Typical behavior of the linear programming method for combinatorial optimization problems: From a statistical-mechanical perspective (J. Phys. Soc. Jpn. 83, 043801 (2014))

Satoshi Takabe

HUKUSHIMA Lab. Graduate School of Arts and Sciences, The University of Tokyo

September 28, 2015

Introduction: Spin glass theory and its applications

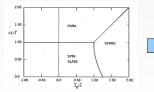
Spin glass theory

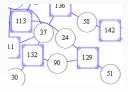
Study for diluted magnets. Statistical mechanics for random systems, a system with random interactions/fields

e.g. $\mathcal{H} = \sum_{i,j} J_{ij} \sigma_i \sigma_j, \ J_{ij} \sim P(J_{ij})$

- Glasses
- Biological physics
- Theoretical computer science
 - Error correcting codes
 - Image restoration
 - Beysian inference
 - Constrainted satisfaction problems and

Optimization problems





Optimization problems and statistical mechanics Optimization problems

Minimize $f(\vec{x})$ (Cost function),

 $ext{Subject to} \quad ec{g}(ec{x}) \geq 0, \, ec{x} \in \chi^N ext{ (Constraints)}$

Instance \rightarrow (using an algorithm) \rightarrow solution

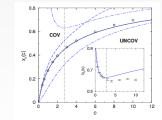
O.p. with discrete variables = Combinatorial Optimization Problem (COP)

Question

Can we estimate typical optimal values of randomized COPs?

Typical analyses by stat. mech.

- Randomized optimization problem
- Transform to randomized statistical-mechanical model.
- Estimate typical optimal value (averaged over random instances).



M. Weigt and A. K. Hartmann, Phys. Rev. Lett. 84, 6118 (2000).

Today's goal

Approximation algorithms

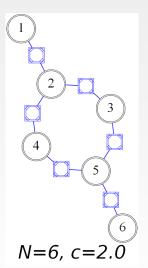
- COPs are generally NP-hard.
 - \rightarrow Takes exp. time to solve COPs rigorously.
- Solve COPs in poly. time.
 - \rightarrow Use approx. algorithms!
- In some cases, approx. algorithms perform well; they estimate optimal values with high accuracy.
- How well do they work typically? \rightarrow typical performance

Our goal

Analyze typical behavior of approximation algorithms for COPs by using statistical-mechanics for random systems.

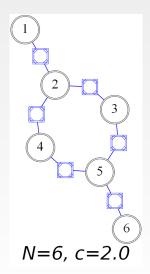
Graph theory

- Undirected (unweighted) graph G = (V, E)
- V: Vertex set, |V| = Ne.g. $V = \{1, \cdots, 6\}$
- $E \subset V^2$: Edge set e.g. $E = \{(1,2), (2,3), \cdots \}$
- Degree: # of edges connecting to a vertex e.g. Vertex 1 has degree 1
- Average degree c: Average degree over vertices
- Cycle: a closed path e.g. there is a cycle with length 4



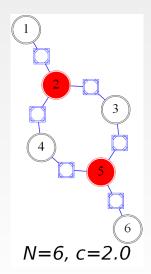
Minimum Vertex Cover problem (min-VC)

- Instance: Undirected graph G = (V, E)
- Cover or uncover each vertex.
- Cover all edges by covering vertices.
- An edge is covered if at least one connected vertex is covered.
- Minimize # of covered vertices.
- A type of COPs
- Belongs to a class of NP-hard
- Application : Seeking a file on HDD, improving a group testing



Minimum Vertex Cover problem (min-VC)

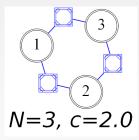
- Instance: Undirected graph G = (V, E)
- Cover or uncover each vertex.
- Cover all edges by covering vertices.
- An edge is covered if at least one connected vertex is covered.
- Minimize # of covered vertices.
- A type of COPs
- Belongs to a class of NP-hard
- Application : Seeking a file on HDD, improving a group testing



Integer Programming problem (IP)

Formalization of min-VC:

- Assign a variable $x_i = \{0, 1\}$ to a vertex $i = \{1, \cdots, N\}$.
- $x_i = 1 \Leftrightarrow i$ is covered, $x_i = 0 \Leftrightarrow i$ is uncovered.
- Minimize # of covered vertices. \longrightarrow Minimize $x_1 + x_2 + x_3$.
- Constraints: Cover all edges $x_1 + x_2 \ge 1, x_2 + x_3 \ge 1, x_3 + x_1 \ge 1,$ $0 \le x_i \le 1, x_i \in Z \ (i = 1, 2, 3)$

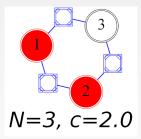


- \bullet COP with linear functions = Integer programming problem
- Optimial value: 2, Optimal solutions: $(x_1, x_2, x_3) = (1, 1, 0), (1, 0, 1), (0, 1, 1)$

Integer Programming problem (IP)

Formalization of min-VC:

- Assign a variable $x_i = \{0, 1\}$ to a vertex $i = \{1, \cdots, N\}$.
- $x_i = 1 \Leftrightarrow i$ is covered, $x_i = 0 \Leftrightarrow i$ is uncovered.
- Minimize # of covered vertices. \longrightarrow Minimize $x_1 + x_2 + x_3$.
- Constraints: Cover all edges $x_1 + x_2 \ge 1, x_2 + x_3 \ge 1, x_3 + x_1 \ge 1,$ $0 \le x_i \le 1, x_i \in Z \ (i = 1, 2, 3)$

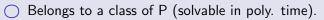


- \bullet COP with linear functions = Integer programming problem
- Optimial value: 2, Optimal solutions: $(x_1, x_2, x_3) = (1, 1, 0), (1, 0, 1), (0, 1, 1)$

Relaxation to Linear Programming problem (LP)

IP: (generally) NP-hard \rightarrow Solve IP in poly. time (but approximately)

Integer constraints of IP $x_i \in Z$ Relax to real constraints $\Downarrow x_i \in R$ Linear Programming problem (LP)



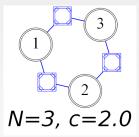
 \triangle LP optimal solutions differ from original IP.

LP relaxation

Back to example

LP relaxation of min-VC: Minimize $x_1 + x_2 + x_3$ Subject to $x_1 + x_2 \ge 1, x_2 + x_3 \ge 1, x_3 + x_1 \ge 1,$ $0 \le x_i \le 1, \frac{x_i \in R}{i} (i = 1, 2, 3)$

LP optimal value: 3/2, LP optimal solution: $(x_1, x_2, x_3) = (1/2, 1/2, 1/2)$



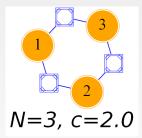
Questions

Is there a case where IP and its LP relaxed problem have the same optimal solutions? What is the condition? Otherwise, how do they differ?

Back to example

LP relaxation of min-VC: Minimize $x_1 + x_2 + x_3$ Subject to $x_1 + x_2 \ge 1, x_2 + x_3 \ge 1, x_3 + x_1 \ge 1,$ $0 \le x_i \le 1, \frac{x_i \in R}{i} (i = 1, 2, 3)$

LP optimal value: 3/2, LP optimal solution: $(x_1, x_2, x_3) = (1/2, 1/2, 1/2)$



Questions

Is there a case where IP and its LP relaxed problem have the same optimal solutions? What is the condition? Otherwise, how do they differ?

Hoffman-Kruskal's theorem

Mathematically rigorous result about IP and LP optimal solutions

Hoffman-Kruskal's theorem A. J. Hoffman and J. B. Kruskal: in "Linear Inequalities and Related Systems", pp. 223-246 (1956) "Suppose an unweighted graph *G*, *G* has no cycles with odd length.

 \Rightarrow IP and LP on G have same optimal solutions."

Other questions

What is a case where IP and LP have similarly the same optimal solutions in the order of N? Otherwise, how do they differ?

IP and LP for min-VC

Instance: G = (V, E)Normalize cost function.

Integer programming (IP)

 $\begin{array}{l} \text{Minimize} \\ \mathbf{N}^{-1} \sum_{i} x_{i}, \\ \text{Subject to} \\ x_{i} + x_{j} \geq 1 \ (\text{if } (i,j) \in E) \\ 0 \leq x_{i} \leq 1, \ x_{i} \in \mathbb{Z}. \end{array}$

Linear programming (LP)

Minimize $N^{-1} \sum_{i} x_{i}$, Subject to $x_{i} + x_{j} \ge 1$ (if $(i, j) \in E$) $0 \le x_{i} \le 1$, $x_{i} \in R$. Algorithm: Simplex method (Danzig, 1947)

Difference between IP and LP

LP optimal solutions contain only 0, 1/2, 1(half-integrality; Nemhauser and Trotter, 1974). IP and LP optimal solutions are coincident iff LP solution has no half-integer (1/2).

Typical analysis and random graphs

Definition of "similarly the same"

- ${\cal G}$: graph ensemble with $N(\gg 1)$ vertices.
 - $x_c^{ ext{IP}}$: IP optimal value averaged over ${\mathcal G}$
 - $x_c^{ ext{LP}}$: LP optimal value averaged over $\mathcal G$

lf

•
$$x_c^{\mathrm{IP}} = x_c^{\mathrm{LP}}$$
 and

• o(N) half-integers in an LP optimal solution,

IP and LP have "similarly the same" optimal solutions Erdös-Rényi random graph

One of basic graph ensembles.

- Give a vertex set V.
- 2 Set edges with prob. p to each pair of vertices.
- § Parameter: average degree $c=2p_NC_2/N\sim pN$

Suppose a graph is sparse; $c = O(N^0)$.

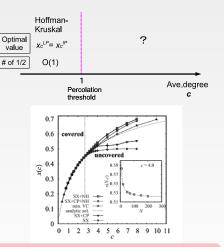
Typical analysis from H.K. theorem

From percolation theory of E.R. random graphs, IP and LP have similarly the same optimal solutions if c < 1. (Caution: sufficient condition) $\downarrow\downarrow$

From numerical result they typically coincide up to $c \sim 2.71 \simeq e$ T. Dewenter and A. K. Hartmann, Phys. Rev. E **86**, 041128 (2012)

Conjecture

IP and its LP relaxation for min-VC have similarly the same optimal solutions beyond percolation threshold c = 1.



Lattice gas model for min-VC

M. Weigt and A. K. Hartmann, Phys. Rev. Lett. 84, 6118 (2000)

- Transformation: $\sigma_i = 2x_i 1$
- 2-state model: $\sigma = \{\sigma_i\} = \{-1,1\}^N$ $(\sigma_i = 1 \Leftrightarrow ext{covered})$
- Hamiltonian:

$$\mathcal{H}(\sigma) = \sum_i \sigma_i$$

• Grand canonical partition function:

$$\Xi = \sum_{\sigma} \exp(-\mu \mathcal{H}(\sigma)) \prod_{(i,j) \in E} \theta(\sigma_i + \sigma_j)$$

- IP optimal solutions = ground states
- Average optimal value x_c as $N
 ightarrow \infty$,

$$x_c = \lim_{\mu o \infty} \lim_{N o \infty} rac{1}{N} \mathsf{E} \left\langle \sum_i \sigma_i
ight
angle_{\mu}$$

- E: Average over random graphs
- $\langle \cdot \rangle_{\mu}$: Grand canonical ensemble average

Lattice gas model for LP with half-integrality

- Transformation: $\sigma_i=2x_i-1,\,x_i=\{0,1/2,1\}$
- 3-state model: $\sigma = \{\sigma_i\} = \{-1, 0, 1\}^N$ $(\sigma_i = 1 \Leftrightarrow ext{covered})$
- Hamiltonian

$$\mathcal{H}_r(\sigma) = \sum_i \sigma_i + \mu^{r-1} \sum_i (1 - \sigma_i^2)$$

Second term: penalty term for $x_i=1/2$ parameter: $r\in {f R}$

• Grand canonical partition function:

$$\Xi = \sum_{\sigma} \exp(-\mu \mathcal{H}_r(\sigma)) \prod_{(i,j) \in E} \theta(\sigma_i + \sigma_j)$$

• Average optimal value x_c and average fraction of half-integers p_h as $N
ightarrow \infty$

Replica method

Random-averaged thermodynamic function $\mu J = -\lim_{N \to \infty} \mathsf{E}[\ln \Xi]$ is difficult to calcurate...

Replica method

Replica trick

$$\mathsf{E}[\ln \Xi] = \lim_{n o 0} rac{\mathsf{E}[\Xi^n] - 1}{n}$$

System σ is copied to n replicas σ^n .

•
$$N$$
 spins to n spins: replicated vector $ec{\xi_i}=(\sigma_i^1,\cdots,\sigma_i^n) ~~(i=1,\cdots,N)$

• System is represented by $\{\vec{\xi}\}$.

Replica Symmetry (RS)

Order parameter and RS ansatz

• Order parameters: frequency dist. of $ec{\xi}$: $c(ec{\xi}) = N^{-1}\sum_i \delta_{ec{\xi},ec{\xi}_i}$

- Replica Symmetric (RS) ansatz: order parameter $c(\vec{\xi})$ is a function of $\xi \equiv \sum_{a=1}^{n} \xi^{a}$ and $\tilde{\xi} \equiv \sum_{a=1}^{n} (\xi^{a})^{2}$.
- Laplace's transformation of $c(ec{\xi})$

$$egin{aligned} c(ec{\xi}) \stackrel{ ext{RS}}{=} c(\xi, ilde{\xi}) &\equiv \int dP(h_1, h_2) Z^{-n} \exp(\mu h_1 \xi + \mu h_2 ilde{\xi}), \ Z &= 1 + 2 e^{\mu h_2} \cosh(\mu h_1) \end{aligned}$$

 h_1 : conjugate to $oldsymbol{\xi}$, h_2 : conjugate to $ilde{oldsymbol{\xi}}$

 \bullet Estimate $\mathbf{E}[\Xi^n]$ by saddle-point method under RS ansatz.

Saddle-point equations

Self-consistent equation of $P(h_1, h_2)$:

$$\begin{split} P(h_1,h_2) &= \sum_{k=0}^{\infty} e^{-c} \frac{c^k}{k!} \int \prod_{i=1}^k dP(h_1^{(i)},h_2^{(i)}) \\ &\times \delta \left(h_1 + 1 + \sum_i u_2(h_1^{(i)},h_2^{(i)};\mu) \right) \\ &\times \delta \left(h_2 - \mu^{r-1} + \sum_i [u_1(h_1^{(i)},h_2^{(i)};\mu) - u_2(h_1^{(i)},h_2^{(i)};\mu)] \right) \\ &u_1(h_1,h_2;\mu) &= \frac{1}{\mu} \ln[(1 + \exp(\mu(h_1 + h_2)))/Z], \\ &u_2(h_1,h_2;\mu) &= \frac{1}{2\mu} \ln[\exp(\mu(h_1 + h_2))/Z], \\ &Z = 1 + 2e^{\mu h_2} \cosh(\mu h_1) \end{split}$$

3 large- μ limits with r

To analyze ground state, $\mu o \infty$ Gibbs factor: $\exp[\mu \sum_i \sigma_i + \mu^r \sum_i (1 - \sigma_i^2)]$

r > 1 IP-limit σ_i takes only ± 1 corresponding to IP optimal solution. 0 < r < 1 LP-limit obtain LP optimal solution with minimum half-integers. r < 0 3-state limit

$\text{IP-limit} \ (r>1)$

$$P(h_1,\infty) = \sum_{k=0}^{\infty} e^{-c} rac{c^k}{k!} \int \prod_{i=1}^k dP(h_1^{(i)},\infty) \delta(h_1 + 1 + \sum_i \max(h_1,0))$$

 $h_2
ightarrow \infty \ (\mu
ightarrow \infty) \Leftrightarrow$ ground states without $\sigma_i = 0 \ (x_i = 1/2)$

RS solution of IP-limit

$$x_c^{
m IP}(c) = 1 - rac{W(c)^2 + 2W(c)}{2c}, \ \ p_h(c) = 0$$

Lambert's W function: $W(x) \exp(W(x)) = x$

 RS: c < e, RSB (replica symmetry breaking): c > e (e: Napier's number) LP-limit (0 < r < 1)

$$x_c^{\text{LP}}(c) = 1 - \frac{A + B + AB}{2c}, \quad p_h(c) = \frac{(B - A)(1 - A)}{c},$$

where A and $B(\geq A)$ obey $Ae^B = Be^A = c$. RS solution is stable for any c.

The case of c < e

IP and LP have similarly the same solutions.

• Solution:A = B

•
$$x_c^{\text{LP}}(c) = x_c^{\text{IP}}(c)$$

• $p_h(c) = 0$

The case of c > e

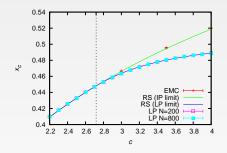
IP and LP have no common solutions.

• Solution: A < B

•
$$x_c^{\mathrm{LP}}(c) < x_c^{\mathrm{IP}}(c)$$

• $p_h(c) > 0$

Numeral results



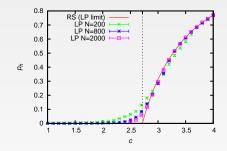


Figure : Average optimal value x_c as a function of average degree c.

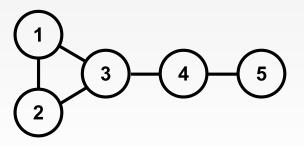
Figure : Average fraction of half-integers p_h as a function of average degree c.

- Estimate x_c^{IP} : replica Exchange Monte Carlo method (EMC)
- Estimate x_c^{LP} : **Ip_solve** (simplex algorithm)

Leaf Removal (LR) 1

A type of graph-removal algorithm:

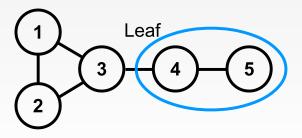
- Repeat removing a leaf and connecting edges until there is no leaf.
 - Leaf: a pair of vertices $\{v,w\}$ where $(v,w)\in E$ and deg(v)=1.



Leaf Removal (LR) 1

A type of graph-removal algorithm:

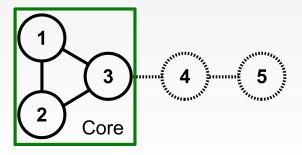
- Repeat removing a leaf and connecting edges until there is no leaf.
 - Leaf: a pair of vertices $\{v, w\}$ where $(v, w) \in E$ and deg(v) = 1.



Leaf Removal (LR) 1

A type of graph-removal algorithm:

- Repeat removing a leaf and connecting edges until there is no leaf.
 - Leaf: a pair of vertices $\{v, w\}$ where $(v, w) \in E$ and deg(v) = 1.

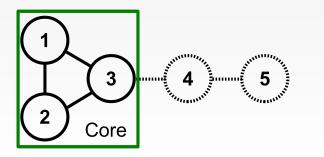


Leaf Removal (LR) 2

When LR stops,

- removed part: correctly assigned optimal variables
- core: connected components without leaves

If there is O(N) core, LR cannot estimate optimal value x_c . Otherwise, LR can estimate optimal value x_c correctly.

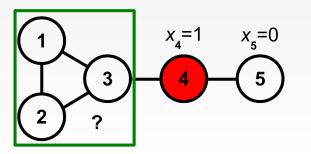


Leaf Removal (LR) 2

When LR stops,

- removed part: correctly assigned optimal variables
- core: connected components without leaves

If there is O(N) core, LR cannot estimate optimal value x_c . Otherwise, LR can estimate optimal value x_c correctly.



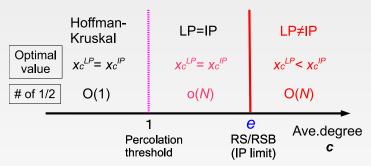
LP and LR core

Average fraction of half-integers p_h of LP = average LR core ratio $(N \rightarrow \infty)$ LR core: M. Bauer and O. Golinelli, Eur. Phys. J. B **24**, 339 (2001)

LR core makes min-VC difficult?

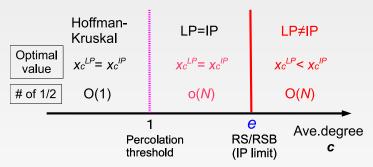
- c < e: no huge (O(N)) core \rightarrow IP=LP=LR (good performance of approx. algorithms)
- c > e: huge core by LR
 - IP: splitting solution space (Barthel and Hartmann, 2004)
 - \rightarrow RSB (clustering)?
 - LP: assign variables to half-integers.
 - \rightarrow RS (one cluster)

Summary



• Statistical-mechanical analysis of typical behavior of LP for min-VC.

- 3-state model reproducing IP and LP optimal solutions.
- show a condition IP and LP have similarly the same optimal solutions as N → ∞.
- ▶ its threshold c = e coincides with RS/RSB threshold of IP and is above percolation threshold (c = 1).
- Typical performance is related to other property (RS/RSB and LR core).



• Statistical-mechanical analysis of typical behavior of LP for min-VC.

- 3-state model reproducing IP and LP optimal solutions.
- show a condition IP and LP have similarly the same optimal solutions as N → ∞.
- ▶ its threshold c = e coincides with RS/RSB threshold of IP and is above percolation threshold (c = 1).
- Typical performance is related to other property (RS/RSB and LR core) @03/2014

Thank you for your attention!

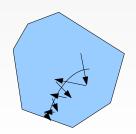
Algorithms for LP

Simplex method

- Search extreme points of polytope.
- Worst case: takes exp. time
- Typical case: rapid

Interior method

- Search interior points of polytope
- Worst case: takes poly. time
- Typical case: sometimes more slowly than simplex method



Why do we need a penalty term?

Trivial ground states

Consider a simple example: Minimize $x_1 + x_2$ Subject to $x_1 + x_2 \ge 1, \ 0 \le x_i \le 1, \ x_i \in \mathbb{R} \ (i = 1, 2)$ Optimal solutions (or ground states)

• LP: $(x_1,x_2)=(1,0),(0,1)$ (see below)

• 3-state model without penalty term: $(x_1, x_2) = (1, 0), (1/2, 1/2), (0, 1)$

Simple 3-state model has trivial ground states (not LP optimal solutions). ightarrow penalty term for $x_i=1/2$

