 < ./2 the theorem is proved via showing that the Lindeberg
condition for triangular arrays holds.

This condition breaks down at 3./2.
« Reason: influence of the extreme values of the summands.

+ This is also reflected in the occurrence of the Poisson point
processes for 5./2 < f < f.



ons in the Hopfield

* Which quantity should be considered?
Observe that in the Hopfield model

Hy(0) =~ |mn(o)|P

* where my (o) = (m/y (o ))fyz1 is the so-called overlap vector

¢ mN( o) = sz_ o)’

» The overlap is an order parameter of the system.



ons in the Hopfield

+ A phase transition in the Hopfield model can be read off from the
behavior of the overlap parameter

Theorem (Bovier, Gayrard, Picco)

For M < N and almost all choices of the &+
» For 5 < 1 the distribution of my weakly converges to 4.
* For 8 > 1 for any metrics d metrizing weak convergence,

d Po m M Z 5el‘z+ _euz+(5)) — 0

with e,, the p/th unit vector and =+ the largest solution to

z = tanh(fz)



ons in the Hopfield model

+ The phase transition can also be read off from the fluctuations

Bovier and Gayrard prove an almost sure LDP for the overlap in
the above situation.

The speedis n

and the rate function

+ has a unique minimumin 0 for 8 < 1
+ and several minima in all the 6., .+ for 3 > 1.



ons in the Hopfield model

+ Can we also see something happening of the level of Central Limit
Theorem?

* A partial answer is given by the following classical CLT
Theorem (Gentz, Bovier/Gayrard)

If 8 < land M < N, the almost surely in the £&* every

finite-dimensional projection of the rescaled-overlap vector v Nmy
converges in distribution to N'(0, ), where



ons in the Hopfield

- The energy function Hy (o) = &||my(o)||* is quadratic (and
therefore makes the computation difficult).

+ It can linearlised by the so called Hubbard-Stratonovich
transformation.

pn,go (VayNmy) ™'« N(0,an/8) = XN gan.c

where 1/N < aylel

+ This new measure possesses a density fy 3 w.r.t. to Lebesgue
measure

* and

fnp(x) ~ exp(=NpB¥ N g(x/\/Nan))



Fluctuations in the Hopfield model _

* Here v
1 1
Un (@) = 5llzllE = 55 D log cosh((€, 2)).
=1

* Expand ¥
Analyze fy s (and x)
Relate this to the original measure.

.
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Fluctuations in the Hopfield model _

At 8 = 1 the classical CLT obviously must fail.

* We have to rescale my differently.

+ This is known form the Curie-Weiss model

(by N'/4)

* However, in the Hopfield model, there is a surprise waiting.



ons in the Hopfield model

Theorem (with B. Gentz)

If M is independent of N. Then the distribution of the random
probability measure iy g o (VNY4*Nmy)~t converges weakly to the
distribution of a random probability measure Q,, on RM . Its density is
proportional to

1
299 (‘Elei - Z :cix?, + Z nu,ul‘ufcu>

p<v u<v

where 1,,,, are independent standard normally distributed r.vs.



Fluctuations in the Hopfield model _

Note that other than for different values of g

+ there is no almost sure result

The limiting object stays random

* A similar result can also be shown for growing A/
- aslongas M <« N3

Talagrand analyzes M <« N/3



Fluctuations in the Hopfield model _

* Taylor-expand cosh in

1 1
Uy p(z) = 5“3«“\@ " BN > logcosh(B(&, z)).-
i=1

At 8 = 1 the quadratic term 1||z||3 cancels with part of the second
order term of log cosh(-)

It remains %ﬁ D i1 Yopey Sl THE T

plus fourth order terms

of which f5|z[[{ and °,_, «77 survive

.

3



ons in the Hopfield model

Can the phase transition be detected from the moderate
deviations analysis?

* For 8 < 1and M < N the moderate deviations of my behave as
they should

i.e. for 1 < by < VN the rescaled overlap bymy

almost surely obeys an MDP with speed N/b% and quadratic rate
function



ons in the Hopfield model

+ At 8 = 1 the situation changes.

* "Away” from the CLT, i.e. for

« M%< Nand M? << NI=%

» the rescaled overlap N"my, 0 <y < 1/4

- almost surely obeys an MDP with speed N'~*" and rate function

¢ I(l‘) = 1_12‘1‘“1 _ Zp<y wixg

* However, even for finite M, for by < v/loglog N
- the sequence (N'/*/by)my does not obey an a.s. MDP



Conclusion _

Today we have
* Met several disordered models from statistical physics
+ Seen the influence of a phase transition on fluctuation results

+ Seen that in the REM we can detect a second phase transition on
the level of a CLT

Seen that in the Hopfield model the phase transition is
characterized by

*+ a non-standard CLT for the overlap
+ and by a breakdown of moderate deviations



Bedankt voor jullie aandacht!
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