AB INITIO DENSITY FUNCITONAL CALCULATIONS OF MAGNETIC SUPERSTRUCTURES

Konstantin V. Nefedev

Far Eastern National University, Russia, Vladivostok knefedev@phys.dvgu.ru

P. Blaha, K. Schwarz, G. Madsen, D. Kvasnicka and

J. Luitz

Inst. f. Materials Chemistry, TU Vienna

The program package WIEN2k allows to perform electronic the most accurate schemes for band structure calculations. In DFT the local (spin) density approximation (LDA) or the structure calculations of solids using density functional theory plane-wave ((L)APW) + local orbitals (lo) method, one among improved version of the generalized gradient approximation (GGA) can be used. WIEN2k is an all-electron scheme including (DFT). It is based on the full-potential (linearized) augmented relativistic effects and has many features.

$\Psi\left(\vec{\tilde{r}}_{1},\vec{\tilde{r}}_{2},\vec{\tilde{r}}_{3}\vec{\tilde{r}}_{N}\right) \rightarrow \rho\left(\vec{\tilde{r}}\right) \rho = \frac{\#electrons}{V} \rho\left(\vec{\tilde{r}}\right) = N \mid \mid \Psi^{*}\left(\vec{\tilde{r}},\vec{\tilde{r}}_{2},\vec{\tilde{r}}_{3}\vec{\tilde{r}}_{N}\right) \Psi\left(\vec{\tilde{r}},\vec{\tilde{r}}_{2},\vec{\tilde{r}}_{3}\vec{\tilde{r}}_{N}\right) \Phi\left(\vec{\tilde{r}},\vec{\tilde{r}}_{2},\vec{\tilde{r}}_{N},\vec{\tilde{r}}_{N}\right)$	To minimize E_{tot} in accordance with variational principle it is necessary introduce orbitals constrained to construct the spin densities as	$\chi_{ik}^{\sigma} \qquad \rho_{\sigma}(r) = \sum_{i,k} \rho_{ik}^{\sigma} \chi_{ik}^{\sigma}(r) ^2 \tag{2}$	$ ho_{ik}^{\sigma}$ are occupation numbers such that $0 \leq ho_{ik}^{\sigma} \leq 1/w_k$	w_k is the symmetry-required weight of point k	Two approximations comprise the LSDA:	i) the assumption that E_{xc} can be written in terms of a local exchange-correlation energy density μ_{xc} times the total (spin-up plus spin-down) electron density	$E_{xc} = \int \mu_{xc}(\rho_{\uparrow}, \rho_{\downarrow}) * [\rho_{\uparrow} + \rho \downarrow] dr $ (3)	ii) the particular form chosen for that μ_{xc} .	The accurate fit to the Monte-Carlo simulations has used in WIEN2k package. Perdew J.P, at. al. 1992 Phys.Rev.B46, 6671

The variation of *E_{tot}* gives the Kohn-Sham (KS) equations

$$[-\nabla^2 + V_{Ne} + V_{ee} + V_{xc}^{\sigma}]\chi^{\sigma}_{ik}(r) = \epsilon^{\sigma}_{ik}\chi^{\sigma}_{ik}(r) \quad (4)$$

This Kohn-Sham equations must be solved selfconsistently in an iterative process, since finding the Kohn-Sham orbitals requires the knowledge of the potentials which themselves depend on the (spin-) density and thus on the orbitals again.

The LAPW method

The linearized augmented plane wave (LAPW from Slater's APW) is based on the DFT for the treatment of exchange and correlation. The LAPW method is a procedure for solving the KS equations for many-electron system (crystal)

- Local spin density approximation (LSDA)
- Generalized gradient approximation (GGA)
- Relativistic effects (scalar relativistic treatment)
- Spin-orbit coupling
- Core states are treated fully relativistically
- Electron density in the ground state
- Total energy
- KS-eigenvalues (energy bands)
 - **Basis set**

The basis set is especially adapted to the problem.

This adaptation is achieved by dividing the unit cell into

(I) non-overlapping atomic spheres(centered at the atomic sites)(II) an interstitial region.

In the two types of regions different basis sets are used:

- (I) inside atomic sphere
- (II) in the interstitial region

(I) inside atomic sphere

a linear combination of radial functions times spherical harmonics $Y_{lm}(r)$ is used

$$p_{\mathbf{k}_n} = \sum_{lm} [A_{lm,\mathbf{k}_n} w_l(r, E_l) + B_{lm,\mathbf{k}_n} \dot{w}_l(r, E_l)] Y_{lm}(\hat{\mathbf{r}}) \quad (5)$$

- $u_l(r,E_l)$ is the regular solution of the radial Schrodinger equation E_l and the spherical part of the potential inside sphere
- $\dot{u}_l(r,E_l)~~{
 m is}$ the energy derivative of u_l evaluated at the same energy E_l .
- Schrodinger equation on a radial mesh inside the sphere. A linear combination of these two functions constitute the linearization of the u_l and \dot{u}_l are obtained by numerical integration of the radial radial function

The coefficients A_{lm} and B_{lm} are functions of k_n determined by requiring that this basis function matches (in value and slope) each plane wave (PW) the corresponding basis function of the interstitial region.

(II) in the interstitial region

a plane wave expansion is used

$$\phi_{\mathbf{k}_n} = \frac{1}{\sqrt{\omega}} e^{i\mathbf{k}_n \cdot \mathbf{r}} \tag{6}$$

$$\mathbf{k}_n = \mathbf{k} + \mathbf{K}_n$$

 \mathbf{K}_n are the reciprocal lattice vectors

Is the wave vector inside the first Brillouin zone.

Each plane wave is augmented by an atomic-like function in every atomic sphere.

$\phi_{lm}^{LO} = [A_{lm} u_l(r, E_{1,l}) + B_{lm} \dot{u}_l(r, E_{1,l}) + C_{lm} u_l(r, E_{2,l})] Y_{lm}(\hat{r}) (8)$

Calculated properties

- Energy bands and density of states,
- electron densities and spin densities, x-ray structure factors,
 - Baders's "atoms-in-molecule" concept,
- total energy, forces, equilibrium geometries, structure optimization, molecular dynamics,
 - Phonons, with an interface to K.Parlinski's PHONON program
 - electric field gradients, isomer shifts, hyperfine fields,
- spin-polarization (ferro- or antiferromagnetic structures), spin-orbit coupling,
 - x-ray emission and absorption spectra, electron energy loss spectra
- optical properties,
- fermi surfaces,
- LDA, GGA, meta-GGA, LDA+U, orbital polarization,
- centro- or non-centrosymmetric cells, all 230 spacegroups built in

Manganise oxides

 Manganise oxides A_{1-x}B_x MnO₃

(A rare-earth ions, B divalent ions) with perovskite structure

 Very rich structureproperty phase diagram

(a lot of phase transitions over x, field induced phase transitions)

- Half-metallic behavior
- Magnetic semiconductors (spintronics)

J. Hemberger, A. Krimmel et all, Phys. Rev. B **66,** 094410 (2002).

Giant magnetoresistance

(very large negative magnetoresistance – decreasing on some orders of value)

- Giant volume magnetostriction effect
- Correlations between charge and magnetic ordering
- Magneto-optic Faraday effect

Eigenvalues FM LaMnO₃

.8530340 .8324627 .7897570 .7173063 .7173063 .7428883 .7428883 .7428883 .7428883	.1088354 .2432990 .2764147 .3164985 .3559188 .3559188 .4358185 .4554251 .4554251	.7757815 .8212903 .8852254
447119 -2 198241 -2 104425 -2 113022 -1 126085 -0 129943 -0 139943 -0 139943 -0	90665 190665 139339 150207 150207 150207 190205 10005 100205 1000	42132 0 25679 0 42290 0
	-0.23 0.23 0.31 0.41 0.45 0.41 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45	0.74
-5.1460184 -2.8472225 -2.7957210 -1.7240796 -0.8041667 -0.523556363 -0.505255	-0.4417674 0.2193394 0.2646841 0.3032957 0.3403835 0.4068933 0.4526375 0.4957298	0.870094
-5.1468945 -2.8499407 -2.8499407 -2.8265639 -1.7295814 -0.8053001 -0.7301787 -0.7301787 -0.5043266	-0.4561729 0.1674153 0.2622541 0.3019328 0.3340113 0.3898546 0.4507547 0.4749137	0.7317433 0.7962134 0.8548808
-5.1471806 -2.8520102 -2.8314742 -2.7894719 -0.8354591 -0.7648742 -0.7380413 -0.5166909	-0.4905313 0.1620069 0.2466562 0.2897645 0.3293745 0.3726179 0.4709108	0.7121077 0.7822771 0.8251314
-3.1225084 -3.1144662 -3.1005985 -1.7185326 -0.8013134 -0.7551710 -0.5230813 -0.4947775	0.0737671 0.1906303 0.2529675 0.2721087 0.3218561 0.3218561 0.4419577 0.4419577 0.4867209	0.5423010 0.5947139 0.6586623 0.9059289
-5.4391653 -3.1157927 -3.1012278 -1.7225515 -0.8036936 -0.7570046 -0.5239525 -0.4990767	-0.4435057 0.1781869 0.2472858 0.2683438 0.2683438 0.3028571 0.3912785 0.4777048 0.4777048	0.5199017 0.5780689 0.6510183 0.8852830
-5.4405377 -3.1171011 -3.1051687 -1.7253740 -0.8166376 -0.5274214 -0.5274214	-0.4459121 0.1684213 0.2270528 0.2641558 0.2984495 0.3851128 0.4303605 0.4712547	0.5188305 0.5777726 0.6366225 0.8360416
-5.4414292 -3.1198857 -3.1087108 -1.7309450 -0.8185905 -0.7436605 -0.7436605	-0.4600076 0.1261263 0.2231221 0.2593005 0.2976954 0.3726757 0.429865 0.4498687	0.4979274 0.5539338 0.6216158 0.7116210
5.4416173 3.1206812 3.1126133 3.1004642 0.8480429 0.7761941 0.7505847 0.5190848	0.4938860 0.1122331 0.2036890 0.2548682 0.2548682 0.2874842 0.2874842 0.3474525 0.4166230 0.4426580	0.4896292 0.5505000 0.5963476 0.6953304

Spin up eigenvalues 96 levels till Fermi_En

Spin down eigenvalues 80 levels till Fermi_En

Canted A-type antiferromagnetic LaMnO₃

Schematic illustration of a layer-type antiferromagnetic structure. This structure is labeled as A-type after E.O. Wollan and W.C. Koehler, Phys. Rev. **100**, 545 (1955)

Electron density plots A-AFM LaMnO₃

(010), spin up

(010), spin down

(100), spin up

(100), spin down

spin up

 $E_c = 0.48 \text{ Ry}$

spin down

Total density of states (DOS) LaMnO₃

5

15

19

ß

S

ĥ

19

-15

-59 -79

15

10

n

eV

ĥ

-18

-15

9 29 9

me your

Ferromagnet

A-type Antyferromagnet

ĥ

-18

-15

Ferromagnet

Energy (eV)

100 atoms supercell for thinly layered La_{0.9}Sr_{0.1}MnO₃

- Inequivalent Atoms: 36
- Lattice: Spacegroup: 11-P21/m
- Number of symmetry operations: 4
- Lattice parameters:

a=10.45, b=54.25, c=14.49 (bohr) α=β=γ=90° Unit cell volume 8218.5

- 5 primitive cells in x direction
- Bravais lattice: Monoclinic primitive
- THE CRYSTAL SYSTEM IS ORTHORHOMBIC
- ORDER OF LATTICE POINT GROUP (NO BASE) :

ω

- ORDER OF LATTICE SPACE GROUP (WITH BASE) =
- NON-SYMMORPHIC SPACE GROUP OR NON-STANDARD ORIGIN OF COORDINATES
- SPACE GROUP CONTAINS INVERSION

1) full occupation of (100) plane by Sr

2) half-occupation of (001/4) and (003/4) planes by Sr

Input parameters La_{0.9}Sr_{0.1}MnO₃

- LDA, Perdew-Burke-Ernzerhof 96, energy to separate core and valence states: -6,5 Ry
- RMT*Kmax=4
- Temperature broadening scheme (TEMP), broadening factor 0.005
- Mixing factor 0.005
- U=4.5 eV (L= 2 U= 0.331 Ry J= 0.0 Ry), -orb, G. Trimarchi and N. Binggeli Phys. Rev. B 71, 035101 (2005)
 - LDA+U potential added for all Mn atoms
- 1 k-mesh before SCF (1 k-point), and 500 after achievement of the convergence (90 k-points was generated)
- Energy and charge convergence -c 0.0001 -ec 0.01
- Spin-polarized calculation

1)	FULL	OCCUPATIO	Z	7) PARTIAL O	CCUPATION	
TOTAL ENERGY		-373985	.412950 Ry	TOTAL	ENERGY	-373985.4	119297 Ry
F E R M I – ENE	RGY	0.6277	7 Ry	F E R M	I – ENERGY	0.61365 F	۲y
Chemical Poten	tial	0.630	50109 Ry	Chemic	al Potential	0.613647	87 Ry
ORBITAL MOME PROJECTION OI	ΞΣ	0.0	0.0	ORBITA PROJEC	L MOMENT: CTION ON M	0.0 0.0 0.0	0.0
SPIN MOMENT: PROJECTION ON	Σ	0.00 0.00 -0.360	-0.36006 06	SPIN MO PROJE	OMENT: CTION ON M	0.00 0.00 - -0.367	.0.36769 769
Compound	Space group	Calculation of magnetic ordering	Number of atoms in cell (supercell)	k-mesh/ k-points	E _{tot} per unit cell/ E _{tot} per atom (Ry)	M _{tot} per cell/ Mtot per atom Mn	E _F , eV
LaMnO ₃	62- Pmna	nonmagnetic	20	1000	-79058.406 -3952.92	(us) 0	0.71504
LaMnO ₃	62- Pmna	Spin-polarized	20	1000	-79058.812 -3952.94	15.99750 3.999	0.74194
LaMnO ₃	1-P1	ferromagnetic	20	10	-79058.525 -3952.93	16.13940 4.034	0.73543
LaMnO ₃	1-P1	antiferromagnetic, A-tvne	20	10	-79058.396 -3952.92	0	0.71875
LaMnO ₃	1-P1	antiferromagnetic, C-type	20	10	-79058.396 -3952.92	0	0.71875
LaMnO ₃	1-P1	antiferromagnetic, G-type	20	10	-79058.396 -3952.92	0	0.71875
La _{87.5} Sr _{12.5} MnO ₃ 1 cluster (1 atom Sr)	1-P1	Spin-polarized	40	10 4	-147473.101 -3686.83	1	-0.12127
La ₇₅ Sr ₂₅ MnO ₃ 1 cluster (1 atoms Sr)	1-P1	Spin-polarized	20	10 4	-68423.090 -4921.16	15.17455 3.79	0.67372

Electron density plots La_{0.9}Sr_{0.1}MnO₃ 1) Full occupation spin up

Electron density plots La_{0.9}Sr_{0.1}MnO₃ 2) Partial occupation: view of (001) plane

spin up

spin dn

Electron density plots La_{0.9}Sr_{0.1}MnO₃ 2) Partial occupation: view of (010) plane spin up spin up

Total DOS Mn (1)

Total DOS Mn (2)

1) Full

2) Partial

Total DOS O (1)

Total DOS O (2) ^{1) Full}

2) Partial

X-spectrum La_{0.9}Sr_{0.1}MnO₃

Summary

- DFT gives us an exact and powerful tool for theoretical research in condensed matter physics, chemistry, materials science
- implement for ab initio calculations of magnetic WIEN2k program package is interesting and helpful superstructures
- There is possibility to calculate different magnetic structures, but the choice of magnetic order type for the given crystal structure is made by hand.

Thank you!

2