

Accurate modeling and simulation of the dynamics of ultrashort optical pulses in nonlinear waveguides

O. Melchert

Cluster of Excellence PhoenixD, Leibniz Universität Hannover Institute of Quantum Optics, Leibniz Universität Hannover

Outline

- Part 1 Physics of the nonlinear Schrödinger equation (NSE) in fiber optics
- Part 2 Modeling pulse propagation using the generalized NSE
- Part 3 Two-frequency pulse compounds

Analytic signal based propagation models

- *z*-propagation of real-valued optical field
 - linearly polarized electromagnetic pulse
 - one-dimensional dispersive nonlinear medium
 - single-mode propagation

optical field:

$$E(z,t) = \mathsf{F}^{-1} \left[E_{\omega}(z) \right] = \sum_{\omega} E_{\omega}(z) e^{-i\omega t}, \quad \omega \in \frac{2\pi}{T} \mathbb{Z}$$

$$E_{\omega}(z) = \mathsf{F} \left[E(z,t) \right] = \frac{1}{T} \int_{-t_{\max}}^{t_{\max}} E(z,t) e^{i\omega t} dt$$

Forward model for the analytic signal [Amiranashvili, Demircan; PRA 82 (2010) 013812] [Amiranashvili, Demircan; AOT (2011) 989515]

$$i\partial_z \mathcal{E}_{\omega} + k(\omega)\mathcal{E}_{\omega} + \frac{3\omega^2 \chi}{8c^2 \beta(\omega)} \left(|\mathcal{E}|^2 \mathcal{E}\right)_{\omega > 0} = 0 \qquad \qquad \text{wavenumber:} \\ k(\omega) = \beta(\omega) + i\alpha(\omega)$$

- non-envelope model $\chi =$ nonlinear susceptibility
 - spectrally broad pulses
 - ultrashort pulses

Den

- c = speed of light
- $\omega =$ angular frequency

Theoriekolloquium CvO Universität Oldenburg, 2021-11-18

 \mathbb{Z}

Delay (10 fs/div)

Figure taken from:

[Amiranashvili; in New Approaches to Nonlin. Waves (2016)]

relation to optical field:

$$\mathcal{E}(z,t) = \sum_{\omega>0} \mathcal{E}_{\omega}(z) e^{i\omega t}, \quad \mathcal{E}_{\omega}(z) = [1 + \operatorname{sign}(\omega)] E_{\omega}(z)$$

conservation law ($\alpha(\omega) = 0$):

$$C_p(z) = \sum_{\omega > 0} \omega^{-2} \beta(\omega) |\mathcal{E}_{\omega}(z)|^2$$

(classical analog of photon number)

Analytic signal based propagation models

- Equivalence to nonlinear Schrödinger equation in SVEA* limit
 - simplify wavenumber

$$\alpha(\omega) = 0, \ \beta(\omega = \omega_0 + \Omega) = \beta_0 + \beta_1 \Omega + \frac{\beta_2}{2} \Omega^2$$

introduce reference frequency and shift to moving frame of reference

$$A(z,\tau) = \sum_{\Omega} A_{\Omega}(z) e^{-i\Omega\tau}, \quad A_{\Omega}(z) = \mathcal{E}_{\omega_0 + \Omega}(z) e^{-i(\beta_0 + \beta_1\Omega)z},$$

rewrite as standard nonlinear Schrödinger equation (NSE)

$$i\partial_z A_\Omega + \frac{\beta_2}{2}\Omega^2 A_\Omega + \gamma \left(|A|^2 A\right)_\Omega = 0 \qquad \qquad i\partial_z A - \frac{\beta_2}{2}\partial_\tau^2 A + \gamma |A|^2 A = 0$$

(Frequency domain representation)

selected conservation law

$$C_E(z) = \int_{-\infty}^{\infty} |A(z,t)|^2 \, \mathrm{d}\tau$$

[Zhakarov, Shabat; JETP 34 (1972) 62]

Theoriekolloquium CvO Universität Oldenburg, 2021-11-18

(Time domain representation)

* Slowly varying envelope approximation (SVEA)

Part 1 Physics of the 1D NSE in fiber optics

1D NSE in fiber optics notation

$$i\partial_z A = rac{eta_2}{2}\partial_ au^2 A - \gamma |A|^2 A$$
 propagation directions

A = A(z, t) = slowly varying pulse envelope $\gamma = \text{nonlinear parameter } (W^{-1}/km)$ $\beta_1 = 1/v_g = \text{group delay (ps/km)}$ $\tau = t - \beta_1 z$ = retarded time (ps) $\beta_2 = \text{group-velocity dispersion } (\text{ps}^2/\text{km})$

- exactly integrable partial differential equation (PDE) obeys infinitely many conservation laws [Zhakarov, Shabat; JETP 34 (1972) 62]
- describes nonlinear propagation of waves applies to fluids, optics, Bose-Einstein condensates [Yang; Nonlinear waves in integrable and nonintegrable systems (2010)]
- can be solved using the inverse scattering transform provides exact solutions known as solitons [Agrawal; Nonlinear Fiber Optics (2019)]

Theoriekolloquium CvO Universität Oldenburg, 2021-11-18

Figure taken from: [Philbin et al.; Science 319 (2008) 1367]

Core diameter: $1.8 - 3.2 \ \mu m$

1D NSE in fiber optics notation

$$i\partial_z A = \frac{\beta_2}{2}\partial_\tau^2 A - \gamma |A|^2 A \qquad \qquad \text{propagation} \\ \text{direction}$$

A = A(z, t) = slowly varying pulse envelope $\gamma = \text{nonlinear parameter } (W^{-1}/km)$ $\beta_1 = 1/v_g = \text{group delay (ps/km)}$ $\tau = t - \beta_1 z$ = retarded time (ps) $\beta_2 = \text{group-velocity dispersion } (\text{ps}^2/\text{km})$

Split-step Fourier method (SSFM)

- nonlinear term *easily* evaluated in time-domain
- derivatives *easily* evaluated in Fourier domain $\partial_{\tau}^{n} \longrightarrow (-i\Omega)^{n}, \quad \partial_{\tau}^{2}A \longrightarrow -\Omega^{2}A_{\Omega}$
- simple approximate solution procedure [Taha, Ablowitz; J. Comp. Phys. 55 (1984) 203]

$$\xi = \exp\{i\gamma |A(z,t)|^2 \Delta z\} A(z,t)$$
$$A(z+\Delta z,t) = \mathsf{F}^{-1} \left[\exp\{i(\beta_2/2)\Omega^2 \Delta z\} \mathsf{F}[\xi]\right]$$

simple but not recommended; global error $O(\Delta z)$

Der

Theoriekolloquium CvO Universität Oldenburg, 2021-11-18

Figure taken from: [Philbin et al.; Science 319 (2008) 1367]

Popular fixed stepsize method

4th order Runge-Kutta in the interaction picture method [Hult; IEEE J. Lightwave Tech. 25 (2007) 3770]

Tailored adaptive stepsize methods

LEM: Local error method [Sinkin et al.; IEEE J. Lightwave Tech. 21 (2003) 61] CQE: Conservation quantity error method [Heidt; IEEE J. Lightwave Tech. 27 (2009) 3984]

B43: Balac 4(3) ERK method [Balac, Mahe; Comp. Phys. Commun. 184 (2013) 1211]

Rich variety of dynamical phenomena - Solitons

- Optical temporal solitons
 - exist for anomalous dispersion $\beta_2 < 0$
 - evolve without change in shape and spectrum balance of dispersion and nonlinearity
 - *localized* in time, *stationary* along z
 - temporal solitons
- Fundamental soliton

$$A(z,\tau) = A_0 \operatorname{sech}\left(\frac{\tau}{t_0}\right) e^{i\frac{\gamma P_0}{2}z}$$

$$P_0 = A_0^2 = \frac{|\beta_2|}{\gamma t_0^2}$$

- dispersion length: $L_D = t_0^2/|\beta_2|$ $\frac{L_D}{L_{\rm NL}} = 1$
- nonlinear length: $L_{\rm NL} = (\gamma P_0)^{-1}$ •
- soliton energy: $E = 2 t_0 P_0$

Theoriekolloquium CvO Universität Oldenburg, 2021-11-18

z (m)

Prediction + demonstration of fiber-optical solitons [Hasegawa, Tappert; Appl. Phys. Lett. 23 (1973) 142] [Mollenauer, Stolen, Gordon; PRL 45 (1980) 1095]

Rich variety of dynamical phenomena - Solitons

- **Optical temporal solitons**
 - exist for anomalous dispersion $\beta_2 < 0$
 - evolve without change in shape and spectrum balance of dispersion and nonlinearity
 - *localized* in time, *stationary* along z
 - temporal solitons
- Fundamental soliton

$$A(z,\tau) = A_0 \operatorname{sech}\left(\frac{\tau}{t_0}\right) e^{i\frac{\gamma P_0}{2}z}$$

$$P_0 = A_0^2 = \frac{|\beta_2|}{\gamma t_0^2}$$

- $\frac{L_D}{L_{\rm NL}} = 1$ dispersion length: $L_D = t_0^2/|\beta_2|$
- nonlinear length: $L_{\rm NL} = (\gamma P_0)^{-1}$ •
- soliton energy: $E = 2 t_0 P_0$

Theoriekolloquium CvO Universität Oldenburg, 2021-11-18

1.4

0.2

0.0 -

Non-soliton regimes (for comparison)

dispersion-dominant

$$\frac{L_D}{L_{\rm NL}} \ll 1$$

Rich variety of dynamical phenomena - Solitons

- **Optical temporal solitons**
 - exist for anomalous dispersion $\beta_2 < 0$
 - evolve without change in shape and spectrum balance of dispersion and nonlinearity
 - *localized* in time, *stationary* along z
 - temporal solitons
- Fundamental soliton

$$A(z,\tau) = A_0 \operatorname{sech}\left(\frac{\tau}{t_0}\right) e^{i\frac{\gamma P_0}{2}z}$$

$$P_0 = A_0^2 = \frac{|\beta_2|}{\gamma t_0^2}$$
 0.000

- dispersion length: $L_D = t_0^2/|\beta_2|$ $\frac{L_D}{L_{\rm NL}} = 1$ nonlinear length: $L_{\rm NL} = (\gamma P_0)^{-1}$ $\frac{L_D}{L_{\rm NL}} = 1$
- •
- soliton energy: $E = 2 t_0 P_0$

Theoriekolloquium CvO Universität Oldenburg, 2021-11-18

Propagation distance z (m) 200°0 - 20

0.004

Non-soliton regimes (for comparison)

- nonlinearity-dominant
- self-phase modulation

$\frac{L_D}{L_{\rm NL}} \gg 1$

Interactions between solitons

- NSE solitons collide elastically
 - exhibit particle-like properties
 - coherent interaction
 - affected by relative phase

$$A(0,t) = A_0 \operatorname{sech}\left(\frac{t-\delta}{t_0}\right) e^{i(\omega_0 t+\phi)} + A_0 \operatorname{sech}\left(\frac{t+\delta}{t_0}\right) e^{-i\omega_0 t}$$

- Collisions for NSE solitons
 - number of solitons is conserved
 - no energy lost to radiation
 - velocities don't change
 - transient spectral shift
 - imprints phase and time shift

solitons in phase

solitons in antiphase

Theoriekolloquium CvO Universität Oldenburg, 2021-11-18

Initial condition for colliding solitons

Higher-order solitons

- Higher-order solitons
 - Bound-state of N solitons
 - localized in time, periodic along z
 - amplitude: $A_0^{\mathrm{N-sol}} = N A_0, \quad N^2 = \frac{L_D}{L_{\mathrm{NL}}}$
 - soliton period: $z_s = \frac{\pi}{2}L_D$
 - correct propagation for large N requires high accuracy
 tough test for numerical algorithms

Theoriekolloquium CvO Universität Older

 $|A|^{2}/max(|A|^{2})$

 $|A_0|^2/max(|A_0|^2)$

Third-order dispersion

NSE perturbed by third-order dispersion

$$i\partial_z A = \left(\frac{\beta_2}{2}\partial_\tau^2 - i\frac{\beta_3}{6}\partial_\tau^3\right)A - \gamma |A|^2A$$

$$k_{\rm lin}(\Omega) = \frac{\beta_2}{2}\Omega^2 + \frac{\beta_3}{6}\Omega^3$$

 $\beta_3 = \text{third-order dispersion } (\text{ps}^2/\text{km})$

- describes dynamics for zero-dispersion points $\partial_{\Omega}^2 k_{\rm lin}(\Omega_{\rm Z}) \stackrel{!}{=} 0 \rightarrow \Omega_{\rm Z} = -\frac{\beta_2}{\beta_3}$
- Emission of resonant radiation
 - radiation frequency •

$$k_{\rm lin}(\Omega_{\rm RR}) = \frac{\gamma P_0}{2}$$

optical Cherenkov radiation

[Akhmediev, Karlsson; 51 (1995) 2602] [Skryabin, Yulin; PRE 72 (2005) 016619]

Theoriekolloquium CvO Universität Oldenburg, 2021-11-18

 10^{-6} 12 Propagation distance z (m) 10 8 6 2 • 0 2 Wavenumbers (km⁻¹) 1 0 -1 -2 -3 -4-5

Interaction of pulses across a zero-dispersion point

- Interaction between soliton (S) and dispersive wave (DW)
 - co-propagation with similar group velocity
 - strong *repulsive* interaction
 - based on general wave reflection mechanism •
- Frequency shifts in presence of (almost) stationary solitons

[Smith, Math. Proc. Camb. Phil. Soc 78 (1975) 517] [de Sterke, Opt. Lett. 17 (1992) 914] [Philbin et al., Science 319 (2008) 1367] [Demircan et al., PRL 106 (2011) 163901] [Faccio, Cont. Phys. 1 (2012) 1]

Interaction of pulses across a zero-dispersion point

- Interaction between soliton (S) and dispersive wave (DW)
 - co-propagation with similar group velocity
 - strong *repulsive* interaction
 - based on general wave reflection mechanism •
- Strong + efficient light-light interaction (here: beyond the standard NSE model) [Demircan et al., PRL 106 (2011) 163901]

[Smith, Math. Proc. Camb. Phil. Soc 78 (1975) 517] [de Sterke, Opt. Lett. 17 (1992) 914] [Philbin et al., Science 319 (2008) 1367] [Demircan et al., PRL 106 (2011) 163901] [Faccio, Cont. Phys. 1 (2012) 1]

energy transfer from DW to S

Part 2 Modeling pulse propagation using the generalized NSE

Generalized nonlinear Schrödinger equation (GNSE)

$$\partial_{z}A(z,t) = i \sum_{k\geq 2}^{11} \frac{\beta_{k}}{k!} (i\partial_{t})^{k}A(z,t) + i\gamma \left(1 + \frac{1}{\omega_{0}}i\partial_{t}\right) A(z,t) \int_{-\infty}^{\infty} h(t') |A(z,t-t')|^{2} dt'$$
field envelope dispersion operator self-steepening total response function

- Generalized nonlinear Schrödinger equation (GNSE) [Dudley, Genty, Coen; Rev. Mod. Phys. 78 (2006) 1135]
 - Applicable beyond slowly varying envelope approximation [Brabec, Krausz; Phys. Rev. Lett. 78 (1997) 3282]
 - Includes instantaneous Kerr and delayed Raman response [Blow, Wood; IEEE J. Quant. Electr. 25 (1989) 2665]

$$h(t) = (1 - f_R)\delta(t) + f_R h_R(t) \qquad f_R = 0.18$$

$$h_R(t) = \frac{\tau_1^2 + \tau_2^2}{\tau_1 \tau_2^2} e^{-t/\tau_2} \sin(t/\tau_1)\theta(t) \qquad \frac{\tau_1 = 12.2 \text{ fs}}{\tau_2 = 32.0 \text{ fs}}$$

Conservation law (classical analog of photon number)

$$\partial_z \int \frac{|A_{\omega}(z)|^2}{\omega_0 + \omega} \,\mathrm{d}\omega = 0$$

Der

Theoriekolloquium CvO Universität Oldenburg, 2021-11-18

Raman response models for silica fibers

BW: [Blow, Wood; IEEE J. Quant. Electron. 25 (1989) 2665] LA: [Lin, Agrawal; Opt. Lett. 21 (2006) 3086] HC: [Hollenbeck, Cantrell; JOSA B 19 (2002) 2886]

Supercontinuum generation

0.2 (a) $GVD \beta_2 (fs^2/\mu m)$ Effects leading to extreme spectral broadening 0.0 soliton fission + soliton self-frequency snitt -0.2 -0.4 (e) 12 · Distance z(cm) 8 **4** · 0 3 2 0 ω_{Z} Angular frequency ω (rad/fs) Time τ (ps)

optFROG - Optimized Spectrograms [4]

?hoeni×

18

Switching concept enabled by nonlinear processes

Customized to fit NL-PM-750 (NKT Photonics) [Melchert et al.; Commun. Phys. 3 (2020) 146]

Theoriekolloquium CvO Universität Oldenburg, 2021-11-18

Initial pulse delay affects self-frequency shift

Dispersive wave induced supercontinuum (SC) switching

- Higher-order soliton + normally dispersive wave
 - Controlling different parts of solitonfission induced SC spectra

(delay sweep for single instance)

Numerical simulations

Theoriekolloquium CvO Universität Oldenburg, 2021-11-18

All-optical switching logic

Designation	Inputs		Outputs (O _i)		
	DW	S	O ₁	O ₂	O ₃
λ(nm)	680	800	540	680	1100
	0	0	0	0	0
	0	1	0	0	1
	1	0	0	1	0
	1	1	1	0	0
Functionality			s & DW	<u>s</u> & dw	s & DW
Cascadability			_	1	(✔)

S soliton, DW dispersive wave.

[Melchert et al.; Commun. Phys. 3 (2020) 146]

All-optical SC switching

- Exploits wave reflection mechanism
- Uses higher-order solitons
- **Enables 3 AND-gate functionalities**
- Femtosecond switching times

Part 3 Two-frequency pulse compounds

Trapping and soliton molecules with two frequencies

Radiation trapping by *decelerating* soliton

[Gorbach, Skryabin, Nature Photonics 1 (2007) 653] [Gorbach, Skryabin, PRA 76 (2007) 053803]

Soliton molecules with two frequencies

Trapping in *soliton-delimited cavities*

[Driben, Yulin, Efimov, Malomed, Optics Express 21 (2013) 19091]

[Tam, Alexander, Hudson, Blanco-Redondo, de Sterke, PRA 101 (2020) 043822]

[Lourdesamy, Runge, Alexander, Hudson, Blanco-Redondp, de Sterke, arxiv:2007.01351]

Theoriekolloquium CvO Universität Oldenburg, 2021-11-18

[Melchert et al., PRL 123 (2019) 243905]

generalized dispersion Kerr solitons

recent experimental demonstration:

Details of the considered propagation constant

$$i\partial_z \mathcal{E}_\omega + \beta(\omega)\mathcal{E}_\omega + \frac{3\omega^2 \chi}{8c^2\beta(\omega)} \left(|\mathcal{E}|^2 \mathcal{E}\right)_{\omega>0} = 0$$

Propagation constant

$$\begin{split} \beta(\omega) &= \frac{\omega}{c} \operatorname{Re}\left[n(\omega)\right] \\ \beta_1(\omega) &= \partial_{\omega}\beta(\omega) \quad \text{(group delay)} \\ \beta_2(\omega) &= \partial_{\omega}^2\beta(\omega) \quad \text{(group velocity dispersion; GVD)} \\ \beta_3(\omega) &= \partial_{\omega}^3\beta(\omega) \\ v_g(\omega) &= 1/\beta_1(\omega) \quad \text{(group velocity; GV)} \\ v'_g(\omega) &= \left[\beta_1(\omega) - \frac{\beta_2(\omega)}{\omega t_0^2} + \frac{\beta_3(\omega)}{6t_0^2}\right]^{-1} \end{split}$$

[Haus, Ippen, Opt. Lett. 26 (2001) 1654] [Pickartz, Bandelow, Amiranashvili, PRA 94 (2016) 033811]

Zero-dispersion frequencies

 $(\omega_{Z1}, \omega_{Z2}, \omega_{Z3}) = (1.511, 2.511, 5.461) \text{ rad/fs}$

oeni×l

Weak trapped states in solitary-wave well

Linearised eigenvalue problem

$$\left[-\frac{|\beta_2'|}{2}\frac{d^2}{dt^2} + V(t)\right]\phi_n(t) = \kappa_n\phi_n(t)$$

(primes indicate quantities calculated at $\omega_{\rm GVM2}$) [Melchert et al., PRL 123 (2019) 243905]

trapping potential:

$$V(t) = -\frac{|\beta_2'|}{2} \frac{\nu(\nu+1)}{t_{\rm S}^2} {\rm sech}^2 \left(t/t_{\rm S} \right)$$

ben

Theoriekolloquium CvO Universität Oldenburg, 2021-11-18

similar to sech² potential well in 1D quantum scattering

[Landau, Lifshitz, Quantum Mechanics (1981)] [Lekner, Am. J. Phys. 75 (2007) 1151]

Weak trapped states in solitary-wave well

Trapped state of order n = 2:

Simultaneous propagation of *multiple* trapped states - coherent dynamics

oeni×

Extreme states of light — optical halos

Example for $\omega_{\rm S} = 1.27 \,({\rm rad/fs})$ $t_{\rm S} = 60 \,{\rm fs}$

Root-mean-square duration

 $t_{\mathrm{rms}}^{\mathrm{halo}} \approx 8 \times t_{\mathrm{rms}}^{\mathrm{S}}$

⊃eni×

Robustness against perturbation

interaction with normally dispersive wave

Robustness against perturbation

interaction with normally dispersive wave

observation

- trapping potential experiences acceleration
- trapped states are dragged along
- frequency up-shift; no radiation

trapped states persist [Willms et al., in preparation]

ber

Leaking trapped states

Observation close to zero-dispersion points

- trapped state remains localised
- trapped state emits dispersive waves •
- *leak-effect* occurs close to zero dispersion point

Generating molecule states by direct superposition of solitons

Theoriekolloquium CvO Universität Oldenburg, 2021-11-18

[Melchert et al., PRL 123 (2019) 243905]

Generating molecule states through soliton-soliton collisions

Theoriekolloquium CvO Universität Oldenburg, 2021-11-18

[Melchert et al., PRL 123 (2019) 243905]

Molecule states exhibit binding force

- co-propagating pulses mutually sustain their shape
- limits of mutual binding can be explained by simple models [Melchert, Willms, Morgner, Babushkin, Demircan; Sci. Rep. 11 (2021) 11190]

Robustness against perturbation

10eni×

Dynamical evolution of fundamental solitons

- Initially overlapping solitons
 - solitons have same center frequency
 - both are initially group-velocity matched
 - phase dependent soliton-soliton interaction

 $E_0(t) = \mathsf{Re}$

Theoriekolloquium CvO Universität Oldenburg, 2021-11-18

$$\left[\frac{A_1 e^{-i\omega_1 t}}{\cosh[(t+\delta)/t_1]} + \frac{A_2 e^{-i(\omega_2 t+\Delta\phi)}}{\cosh[(t-\delta)/t_2]}\right]$$

Dynamical evolution of fundamental solitons

- Initially overlapping solitons
 - solitons have vast frequency gap
 - both are initially group-velocity matched

$$E_0(t) = \mathsf{Re}$$

dynamics dominated by incoherent interaction between solitons

Theoriekolloquium CvO Universität Oldenburg, 2021-11-18

$$\left[\frac{A_1 e^{-i\omega_1 t}}{\cosh[(t+\delta)/t_1]} + \frac{A_2 e^{-i(\omega_2 t+\Delta\phi)}}{\cosh[(t-\delta)/t_2]}\right]$$
s

A simplified theoretical model

- Assumptions and approximation steps
 - introduce reference frequency + shift to moving frame
 - approximate dynamics by two NSEs coupled through cross-phase modulation (XPM)
 - models incoherently interacting pulses

Restricting to pulses of same width yields *effectively decoupled* equations

$$u_n(z,\tau) = N_n A_n \operatorname{sech}(\tau/t_0) e^{i\kappa_n z}, \quad n \in (1,2)$$

$$i\partial_{z} u_{1} - \frac{\beta_{2}'}{2} \partial_{\tau}^{2} u_{1} + \Gamma' |u_{1}|^{2} u_{1} = 0, \qquad \Gamma' = \gamma' (1 + 2\alpha N_{2}^{2} N_{1}^{-2}) \qquad \alpha = \frac{|\beta_{2}''|\gamma'}{|\beta_{2}'|\gamma''}$$
$$i\partial_{z} u_{2} - \frac{\beta_{2}''}{2} \partial_{\tau}^{2} u_{2} + \Gamma'' |u_{2}|^{2} u_{2} = 0$$

פכ

Theoriekolloquium CvO Universität Oldenburg, 2021-11-18

 N_n = deviation from fundamental soliton $\kappa_n = \text{suitable wavenumber}$

A simplified theoretical model

Closed form solutions describing two-color *soliton* pairs

$$u_n(z,\tau) = N_n A_n \operatorname{sech}(\tau/t_0) e^{i\kappa_n z}, \quad n \in (1,2)$$

$$N_{1} = \sqrt{\frac{2\alpha - 1}{3}} \qquad N_{2} = \sqrt{\frac{2\alpha^{-1} - 1}{3}} \qquad \alpha = \frac{|\beta_{2}''|\gamma'}{|\beta_{2}'|\gamma''}$$
$$A_{1} = \sqrt{2\beta_{2}/\gamma(\omega_{1})}/t_{0} \qquad A_{2} = \sqrt{2\beta_{2}/\gamma(\omega_{2})}/t_{0}$$

Two-color *soliton* pairs

Der

- each subpulse specifies a soliton solution of a standard NSE
- they can only persist conjointly as a bonding unit
- effect of binding partner is to modify nonlinear coefficient
- Limiting case of equivalent subpulses (generalized dispersion Kerr solitons) $\beta'_2 = \beta''_2 = -2\beta_2$ [Tam et al.; Phys. Rev. A 101 (2020) 043822]
 - *fundamental metasoliton* is obtained without complicated multi-scales analysis*

$$F = u_1 + u_2 = \sqrt{\frac{8\beta_2}{3\gamma t_0^2}}\operatorname{sech}(\tau/t_0)e^{i\kappa z}, \quad \text{with}$$

* thorough comparison in Supp. Mat. of: [Melchert, Demircan; Opt. Lett. 46 (2021) 5603]

38

Theoriekolloquium CvO Universität Oldenburg, 2021-11-18

solutions only for $\frac{1}{2} < \alpha < 2$

 $\gamma' = \gamma''$

$$\kappa = \frac{\beta_2}{t_0^2}$$

Immediate consequence for our theoretical studies

Instead of generating molecules this way:

39

ben

[Melchert, Willms, Morgner, Babushkin, Demircan; Sci. Rep. 11 (2021) 11190] Theoriekolloquium CvO Universität Oldenburg, 2021-11-18

Immediate consequence for our theoretical studies

We can now directly initialize them:

Theoriekolloquium CvO Universität Oldenburg, 2021-11-18

Summary

Modeling pulse propagation in nonlinear waveguides

- forward model for the analytic signal
- nonlinear Schrödinger equation
- generalized nonlinear Schrödinger equation

New phenomena involving two-frequency pulse compounds

- enabled by group-velocity matching across a vast frequency gap
- trapped states
- molecule-like bound states

