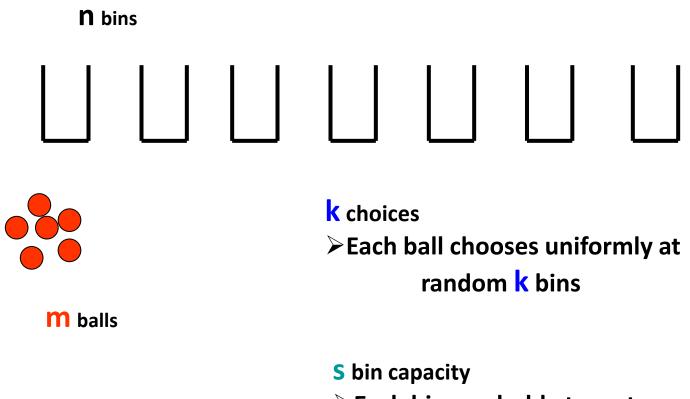


The Multiple-orientability Thresholds for Random Hypergraphs

Megha Khosla

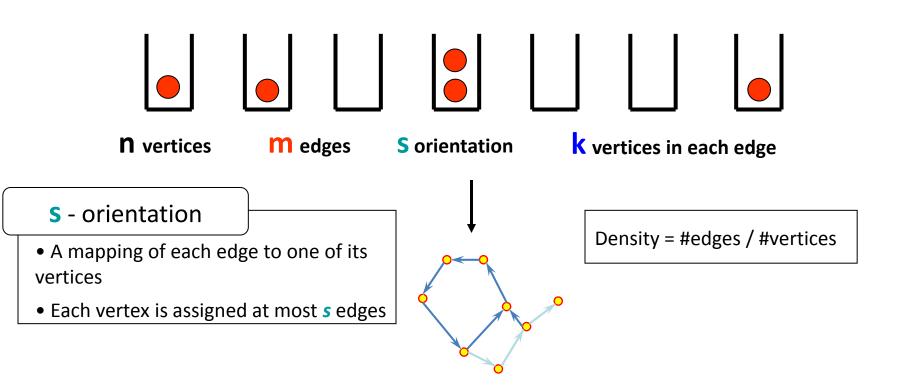
Joint work with Nikolaos Fountoulakis and Konstantinos Panagiotou

Introduction



Each bin can hold at most
s balls

Orientability of Hypergraph



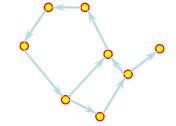
What is the **Critical Density** for an s-orientation to exist ?

The Basic Notions

- *k*-uniform hypergraph
 - each edge contains k distinct vertices
 - simple

$$G_{n,p},G_{n,m}$$
if k = 2

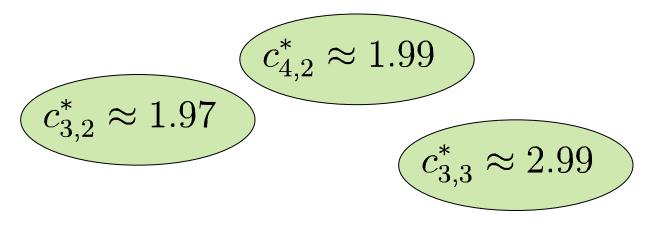
- Random hypergraphs
 - $-H_{n,p,k}$: each edge is present with probability p
 - $-H_{n,m,k}$: contains exactly *m* edges
- *s*-orientation
 - a mapping of the edges to the vertices
 - each vertex is assigned at most s edges



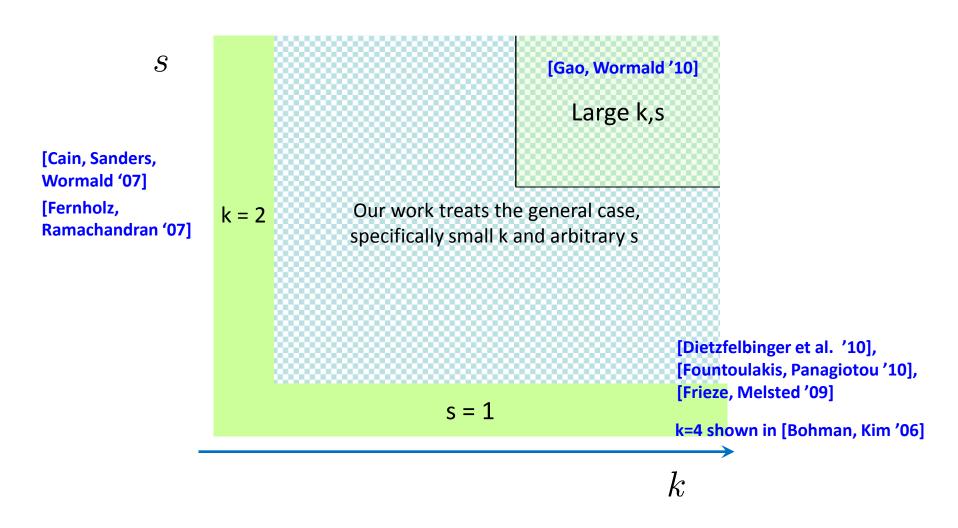
Main Result

Theorem. Let $k \ge 3$, $s \ge 2$. There is a $c_{k,s}^*$ such that $\Pr[H_{n,\lfloor cn \rfloor,k} \text{ is } s \text{-orientable}] \xrightarrow{(n \to \infty)} \begin{cases} 0, & \text{if } c > c_{k,s}^* \\ 1, & \text{if } c < c_{k,s}^* \end{cases}$.

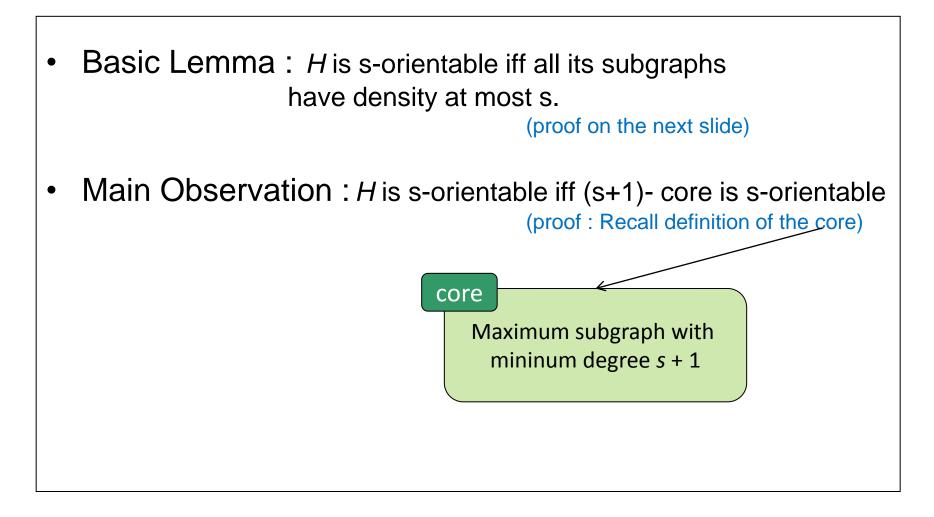
We determine $c_{k,s}^*$ explicitly in k and s



The General Case

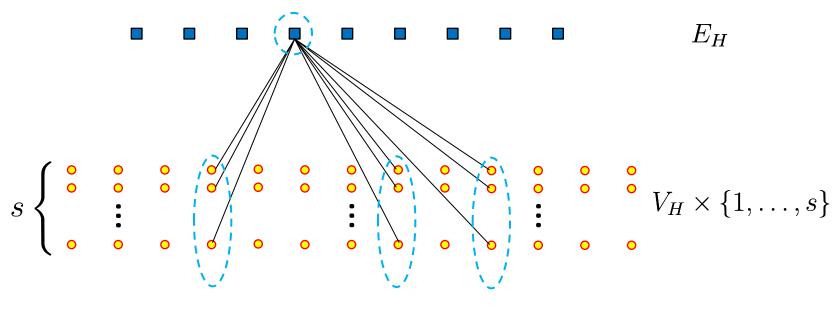


Proof Idea



Basic Lemma

- Lemma. *H* is *s*-orientable iff all its subgraphs have density at most *s*.
- **Proof.** \exists perfect matching $\Leftrightarrow \exists s \text{orientation}$ $\Leftrightarrow \forall E \subseteq E_H : |N(E)| \ge |E|$ $\Leftrightarrow \forall$ subgraphs the density $\leq s$



max planck institut informatik

Conclusion and Open Questions

- The threshold for the s-orientability of random kuniform hypergraphs coincides with the threshold that the (s+1)-core has density s.
- We showed that below the threshold all subgraphs have density < s.
- What happens at the critical density?
- What is the size of the largest subgraph at critical density?
- When does the first subgraph of density at least s appear?

THANK YOU !

