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Combinatorial optimization

• Configurations : N discrete variables (e.g. Boolean si ∈ {0, 1})

• Energy (cost) function E(C); typically computable in ∼ N b operations.

•
Optimization Pb: Find C∗ which minimizes E(C).
Evaluation Pb: Find the cost E(C∗).
Decision Pb: Is there a C with E(C)< E0?

Examples: Travelling Salesman Problem, Assignment, Spin glass, Eulerian

circuit, Hamiltonian cycle, Colouring, Satisfiability,...
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Examples

1)Travelling Salesman Problem

N points

C = tour; (N − 1)!/2
E(C) = length

2)Assignment

Isabelle

Vincent

Marc

Supermarket

Washing

Cleaning
N persons, N jobs

C = assignment; N !
E(C) = −

∑
affinities
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3) Spin glass

i

j N spins

C = spin configuration; 2N

E(C) = −
∑
Jijσiσj

4) Eulerian circuit

5) Hamiltonian path
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Eulerian circuit

f
b

B

D

C

A

c
d

e

g

a

Königsberg seven bridges

Euler 1736:

• Graph, visit all edges once and only once.

• Eulerian circuit ⇐⇒ every vertex has even degree
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Hamiltonian path

Hamilton’s Icosian game (Sir William, Astronomer Royal of Ireland,

1859): Find a route along the edges, visiting each corner exactly once and

returning to the starting corner. No simple solution...
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Classification: computational complexity

Worst case analysis of decision problems

P = polynomial ↔ tractable, t < Nα. Ex: Assignment, Eulerian circuit,

Spin glass in d = 2, Random Field Ising Model,...

NP = non-deterministic polynomial (A ’yes’ solution can be checked in

polynomial time) ↔ many problems!

NP-complete: the hardest NP problems. Problem A is NPC iff all

problems in NP are polynomially reducible to it. (If A is solvable in

polynomial time, all problems in NP are solvable in polynomial time).

Theorem (Cook, 1971): The SATISFIABILITY problem is NP-complete.

Other NPC: 3SAT, TSP, Hamiltonian cycle, Spin glass in d ≥ 3,..
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P = NP ?

NP−complete

P

NP

SAT

3SAT 
TSP

Hamiltonian cycle

(d)

3−Colouring

Eulerian circuit
Assignment

2−colouring
2SAT

NP

SAT

3SAT 
TSP

Hamiltonian cycle

(d)

3−Colouring

Eulerian circuit
Assignment

2−colouring
2SAT

= NP−completeP =

Conjectured Possible
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SATISFIABILITY: an example

“You are chief of protocol for the embassy ball. The crown prince
instructs you either to invite Peru or to exclude Qatar. The queen asks
you to invite either Qatar or Romania or both. The king, in a spiteful
mood, wants to snub either Romania or Peru or both. Is there a guest list
that will satisfy the whims of the entire royal family?” ( from B.Hayes,

American Scientist 1997).

Configurations = assignments of Boolean variables: P,Q,R ∈ {0, 1}

Constraints = clauses: P ∨ Q̄, Q ∨R, R̄ ∨ P̄

Is there a choice of P,Q,R such that all constraints are satisfied (SAT)?
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SATISFIABILITY: an important problem

2N Configurations= assignments of N Boolean variables: xi ∈ {0, 1}

M Constraints = clauses like x1 ∨ x27 ∨ x̄3, x̄11 ∨ x2, ....

Decision problem: is there a choice of the Boolean variables such that all

constraints are satisfied (SAT)?

Generic (conjunctive normal form (x1 ∨ x27 ∨ x̄3) ∧ (x̄11 ∨ x2) ∧ . . .).

NP-complete

Constraint satisfaction problems: Many discrete variables, many constraints,

is there a choice of variables which satisfies all constraints? Ubiquitous.
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“Worst-case” versus “Typical-case” complexity

Computational complexity = worst case analysis.

Experimental complexity = typical case analysis: → class of samples

(probability measure on instances). Example: CuMn at one percent Mn

Ex : Complexity of the random 3SAT problem. Three variables per clause,

chosen randomly in {x1, .., xN}, negated randomly with probability 1/2:

(x1 ∨ x27 ∨ x̄3) ∧ (x̄11 ∨ x3 ∨ x2) ∧ . . . ∧ (x9 ∨ x̄8 ∨ x̄30)

Control parameter: α = M
N = Constraints/Variables.

Numerically:Threshold phenomenon at αc ∼ 4.26.

Numerics Mitchell Selman Levesque Kirkpatrick Crawford Auton...;

Threshold Friedgut; Bounds Kaporis Kirousis Lalas Dubois Boufkhad...
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Threshold phenomenon → Phase transition

100

50

0

%SAT

α=Μ/Ν

N=200N=100

1 2 3 4 65
αc

generically SAT for α < αc

generically UNSAT for α > αc
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Threshold phenomenon → Phase transition

100

50

0

%SAT

α=Μ/Ν1 2 3 4 65
αc

Computer time

Easy, and generically SAT, for α < αc

Hard, in the region α ∼ αc

Easy, and generically UNSAT, for α > αc
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Statistical physics of the random 3-SAT problem

Monasson, Zecchina, Weigt, Biroli, ....., MM, Parisi, Zecchina: → Phase

diagram + New algorithm.

1- Analytic result: Three phases 2- New algorithm: Survey propagation

SAT (E = 0 ) UNSAT (E   >0)0 0

1 state
E=0 E>0

Many states Many states
E>0

=M/Nα
d

αc α= 4.267

Increasing α:

Easy-SAT, Hard-SAT,

UNSAT
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States and complexity

Minimum Energy Configurations: energy cannot be lowered by a finite

number of flips

State/Cluster= { MEC connected by finite flips }.

Proliferation of states: At α > αd, many states: N (E) ∼ exp
(
NΣ

(
E
N

))

c

eth

Σ

Ε/Ν

α αα

αα

α

d
< <

c α<

=

c

Σ(0) → clusters of SAT configurations

Σ(eth) → metastable clusters
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Main steps

• Graphical representation: 3SAT as a random factor graph

• Elementary message passing procedure: (Bethe approximation at zero

temperature): exchange of warnings between constraints and variables.

• In the presence of many clusters: cavity method → messages = surveys

of elementary messages in all clusters.
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Graphical representation: “factor graph”

One clause a:

Boolean: x̄1 ∨ x2 ∨ x̄3

3

2

a

1

2

1

4

5

3

a

b

c

d

e

(x̄1 ∨ x̄2 ∨ x̄4)∧(x1 ∨ x̄2)∧(x2 ∨ x4 ∨ x5)

∧(x1 ∨ x2 ∨ x̄5)∧(x1 ∨ x̄3 ∨ x5)
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Geometry of the random 3-SAT graph: tree-like
structure

→ Random bipartite graph:

Loops
Log N

:

Locally tree-like.

→ Iterative methods

Frequent situation:

finite connectivity random graphs

(e.g. Tanner graphs for LDPC codes)
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Simple message passing: warning propagation

ua 1
=    1

0

a

2 3

1

Message ua→1 ∈ {0, 1}

sent from clause a

to variable 1
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Simple message passing: warning propagation

ua 1
=    1

1

0

1
0

0 0

0 1
0

1

1

a

2 3

1

Warning ua→i = 1:

“According to the messages

I received, you should take the

value which satisfies me!”.
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Simple message passing: warning propagation

ua 1
=    

1

0

1
0

0
0

0
0

0

0

1

0

a

2 3

1

No warning ua→i = 0:

“No problem, take any value!”

Warning propagation converges and gives the correct answer on a tree: SAT

iff no contradictory message P (a)(x2, x3) ∼ P (a)(x2)P (a)(x3)
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Statistical physics analogue: Bethe approximation at
T = 0

h h
2 3
(a) (a)

u
a−>1

a

2 3

1

P (s1, s2, s3) ∝ e
−β

[
Ea(s1,s2,s3)−h

(a)
1 s1−h

(a)
2 s2−h

(a)
3 s3

]

Pcavity(s1) ∝
∑

s2,s3
e
−β

[
Ea(s1,s2,s3)−h

(a)
2 s2−h

(a)
3 s3

]

→ Pcavity(s1) ∝ e
−β

[
ua→1

(
h

(a)
2 ,h

(a)
3

)
s1

]

h
(a)
2 =

∑
b 6=a ub→2
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Proliferation of states

Warning propagation works if one can neglect the correlations between the

input fields (tree).

Random 3SAT “locally tree-like”: generically, x2 and x3 are very far away

(distance O(log(N))) → Uncorrelated if only one cluster / pure state.

SAT (E = 0 ) UNSAT (E   >0)0 0

1 state
E=0 E>0

Many states Many states
E>0

=M/Nα
d

αc α= 4.267

→ OK in Easy-SAT phase.

→ Wrong in Hard-SAT phase
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From warning propagation to survey propagation

From the Bethe approximation to the Cavity method

Hard SAT phase: Message = Survey of the elementary messages in

the various clusters of SAT configurations: ηa→i = probability of a warning

being sent from constraint a to variable i, when a cluster is picked up at

random.

→ Propagate the surveys along the graph. Converges!

→ Results on the phase diagram and the complexity, from the statistical

analysis of the distribution of surveys in a generic sample.

→ Information on a single sample: a local field on each variable → new

algorithmic strategies
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Survey propagation

a 1
η =   Prob(warning) 

η
b−>2

b

a

2 3

1

ηa→1: known exactly from

joint probability of

incoming warnings.

SP approximation: this joint

probability factorizes

24



Thermodynamics and complexity

Qualitative behaviour of the complexity:

c

eth

Σ

Ε/Ν

α αα

αα

α

d
< <

c α<

=

c

0

0.01

0.02

0.03

3.8 4 4.2 4.4 4.6 4.8 5

Σ eth

e0

αD αC α

0

0.01

0.02

0.03

3.8 4 4.2 4.4 4.6 4.8 5

Σ eth

e0

αD αC α

0

0.01

0.02

0.03

3.8 4 4.2 4.4 4.6 4.8 5

Σ eth

e0

αD αC α

0

0.01

0.02

0.03

3.8 4 4.2 4.4 4.6 4.8 5

Σ eth

e0

αD αC α

NB: Stability to further sub-clustering: stable in a finite region around αc.

Conjecture: αc = 4.2667... is the exact threshold.
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Single sample analysis: a new algorithm

Order parameter= Survey of local polarizations, in all states→ Algorithm

for the Hard-SAT phase. Survey Inspired Decimation: fix the variable which

is most biased, rerun the survey propagation, iterate...

0

50

100

150

200

0 5 10 15 20 25 30 35 40 45

Σ

E’

decimation
process

Solves typical random 3sat

up to N = 107 at α = 4.23,

complexity O(N logN).

Local surveys of magnetic fields → a lot of information. Probably possible

to invent other algorithms based on the surveys.
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Digression 1: unsatisfied glasses

Glass formation in systems with short range repulsion (e.g. hard spheres):

geometric frustration. Local densest structure (icosahedral) incompatible

with long range crystalline order.

Lattice glass models (Biroli MM, Coniglio et al.,...): density constraint

i

n
i

= 1

j

Σ n
j

< mDensity constraint:
j

Same treatment:

dynamical transition at density ρd,

static transition at ρc > ρd.

27



Lattice glasses

Simulations of related

lattice glass in d = 3

(Pica-Ciamarra et al.):

Bethe approximation:
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Digression 2: Inference
N discrete variables xi.

M constraints of probabilistic nature: ψa(Xa) = probability of

{xi1(a), ..., xiK(a)} = Xa, according to constraint a, involves K variables.

P (x1, ..., xN) =
∏M

a=1ψa(Xa) Q: Probability of xi?

Example 1: Medical diagnosis. Variables xi = Symptoms and diseases.

K = 1, 2, ψij(xi, xj) models the statistical dependence between symptom i

and disease j; the patient dependent ψi(xi) gives the evidence for symptom

i. Compute the probability pj(xj) that the patient has disease j.

Other examples: Error correcting code: compute the most likely inter-

pretation of a noisy message. Physics: compute the local magnetization

in a set of interacting spins. Optimization: Compute the probability of a

variable, given a set of constraints: e.g. graph colouring, or satisfiability...
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’Simple’ cases of inference: Belief propagation (BP)=
Bethe approximation

a−>1

a

2 3

1

3
)

1)

µ2−>a 2(x µ
3−>a

(x

µ (x

)
µa→i(xi) = Prob(constraint a satisfied), given xi.

µi→a(xi) = Prob(var i takes value xi), when a is

absent.

µa→1(x1) =
∑

x2,x3
ψa(x1, x2, x3)µ2→a(x2)µ3→a(x3)

µ2→a(x2) ∝
∏

b∈V (2)\a µb→2(x2)

Works well for error correcting codes.

Limit of constrained spins →’warning propagation’.

Beyond BP: 1)Small loops → cluster variational methods 2)Many states

→ SP.
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Summary

• A fertile emerging field of research at the intersection between computer

science, information theory and statistical physics.

• Difficult optimization problems: near to phase transitions, well separated

’clusters’ of solutions.... glass phase!

• Analytic result on the generic samples of random 3sat: Phase diagram;

Slowdown of algorithms near to αc = 4.267 due to the existence of a

Hard SAT phase at α ∈ [∼ 3.9, 4.267], with exponentially many states.

• Single sample analysis: Survey propagation: a very efficient algorithm for

solving random 3sat problems. Applicable to many “constraint satisfaction

problems”. An application for ’useless’ spin glasses :-)
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• A. Braunstein, M. Mézard and R. Zecchina, “Survey propagation: an
algorithm for satisfiability”, http://arXiv.org/abs/cs.CC/0212002
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