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Motivation
Agent travels:
“I want to get from A → B”

↔ standard (connectivity) percolation
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Agent travels:
pays for travel resources (positive)
can earn resources (negative payment)
“I want to make a profit going from A → B”

↔ negative-weight percolation

A

B

3 / 13



Motivation
Agent travels:
“I want to get from A → B”

↔ standard (connectivity) percolation

A

B
Agent travels:
pays for travel resources (positive)
can earn resources (negative payment)
“I want to make a profit going from A → B”

↔ negative-weight percolation

A

B

3 / 13



Model
L× L lattice, fully periodic boundary conditions
Undirected edges, weight (cost) distribution:

P(ω)=ρ (2π)−1/2 exp(−ω2/2) + (1−ρ) δ(ω − 1)

Allows for loops L with negative weight ωL

Agent on lattice edges: pay/receive resources

Configuration C of loops, with

E ≡
∑
L∈C

ωL
!
= min

Obtain C through mapping to minimum weight perfect
matching problem [O. Melchert & AKH, New J. Phys. 2008]
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Minimal distances
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d(i) = minj∈N(i)(d(j) + ω(i , j)) not fulfilled

Standard minimum-weight path algorithms, e.g.
Dijkstra, Bellman-Ford, Floyd-Warshall, don’t work
Minimum-weight path problem requires matching
techniques
[R.K. Ahuja, T.L. Magnanti and J.B. Orlin, Network flows]
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Algorithm – Outline

Brief description of the basic steps:
Set up auxiliary graph
Find minimum weight perfect matching (MWPM) on
auxiliary graph
Interpret MWPM as minimal weighted set of paths/loops

Graph G = (V , E):
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Algorithm – Outline

Brief description of the basic steps:
Set up auxiliary graph
Find minimum weight perfect matching (MWPM) on
auxiliary graph
Interpret MWPM as minimal weighted set of paths/loops

Matching M ⊂ E :
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Algorithm – Outline

Brief description of the basic steps:
Set up auxiliary graph
Find minimum weight perfect matching (MWPM) on
auxiliary graph
Interpret MWPM as minimal weighted set of paths/loops

MWPM, ωM = 2
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Algorithm – Mapping procedure
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Loop percolation

(L = 64 at ρ = 0.335, 0.340, 0.750)

Observe system spanning loops above critical ρ

Disorder induced, geometric transition
Characterize loops using observables from percolation
theory (finite-size scaling (FSS) analysis)
[D. Stauffer, A. Aharony, Introduction to Percolation Theory]
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Percolation probability

Percolation proba-
bility exhibits FSS:

Ps
L ∼ f [(ρ−ρc)L1/ν ]

ρc = 0.340(1)
ν = 1.49(7)
(rand. perc.: ν =1.33)
S = 0.91

S = “quality” of the scaling assumption
Similar scaling for mean number of spanning loops
Compatible results for spanning negative-weight paths.
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Percolation strength

Probability P∞L ≡ 〈`〉/Ld that edge belongs to percolating
loop, finite-size susceptibility χ ≡ L−d(〈`2〉 − 〈`〉2)

Exhibits FSS:

P∞L ∼ L−β/ν f [(ρ−ρc)L1/ν ]

β=1.07(6)
S =1.16

Scaling relations df = d − β/ν and γ + 2β = dν are fulfilled
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Percolation strength

Probability P∞L ≡ 〈`〉/Ld that edge belongs to percolating
loop, finite-size susceptibility χ ≡ L−d(〈`2〉 − 〈`〉2)

At ρc (Lmax =512):

loop length 〈`〉 ∼ Ldf ,
roughness 〈r〉 ∼ Ldr ,
suscept. χ ∼ Lγ/ν

df =1.266(2)
dr =1.001(4)
γ=0.77(7)

Scaling relations df = d − β/ν and γ + 2β = dν are fulfilled
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Fisher exponent

Distribution n` of the loop lengths ` at ρc for L = 256

10-1

10-6

10-8

103101

n l

l

∝ l-2.59(3)

loops-Gauss-2d
L=256

Expected FSS:

n`∼`−τ

τ = 2.59(3)

Excluding spanning loops
Consistent with scaling relation τ =1+d/df
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High dimensions

Average loop length

101

102

103

104

105

106

101 102 103

〈`
〉

L

2d

3d
4d

5d 5

10

20

80

4 16 64

〈R
s〉

`

6d

7d

L

Loop length distribution

10-8

10-6

10-4

10-2

100

102

104

106

108

100 101 102 103

n `

`

2d

3d

4d

5d

6d

7d

l
d ρc ν β γ df τ
2 0.340(1) 1.49(7) 1.07(6) 0.77(7) 1.266(2) 2.59(3)
3 0.1273(3) 1.00(2) 1.54(5) -0.09(3) 1.459(3) 3.07(1)
4 0.0640(2) 0.80(3) 1.91(11) -0.66(5) 1.60(1) 3.55(2)
5 0.0385(2) 0.66(2) 2.10(12) -1.06(7) 1.75(3) 3.86(3)
6 0.0265(2) 0.50(1) 1.92(6) -0.99(3) 2.00(1) 4.00(2)
7 0.0198(1) 0.41(1) – – 2.08(8) 4.50(1)
→ upper critical dimension = 6

O.Melchert,
L. Apolo,
AKH,
arXiv:1003.1591
(2010)
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Summary

Negative-weight percolation of loops
Distinct from random bond/site percolation
2d : critical exponents close to RBIM
upper critical dimension: 6
More details:
L.Apolo, O. Melchert & AKH, Phys. Rev. E 79, 031103 (2009)

Thank you for your attention!

New book (do better simulations):
AKH, Practical Guide to Computer Simulations,
World Scientific 2009
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