Correlated Resetting Gas

Satya N. Majumdar

Laboratoire de Physique Théorique et Modèles Statistiques, CNRS, Université Paris-Saclay, France

Collaborators

- Marco Biroli (LPTMS, Univ. Paris Saclay)
- Sergio Ciliberto (ENS, Lyon)
- Manas Kulkarni (ICTS, Bangalore)
- Hernan Larralde (UNAM, Mexico)
- Sanjib Sabhapandit (RRI, Bangalore)
- Gregory Schehr (LPTHE, Univ. Sorbonne)

Collaborators

- Marco Biroli (LPTMS, Univ. Paris Saclay)
- Sergio Ciliberto (ENS, Lyon)
- Manas Kulkarni (ICTS, Bangalore)
- Hernan Larralde (UNAM, Mexico)
- Sanjib Sabhapandit (RRI, Bangalore)
- Gregory Schehr (LPTHE, Univ. Sorbonne)

References:

- M. Biroli, H. Larralde, S. N. Majumdar, G. Schehr, "Extreme Statistics and Spacing Distribution in a Brownian Gas Correlated by Resetting", Phys. Rev. Lett., 130, 207101 (2023)
- M. Biroli, H. Larralde, S. N. Majumdar, G. Schehr, "Exact extreme, order and sum statistics in a class of strongly correlated system", Phys. Rev. E 109, 014101 (2024).
- M. Biroli, M. Kulkarni, S. N. Majumdar, G. Schehr, "Dynamically emergent correlations between particles in a switching harmonic trap ", Phys. Rev. E 109, L032106 (2024).
- S. Sabhapandit & S. N. Majumdar, "Noninteracting particles in a harmonic trap with a stochastically driven center", J. Phys. A: Math. Theor. 57, 335003 (2024).
- M. Kulkarni, S. N. Majumdar, S. Sabhapandit, "Dynamically emergent correlations in bosons via quantum resetting", J. Phys. A: Math. Theor. 58, 105003 (2025).

Plan

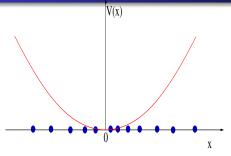
• Correlated gas in thermal equilibrium: examples and observables

Correlated gas in nonequilibrium stationary state created by resetting

- Exact results for various observables:
 - Average density
 - Extreme and Order statistics
 - Gap statistics
 - Full Counting statistics

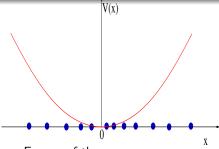
Summary and Conclusion

One dimensional Correlated Gas In Thermal Equilibrium



N particles on a line with coordinates $\implies \{x_1, x_2, \dots, x_N\}$

 $V(x) \rightarrow$ external confining potential



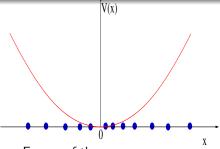
N particles on a line with coordinates $\Rightarrow \{x_1, x_2, \dots, x_N\}$

 $V(x) \rightarrow$ external confining potential

Energy of the gas:

$$E[\{x_i\}] = \sum_{i} V(x_i) + \sum_{i \neq j} V_2(x_i, x_j) + \sum_{i \neq j \neq k} V_3(x_i, x_j, x_k) + \dots$$

Interactions: either short-ranged or long-ranged



N particles on a line with coordinates $\Rightarrow \{x_1, x_2, \dots, x_N\}$

 $V(x) \rightarrow$ external confining potential

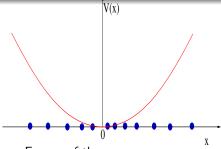
Energy of the gas:

$$E[\{x_i\}] = \sum_{i} V(x_i) + \sum_{i \neq j} V_2(x_i, x_j) + \sum_{i \neq j \neq k} V_3(x_i, x_j, x_k) + \dots$$

Interactions: either short-ranged or long-ranged

In thermal equilibrium, the joint distribution of the particle positions:

$$P(x_1, x_2, ..., x_N) = \frac{1}{7} e^{-\beta E[\{x_i\}]}$$



N particles on a line with coordinates $\Rightarrow \{x_1, x_2, \dots, x_N\}$

 $V(x) \rightarrow$ external confining potential

Energy of the gas:

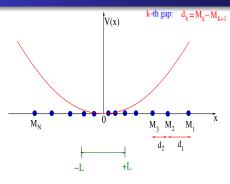
$$E[\{x_i\}] = \sum_{i} V(x_i) + \sum_{i \neq j} V_2(x_i, x_j) + \sum_{i \neq j \neq k} V_3(x_i, x_j, x_k) + \dots$$

Interactions: either short-ranged or long-ranged

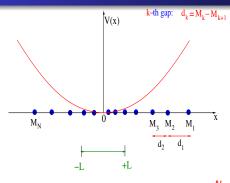
In thermal equilibrium, the joint distribution of the particle positions:

$$P(x_1, x_2, ..., x_N) = \frac{1}{Z} e^{-\beta E[\{x_i\}]} \neq p(x_1)p(x_2)...p(x_N)$$

No factorization in the presence of interactions

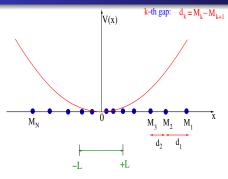


$$P(x_1, x_2, ..., x_N) = \frac{1}{Z} e^{-\beta E[\{x_i\}]}$$



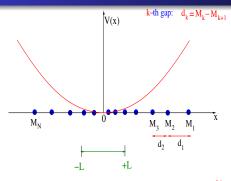
$$P(x_1, x_2, ..., x_N) = \frac{1}{Z} e^{-\beta E[\{x_i\}]}$$

• Average density:
$$\rho(x, N) = \frac{1}{N} \sum_{i=1}^{N} \langle \delta(x_i - x) \rangle$$



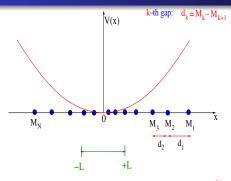
$$P(x_1, x_2, ..., x_N) = \frac{1}{Z} e^{-\beta E[\{x_i\}]}$$

- Average density: $\rho(x, N) = \frac{1}{N} \sum_{i=1}^{N} \langle \delta(x_i x) \rangle$
- Order statistics: $\{x_1, x_2, \dots, x_N\} \longrightarrow \{M_1 > M_2 > M_3 > \dots > M_N\}$



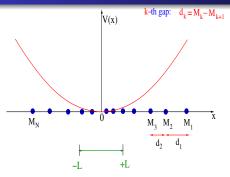
$$P(x_1, x_2, ..., x_N) = \frac{1}{Z} e^{-\beta E[\{x_i\}]}$$

- Average density: $\rho(x, N) = \frac{1}{N} \sum_{i=1}^{N} \langle \delta(x_i x) \rangle$
- Order statistics: $\{x_1, x_2, \dots, x_N\}$ $\longrightarrow \{M_1 > M_2 > M_3 > \dots > M_N\}$
- Gap/spacing statistcs: $d_k = M_k M_{k+1} \longrightarrow k$ -th gap



$$P(x_1, x_2, ..., x_N) = \frac{1}{Z} e^{-\beta E[\{x_i\}]}$$

- Average density: $\rho(x, N) = \frac{1}{N} \sum_{i=1}^{N} \langle \delta(x_i x) \rangle$
- Order statistics: $\{x_1, x_2, \dots, x_N\} \longrightarrow \{M_1 > M_2 > M_3 > \dots > M_N\}$
- Gap/spacing statistcs: $d_k = M_k M_{k+1} \longrightarrow k$ -th gap
- Full counting statistics: $\operatorname{Prob.}[N_L, N]$ where N_L denotes the number of particles in the interval [-L, L]



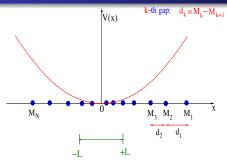
Given the joint distribution:

$$P(x_1, x_2, ..., x_N) = \frac{1}{Z} e^{-\beta E[\{x_i\}]}$$

- Average density: $\rho(x, N) = \frac{1}{N} \sum_{i=1}^{N} \langle \delta(x_i x) \rangle$
- Order statistics: $\{x_1, x_2, \dots, x_N\} \longrightarrow \{M_1 > M_2 > M_3 > \dots > M_N\}$
- Gap/spacing statistcs: $d_k = M_k M_{k+1} \longrightarrow k$ -th gap
- Full counting statistics: Prob.[N_L , N] where N_L denotes the number of particles in the interval [-L, L]

Generally hard to compute for a correlated/interacting gas!

Ideal gas: no interaction



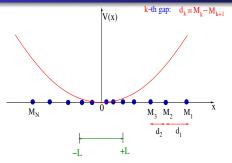
In the absence of interactions

Energy:
$$E[\{x_i\}] = \sum_{i=1}^{N} V(x_i)$$

Joint distribution factorises (i.i.d)

$$P(\lbrace x_i \rbrace) = p(x_1)p(x_2) \dots p(x_N)$$
where
$$p(x) = \frac{e^{-\beta V(x)}}{\int dx' e^{-\beta V(x')}}$$

Ideal gas: no interaction



In the absence of interactions

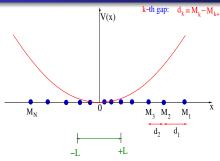
Energy:
$$E[\{x_i\}] = \sum_{i=1}^{N} V(x_i)$$

Joint distribution factorises (i.i.d)

$$P(\lbrace x_i \rbrace) = p(x_1)p(x_2) \dots p(x_N)$$
where
$$p(x) = \frac{e^{-\beta V(x)}}{\int dx' e^{-\beta V(x')}}$$

All observables are exactly computable in terms of p(x)

Ideal gas: no interaction



k-th gap: $d_k = M_k - M_{k+1}$ In the absence of interactions

Energy:
$$E[\{x_i\}] = \sum_{i=1}^{N} V(x_i)$$

Joint distribution factorises (i.i.d)

$$P(\lbrace x_i \rbrace) = p(x_1)p(x_2) \dots p(x_N)$$
where
$$p(x) = \frac{e^{-\beta V(x)}}{\int dx' e^{-\beta V(x')}}$$

All observables are exactly computable in terms of p(x)

- Average density: $\rho(x, N) = \frac{1}{N} \sum_{i=1}^{N} \langle \delta(x_i x) \rangle = \rho(x)$
- Distribution of the k-th maximum $M_k \Longrightarrow \text{Order statistics}$
- Distribution of the k-th gap $d_k = M_k M_{k+1}$
- Full counting statistics (FCS): Prob.[N_L, N]

Each of the N i.i.d variables is distributed via p(x)

Each of the N i.i.d variables is distributed via p(x)

• Average density:
$$\rho(x, N) = \frac{1}{N} \sum_{i=1}^{N} \langle \delta(x_i - x) \rangle = p(x)$$

Each of the N i.i.d variables is distributed via p(x)

• Average density:
$$\rho(x, N) = \frac{1}{N} \sum_{i=1}^{N} \langle \delta(x_i - x) \rangle = \rho(x)$$

• Order Statistics: Distribution of the k-th maximum M_k

$$\operatorname{Prob.}[M_k = w] = \frac{N!}{(k-1)!(N-k)!} p(w) \left[\int_w^\infty p(y) dy \right]^{k-1} \left[\int_{-\infty}^w p(y) dy \right]^{N-k}$$

Each of the N i.i.d variables is distributed via p(x)

- Average density: $\rho(x, N) = \frac{1}{N} \sum_{i=1}^{N} \langle \delta(x_i x) \rangle = p(x)$
- Order Statistics: Distribution of the k-th maximum M_k

$$\operatorname{Prob.}[M_k = w] = \frac{N!}{(k-1)!(N-k)!} p(w) \left[\int_w^\infty p(y) dy \right]^{k-1} \left[\int_{-\infty}^w p(y) dy \right]^{N-k}$$

• Gap statistics: Distribution of $d_k = M_k - M_{k+1} \Longrightarrow$ requires the joint pdf of M_k and $M_{k+1} \Longrightarrow$ can be expressed exactly in terms of p(x)

Each of the N i.i.d variables is distributed via p(x)

- Average density: $\rho(x, N) = \frac{1}{N} \sum_{i=1}^{N} \langle \delta(x_i x) \rangle = p(x)$
- Order Statistics: Distribution of the k-th maximum M_k

$$Prob.[M_k = w] = \frac{N!}{(k-1)!(N-k)!} p(w) \left[\int_w^\infty p(y) dy \right]^{k-1} \left[\int_{-\infty}^w p(y) dy \right]^{N-k}$$

- Gap statistics: Distribution of $d_k = M_k M_{k+1} \Longrightarrow$ requires the joint pdf of M_k and $M_{k+1} \Longrightarrow$ can be expressed exactly in terms of p(x)
- Full Counting Statistics:

Prob.
$$[N_L, N] = \binom{N}{N_L} q_L^{N_l} (1 - q_L)^{N - N_L}$$
 where $q_L = \int_{-L}^{L} p(y) dy$
 $N_L \Rightarrow$ no. of particles in the interval $[-L, L]$

Weakly and Strongly correlated gas

ullet Short-ranged gas \longrightarrow Weakly correlated

Observables can sometimes be computed using perturbation theory, renormalization group method etc.

Weakly and Strongly correlated gas

Short-ranged gas → Weakly correlated

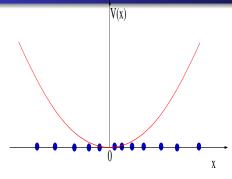
Observables can sometimes be computed using perturbation theory, renormalization group method etc.

Long-ranged gas → Strongly correlated

Observables → much harder to compute !

S.M. & G. Schehr, "Statistics of Extremes and Records in Random Sequences" (Oxford Univ. Press, 2024)

Dyson's log-gas: Strongly correlated



Energy:

$$E[\{x_i\}] = \frac{N}{2} \sum_{i=1}^{N} x_i^2 - \frac{1}{2} \sum_{i \neq j} \log|x_i - x_j|$$

pairwise logarithmic repulsion Dyson, 1962

Dyson's log-gas: Strongly correlated



Energy:

$$E[\{x_i\}] = \frac{N}{2} \sum_{i=1}^{N} x_i^2 - \frac{1}{2} \sum_{i \neq j} \log|x_i - x_j|$$

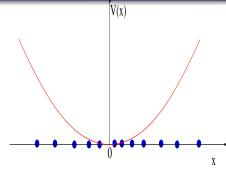
pairwise logarithmic repulsion Dyson, 1962

Consider an $(N \times N)$ Gaussian Hermitian random matrix H_{ij} whose entries are distributed via:

Prob.
$$[H] \propto \exp \left[-N \sum_{i,j} |H_{ij}|^2 \right] \propto \exp \left[-N \operatorname{Tr} \left(H^{\dagger} H \right) \right]$$

⇒ invariant under unitary rotation (change of basis) (GUE)

Dyson's log-gas: Strongly correlated



Energy:

$$E[\{x_i\}] = \frac{N}{2} \sum_{i=1}^{N} x_i^2 - \frac{1}{2} \sum_{i \neq j} \log|x_i - x_j|$$

pairwise logarithmic repulsion Dyson, 1962

Consider an $(N \times N)$ Gaussian Hermitian random matrix H_{ij} whose entries are distributed via:

Prob.[H]
$$\propto \exp \left[-N \sum_{i,j} |H_{ij}|^2\right] \propto \exp \left[-N \operatorname{Tr} \left(H^{\dagger} H\right)\right]$$

⇒ invariant under unitary rotation (change of basis) (GUE)

N real eigenvalues: $\{\lambda_1, \lambda_2, \dots, \lambda_N\} \longrightarrow$ strongly correlated

Dyson's log-gas

Joint distribution of eigenvalues of an $(N \times N)$ Gaussian Hermitian random matrix (Wigner, 1951):

$$P(\{\lambda_i\}) = \frac{1}{Z_N} \exp \left[-N \sum_{i=1}^N \lambda_i^2\right] \prod_{i < j} |\lambda_i - \lambda_j|^2$$

Dyson's log-gas

Joint distribution of eigenvalues of an $(N \times N)$ Gaussian Hermitian random matrix (Wigner, 1951):

$$P(\{\lambda_i\}) = \frac{1}{Z_N} \exp\left[-N \sum_{i=1}^N \lambda_i^2\right] \prod_{i < j} |\lambda_i - \lambda_j|^2$$

$$\propto \exp\left[-\left(N \sum_{i=1}^N \lambda_i^2 - \sum_{i \neq j} \log|\lambda_i - \lambda_j|\right)\right] \propto e^{-2E[\{\lambda_i\}]}$$

Dyson's log-gas

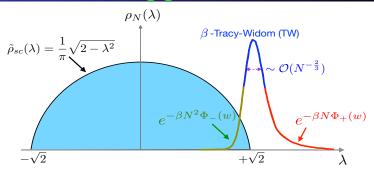
Joint distribution of eigenvalues of an $(N \times N)$ Gaussian Hermitian random matrix (Wigner, 1951):

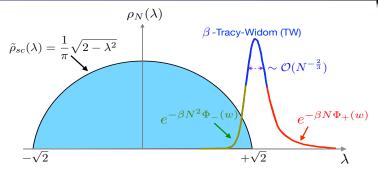
$$P(\{\lambda_i\}) = \frac{1}{Z_N} \exp \left[-N \sum_{i=1}^N \lambda_i^2 \right] \prod_{i < j} |\lambda_i - \lambda_j|^2$$

$$\propto \exp \left[-\left(N \sum_{i=1}^N \lambda_i^2 - \sum_{i \neq j} \log|\lambda_i - \lambda_j| \right) \right] \propto e^{-2E[\{\lambda_i\}]}$$

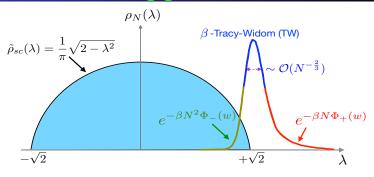
Hence one can identify the eigenvalues $\{\lambda_1, \lambda_2, \dots \lambda_N\} \equiv \{x_1, x_2, \dots, x_N\}$ as the positions of a 1-d gas of N particles with pairwise log-repulsion with $\beta = 2$ (Dyson, 1962)

Most of the observables can be computed exactly \Longrightarrow not that easy!

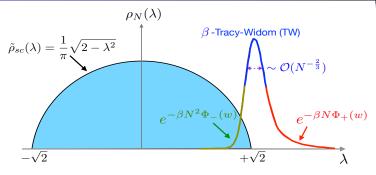




• Average density ($N \to \infty$ limit): $\rho(x, N) \equiv \rho_N(\lambda) \to \frac{1}{\pi} \sqrt{2 - \lambda^2}$



- Average density ($N \to \infty$ limit): $\rho(x, N) \equiv \rho_N(\lambda) \to \frac{1}{\pi} \sqrt{2 \lambda^2}$
- Largest eigenvalue → Tracy-Widom distribution



- Average density ($N \to \infty$ limit): $\rho(x, N) \equiv \rho_N(\lambda) \to \frac{1}{\pi} \sqrt{2 \lambda^2}$
- ullet Largest eigenvalue \longrightarrow Tracy-Widom distribution

Similarly, other observables are also known ⇒ huge literature

P. J. Forrester, "Log-gases and Random Matrices" (Priceton Univ. Press, 2010)

S.M. & G. Schehr, "Top eigenvalue of a random matrix: large deviations and third order phase transition", J. Stat. Mech. P01012 (2014)

Strongly correlated gas in a Nonequilibrium Stationary State

Two major challenges in Nonequilibrium systems

- Unlike in equlibrium systems, the stationary state, if it exists, is determined by the dynamics itself that typically violates time-reversal symmetry (detailed balance)
 - \implies The joint distribution $P_{\rm st}(x_1,x_2,\ldots,x_N)$ in the nonequilibrum stationary state is not given by Gibb's measure and is typically very hard to obtain explicitly

Two major challenges in Nonequilibrium systems

- Unlike in equlibrium systems, the stationary state, if it exists, is determined by the dynamics itself that typically violates time-reversal symmetry (detailed balance)
 - \implies The joint distribution $P_{\rm st}(x_1,x_2,\ldots,x_N)$ in the nonequilibrum stationary state is not given by Gibb's measure and is typically very hard to obtain explicitly

• Even if one can determine $P_{\rm st}(x_1,x_2,\ldots,x_N)$ explicitly, computing observables such as average density, extreme/order statistics, gap statistics, full counting statistics etc. are typically very hard due to the presence of strong correlations

In search of interacting many-body systems

• Are in a Nonequilibrium Stationary State

• Are Strongly Correlated

- Are still Exactly Solvable for different physical observables:
 - average density
 - extreme value statistics
 - gap statistics
 - full counting statistics

Strongly correlated gas in a Nonequilibrium Stationary State

Strongly correlated gas in a Nonequilibrium Stationary State generated by Stochastic Resetting

Stochastic Resetting ⇒ **explosion** of activities

- Optimization of random search algorithms
- Diffusion processes
- Enzymatic reactions in biology (Michaelis-Menten reaction)
- Lévy flights, Lévy walks, fractional BM with resetting
- Space-time dependent resetting rate r(x, t)
- Search via nonequilibrium reset dynamics vs. equilibrium dynamics
- Resetting dynamics of extended systems
- Memory dependent reset
- Quantum dynamics with reset
- Active particles with reset
- Cost of resetting
- Optimal strategy for animal movements and navigations

```
\dots \implies a \log list !
```

Stochastic Resetting ⇒ **explosion** of activities

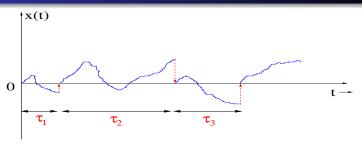
- Optimization of random search algorithms
- Diffusion processes
- Enzymatic reactions in biology (Michaelis-Menten reaction)
- Lévy flights, Lévy walks, fractional BM with resetting
- Space-time dependent resetting rate r(x, t)
- Search via nonequilibrium reset dynamics vs. equilibrium dynamics
- Resetting dynamics of extended systems
- Memory dependent reset
- · Quantum dynamics with reset
- Active particles with reset
- Cost of resetting

 $\dots \implies$ a long list!

Optimal strategy for animal movements and navigations

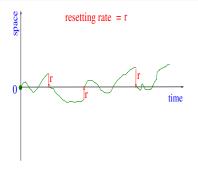
```
Reviews: "Stochastic resetting and applications",
M.R. Evans, S.M., & G. Schehr, J. Phys. A.: Math. Theor. 53, 193001 (2020)
"The inspection paradox in stochastic resetting",
A. Pal, S. Kostinski & S. Reuveni, J. Phys. A.: Math. Theor. 55, 021001 (2022)
```

Stochastic Resetting in a nutshell



- Natural dynamics ⇒ deterministic/stochastic/classical/quantum
- Resetting at random times and then natural dynamics restarts afresh
- Intervals $\{\tau_1, \tau_2, \tau_3, \ldots\}$ between resettings $\Longrightarrow p(\tau)$ independently \Longrightarrow renewal process
- If $p(\tau) = r e^{-r \tau} \Longrightarrow$ Poissonian resetting

Simplest Ex: Diffusion with stochastic resetting

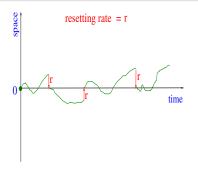


Poissonian resetting

Time intervals between successive resettings distributed as:

$$p(\tau) = r e^{-r\tau}$$

Simplest Ex: Diffusion with stochastic resetting



Poissonian resetting

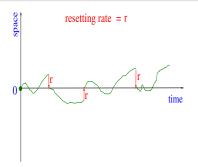
Time intervals between successive resettings distributed as:

$$p(\tau) = r e^{-r\tau}$$

Dynamics: In a small time interval Δt

$$x(t + \Delta t) = 0$$
 with prob. $r\Delta t$ (resetting)
= $x(t) + \eta(t) \Delta t$ with prob. $1 - r\Delta t$ (diffusion)

Simplest Ex: Diffusion with stochastic resetting



Poissonian resetting

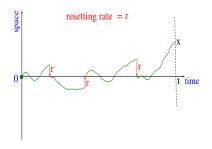
Time intervals between successive resettings distributed as:

$$p(\tau) = r e^{-r\tau}$$

Dynamics: In a small time interval Δt

$$x(t+\Delta t)=0$$
 with prob. $r\Delta t$ (resetting)
$$=x(t)+\eta(t)\,\Delta t \quad \text{with prob. } 1-r\Delta t \quad \text{(diffusion)}$$
 $\eta(t) \to \text{Gaussian white noise: } \langle \eta(t) \rangle = 0 \text{ and } \langle \eta(t)\eta(t') \rangle = 2\,D\,\delta(t-t')$ [M.R. Evans & S.M., PRL, 106, 160601 (2011)]

Prob. density $p_r(x, t)$ with resetting rate r > 0

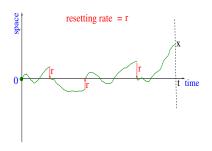


$$p_r(x,t) o ext{prob.}$$
 density at time t , given $p_r(x,0) = \delta(x)$

• In the absence of resetting (r = 0):

$$p_0(x,t) = \frac{1}{\sqrt{4\pi D t}} e^{-\frac{x^2}{4Dt}}$$

Prob. density $p_r(x, t)$ with resetting rate r > 0



$$p_r(x,t) o \text{prob.}$$
 density at time t , given $p_r(x,0) = \delta(x)$

• In the absence of resetting (r = 0):

$$p_0(x,t) = \frac{1}{\sqrt{4\pi D t}} e^{-\frac{x^2}{4Dt}}$$

• In the presence of resetting (r > 0):

$$p_r(x,t) = ?$$

Fokker-Planck (Master) Equation

Fokker-Planck Equation:

$$\partial_t p_r(x,t) = D \, \partial_x^2 p_r(x,t) - r \, p_r(x,t) + r \, \delta(x)$$

Initial condition: $p_r(x, 0) = \delta(x)$

Fokker-Planck (Master) Equation

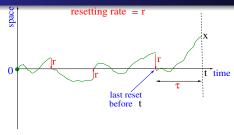
Fokker-Planck Equation:

$$\partial_t p_r(x,t) = D \, \partial_x^2 p_r(x,t) - r \, p_r(x,t) + r \, \delta(x)$$

Initial condition: $p_r(x, 0) = \delta(x)$

This linear equation can be solved at all t exactly by Fourier transform

Exact solution valid at all times t

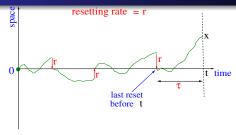


Exact solution at all times t:

$$p_r(x,t) = e^{-rt} p_0(x,t) + \int_0^t d\tau (r e^{-r\tau}) p_0(x,\tau)$$

where
$$p_0(x,\tau) = \text{diffusion propagator} = \frac{1}{\sqrt{4\pi\,D\,\tau}}\,\exp[-x^2/4D\tau]$$

Exact solution valid at all times t



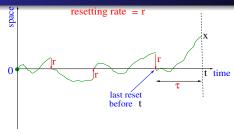
Exact solution at all times t:

$$p_r(x,t) = e^{-rt} p_0(x,t) + \int_0^t d\tau (r e^{-r\tau}) p_0(x,\tau)$$

where
$$p_0(x,\tau) = \text{diffusion propagator} = \frac{1}{\sqrt{4\pi D \tau}} \exp[-x^2/4D\tau]$$

Renewal interpretation: au o au time since the last resetting during which \implies free diffusion

Exact solution valid at all times t



Exact solution at all times t:

$$p_r(x,t) = e^{-rt} p_0(x,t) + \int_0^t d\tau (r e^{-r\tau}) p_0(x,\tau)$$

where
$$p_0(x,\tau) = \text{diffusion propagator} = \frac{1}{\sqrt{4\pi D \tau}} \exp[-x^2/4D\tau]$$

Renewal interpretation: $au o ext{time}$ since the last resetting during which $o o ext{free}$ diffusion

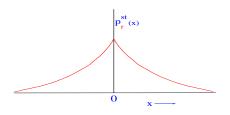
• As
$$t \to \infty$$
, $p_r^{\rm st}(x) = r \int_0^\infty p_0(x,\tau) e^{-r\tau} d\tau = \frac{\alpha_0}{2} \exp[-\alpha_0 |x|]$ where $\alpha_0 = \sqrt{r/D}$

Stationary State

Exact solution
$$\rightarrow \left[p_r^{\rm st}(x) = \frac{\alpha_0}{2} \exp[-\alpha_0 |x|] \right]$$
 with $\alpha_0 = \sqrt{r/D}$

Stationary State

Exact solution
$$\rightarrow \left[p_r^{\rm st}(x) = \frac{\alpha_0}{2} \exp[-\alpha_0 |x|] \right]$$
 with $\alpha_0 = \sqrt{r/D}$



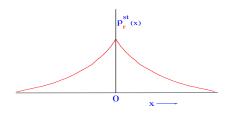
- → nonequilibrium stationary state (NESS)
- ⇒ current carrying with detailed balance → violated

$$p_r^{\rm st}(x) = \alpha_0 \exp[-V_{\rm eff}(x)]$$

effective potential: $\alpha_0|x|$

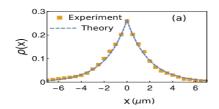
Stationary State

Exact solution
$$\rightarrow \left[p_r^{\rm st}(x) = \frac{\alpha_0}{2} \exp[-\alpha_0 |x|] \right]$$
 with $\alpha_0 = \sqrt{r/D}$



- → nonequilibrium stationary state (NESS)
- ⇒ current carrying with detailed balance → violated

$$p_r^{\rm st}(x) = \alpha_0 \, \exp[-V_{\rm eff}(x)]$$
 effective potential: $\alpha_0|x|$



Experimental verification using holographic optical tweezers

Tal-Friedman, Pal, Sekhon, Reuveni, & Roichman J. Phys. Chem. Lett. 11, 7350 (2020)

Optical Trap experiments on Stochastic Resetting

Besga, Bovon, Petrosyan, S.M., Ciliberto, Phys. Rev. Res. 2, 032029 (2020) \longrightarrow **1-dimension** Faisant, Besga, Petrosyan, Ciliberto, S.M., J. Stat. Mech. 113203 (2021) \longrightarrow **2-dimension**

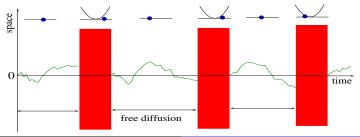
Optical Trap experiments on Stochastic Resetting

Besga, Bovon, Petrosyan, S.M., Ciliberto, Phys. Rev. Res. 2, 032029 (2020) \longrightarrow 1-dimension Faisant, Besga, Petrosyan, Ciliberto, S.M., J. Stat. Mech. 113203 (2021) \longrightarrow 2-dimension

Experimental protocol for a single Brownian (colloidal) particle:

- 1. Free diffusion for a certain period (deterministic or random)
- Switch on an optical harmonic trap and the let the particle relax to its equilibrium distribution using Engineered Swift Equilibration (ESE) technique ⇒ mimics instantaneous resetting

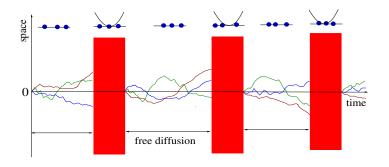
Steps 1 and 2 alternate ...



N non-interacting Brownian particles

- Free diffusion of N noninteracting particles during an exponentially distributed period
- 2. Switch on an optical harmonic trap and the let the particles relax to their equilibrium distribution ⇒ mimics instantaneous resetting

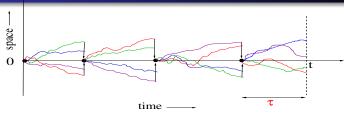
Steps 1 and 2 alternate ...



Resetting Brownian Gas

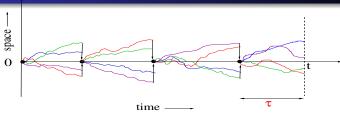
⇒ A simple model

A simple model → Correlated resetting gas



Consider N Brownian motions (independent) that are **simultaneously** reset with rate r to the origin

A simple model → Correlated resetting gas



Consider N Brownian motions (independent) that are **simultaneously** reset with rate r to the origin

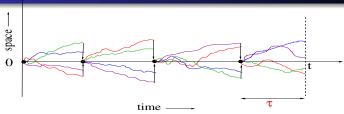
Joint distribution at any time t:

$$P_r(\{x_i\},t) = e^{-rt} \prod_{i=1}^N p_0(x_i,t) + r \int_0^t d\tau \, e^{-r\tau} \prod_{i=1}^N p_0(x_i,\tau)$$

where $p_0(x,\tau) = \frac{1}{\sqrt{4\pi D\tau}} e^{-x_i^2/4D\tau}$

M. Biroli, H. Larralde, S. M., G. Schehr, PRL, 130, 207101 (2023)

A simple model → Correlated resetting gas



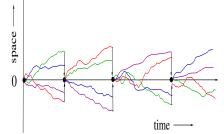
Consider N Brownian motions (independent) that are **simultaneously** reset with rate r to the origin

The joint position distribution approaches a nonequilibrium stationary state (NESS) at long times $t \to \infty$

$$P_r^{\text{st}}(\{x_i\}) = r \int_0^\infty d\tau \, e^{-r\tau} \prod_{i=1}^N \frac{1}{\sqrt{4\pi D\tau}} \, e^{-x_i^2/4D\tau}$$

The joint distribution does not factorize \Longrightarrow correlated resetting gas

M. Biroli, H. Larralde, S. M., G. Schehr, PRL, 130, 207101 (2023)



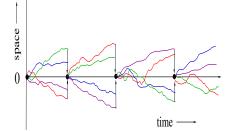
Joint distribution:

$$P_r^{\rm st}(\lbrace x_i \rbrace) = r \int_0^\infty d\tau \, e^{-r\tau} \prod_{i=1}^N p_0(x_i, \tau)$$

$$p_0(x,\tau) = \frac{1}{\sqrt{4\pi D\tau}} e^{-x_i^2/4D\tau}$$

In this model, interactions between particles are **not built-in**, but the correlations are generated by the dynamics (**simultaneous resetting**), that persist all the way to the stationary state

--- dynamically emergent correlations



Joint distribution:

$$P_r^{\text{st}}(\{x_i\}) = r \int_0^\infty d\tau \, e^{-r\tau} \prod_{i=1}^N p_0(x_i, \tau)$$

$$p_0(x,\tau) = \frac{1}{\sqrt{4\pi D\tau}} e^{-x_i^2/4D\tau}$$

In this model, interactions between particles are **not built-in**, but the correlations are generated by the dynamics (**simultaneous resetting**), that persist all the way to the stationary state

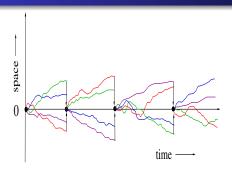
--- dynamically emergent correlations

The gas is strongly correlated in the NESS

For any pair $i \neq j$:

While
$$\langle x_i x_j \rangle - \langle x_i \rangle \langle x_j \rangle = 0$$
 by symmetry

$$\langle x_i^2 x_i^2 \rangle - \langle x_i^2 \rangle \langle x_i^2 \rangle = 4 \frac{D^2}{r^2} \Longrightarrow \text{attractive all-to-all interaction}$$



Joint distribution:

$$P_r^{\text{st}}(\{x_i\}) = r \int_0^\infty d\tau \, e^{-r\tau} \prod_{i=1}^N p_0(x_i, \tau)$$

$$p_0(x,\tau) = \frac{1}{\sqrt{4\pi D\tau}} e^{-x_i^2/4D\tau}$$

The stationary joint distribution has a CIID structure → Solvable

$$P_r^{\rm st}(x_1,x_2,\ldots,x_N) = \int_{-\infty}^{\infty} du \, h(u) \prod_{i=1}^{N} p(x_i|u)$$

CIID ⇒ Conditionally Independent and Identically Distributed

Joint distribution:

$$P_r^{\text{st}}(\{x_i\}) = r \int_0^\infty d\tau \, e^{-r\tau} \prod_{i=1}^N \frac{1}{\sqrt{4\pi D\tau}} \, e^{-x_i^2/4D\tau}$$

Joint distribution:

$$P_r^{\text{st}}(\{x_i\}) = r \int_0^\infty d\tau \, e^{-r\tau} \prod_{i=1}^N \frac{1}{\sqrt{4\pi D\tau}} \, e^{-x_i^2/4D\tau}$$

Despite the presence of **strong correlations**, several physical observables can be computed **exactly** in the NESS due to the **CIID** structure

- Compute any observable for the ideal gas \Rightarrow I.I.D variables with distribution $p_0(x, \tau)$ parametrized by $\tau \Longrightarrow \text{easy}$
- Average over the random parameter τ using $p(\tau) = r e^{-r\tau}$

Joint distribution:

$$P_r^{\text{st}}(\{x_i\}) = r \int_0^\infty d\tau \, e^{-r\tau} \prod_{i=1}^N \frac{1}{\sqrt{4\pi D\tau}} \, e^{-x_i^2/4D\tau}$$

Despite the presence of **strong correlations**, several physical observables can be computed **exactly** in the NESS due to the **CIID** structure

- Compute any observable for the ideal gas \Rightarrow I.I.D variables with distribution $p_0(x, \tau)$ parametrized by $\tau \Longrightarrow \text{easy}$
- Average over the random parameter τ using $p(\tau) = r e^{-r\tau}$

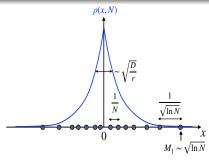
Examples:

- Average density
- Distribution of the k-th maximum: Order statistics
- Spacing distribution
- Full Counting Statistics

M. Biroli, H. Larralde, S. M., G. Schehr, PRL, 130, 207101 (2023)

Explicit Results

Average Density



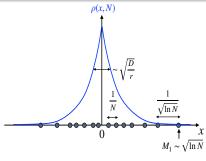
Joint distribution:

$$P_{r}^{\text{st}}(\{x_{i}\}) = r \int_{0}^{\infty} d\tau \, e^{-r\tau} \prod_{i=1}^{N} p_{0}(x_{i}, \tau)$$
$$p_{0}(x, \tau) = \frac{1}{\sqrt{4\pi D\tau}} \, e^{-x_{i}^{2}/4D\tau}$$

Average density:

$$\rho(x,N) = \frac{1}{N} \sum_{i=1}^{N} \langle \delta(x_i - x) \rangle = \int P_r^{\text{st}}(x, x_2, \dots, x_N) \ dx_2 \ dx_3 \dots dx_N$$

Average Density



Joint distribution:

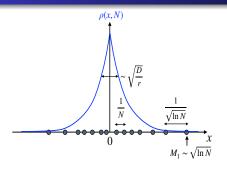
$$P_r^{\text{st}}(\{x_i\}) = r \int_0^\infty d\tau \, e^{-r\tau} \prod_{i=1}^N p_0(x_i, \tau)$$
$$p_0(x, \tau) = \frac{1}{\sqrt{4\pi D\tau}} \, e^{-x_i^2/4D\tau}$$

Average density:

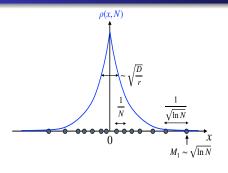
$$\rho(x,N) = \frac{1}{N} \sum_{i=1}^{N} \langle \delta(x_i - x) \rangle = \int P_r^{\text{st}}(x, x_2, \dots, x_N) \, dx_2 \, dx_3 \dots dx_N$$
$$= r \int_0^\infty d\tau \, e^{-r\tau} \, p_0(x,\tau) = \frac{\alpha_0}{2} \, \exp[-\alpha_0 \, |x|]$$

where
$$\alpha_0 = \sqrt{r/D}$$

⇒ same as the single particle position distribution

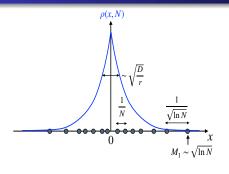


$$M_k \Longrightarrow k$$
-th maximum Set $k = \alpha N$
 $\alpha \sim O(1) \Longrightarrow \mathbf{bulk}$
 $\alpha \sim O(1/N) \Longrightarrow \mathbf{edge}$



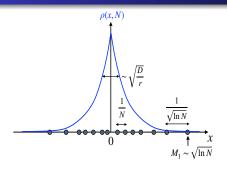
$$egin{aligned} & \emph{M}_{\emph{k}} \Longrightarrow \emph{k} ext{-th maximum} \ & \mathsf{Set} \ \emph{k} = \emph{\alpha} \ \emph{N} \ & \qquad o(1) \Longrightarrow \mathbf{bulk} \ & \qquad o(1/\emph{N}) \Longrightarrow \mathbf{edge} \end{aligned}$$

• Bulk:
$$\operatorname{Prob.}[M_k = w] \approx \frac{1}{\Lambda(\alpha)} f\left(\frac{w}{\Lambda(\alpha)}\right)$$
 where $\Lambda(\alpha) = \sqrt{\frac{4D}{r}}\operatorname{erfc}^{-1}(2\alpha)$



$$egin{aligned} M_k &\Longrightarrow k ext{-th maximum} \ & ext{Set } k = lpha \ N \ & lpha \sim O(1) \Longrightarrow \mathbf{bulk} \ & lpha \sim O(1/N) \Longrightarrow \mathbf{edge} \end{aligned}$$

- Bulk: Prob. $[M_k = w] \approx \frac{1}{\Lambda(\alpha)} f\left(\frac{w}{\Lambda(\alpha)}\right)$ where $\Lambda(\alpha) = \sqrt{\frac{4D}{r}} \operatorname{erfc}^{-1}(2\alpha)$
- Edge: Prob. $[M_k = w] \approx \frac{1}{L_N} f\left(\frac{w}{L_N}\right)$ where $L_N = \sqrt{\frac{4D \ln N}{r}}$

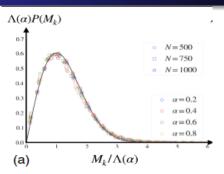


$$egin{aligned} & M_{k} \Longrightarrow k ext{-th maximum} \ & ext{Set } k = lpha N \ & lpha \sim O(1) \Longrightarrow \mathbf{bulk} \ & lpha \sim O(1/N) \Longrightarrow \mathbf{edge} \end{aligned}$$

- Bulk: Prob. $[M_k = w] \approx \frac{1}{\Lambda(\alpha)} f\left(\frac{w}{\Lambda(\alpha)}\right)$ where $\Lambda(\alpha) = \sqrt{\frac{4D}{r}} \operatorname{erfc}^{-1}(2\alpha)$
- Edge: Prob. $[M_k = w] \approx \frac{1}{L_N} f\left(\frac{w}{L_N}\right)$ where $L_N = \sqrt{\frac{4D \ln N}{r}}$

The scaling function $f(z) = 2 z e^{-z^2} \theta(z) \Longrightarrow universal$ (indep. of α)

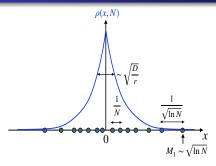
M. Biroli, H. Larralde, S. M., G. Schehr, PRL, 130, 207101 (2023)



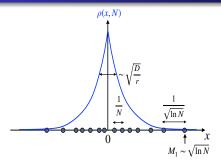
- Bulk: Prob. $[M_k = w] \approx \frac{1}{\Lambda(\alpha)} f\left(\frac{w}{\Lambda(\alpha)}\right)$ where $\Lambda(\alpha) = \sqrt{\frac{4D}{r}} \operatorname{erfc}^{-1}(2\alpha)$
- Edge: Prob. $[M_k = w] \approx \frac{1}{L_N} f\left(\frac{w}{L_N}\right)$ where $L_N = \sqrt{\frac{4D \ln N}{r}}$

The scaling function $f(z) = 2 z e^{-z^2} \theta(z) \Longrightarrow universal$ (indep. of α)

M. Biroli, H. Larralde, S. M., G. Schehr, PRL, 130, 207101 (2023)

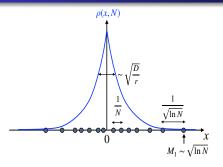


$$egin{aligned} M_k &\Longrightarrow k\text{-th maximum} \\ k\text{-th gap: } d_k &= M_k - M_{k+1} \\ &\text{Set } k &= lpha \ N \\ &lpha &\sim O(1) \Longrightarrow \mathbf{bulk} \\ &lpha &\sim O(1/N) \Longrightarrow \mathbf{edge} \end{aligned}$$



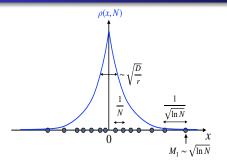
$$M_k \Longrightarrow k$$
-th maximum
 k -th gap: $d_k = M_k - M_{k+1}$
Set $k = \alpha N$
 $\alpha \sim O(1) \Longrightarrow \mathbf{bulk}$
 $\alpha \sim O(1/N) \Longrightarrow \mathbf{edge}$

• Bulk: Prob.
$$[d_k = g] \approx \frac{1}{\lambda_N(\alpha)} h\left(\frac{g}{\lambda_N(\alpha)}\right)$$
 where $\lambda_N(\alpha) = \frac{1}{b\sqrt{r}N}$ with $b = \exp\left(-\left[\operatorname{erfc}^{-1}(2\alpha)\right]^2\right)/\sqrt{4\pi D}$



$$M_k \Longrightarrow k$$
-th maximum k -th gap: $d_k = M_k - M_{k+1}$ Set $k = \alpha N$ $\alpha \sim O(1) \Longrightarrow \mathbf{bulk}$ $\alpha \sim O(1/N) \Longrightarrow \mathbf{edge}$

- Bulk: Prob. $[d_k = g] \approx \frac{1}{\lambda_N(\alpha)} h\left(\frac{g}{\lambda_N(\alpha)}\right)$ where $\lambda_N(\alpha) = \frac{1}{b\sqrt{r}N}$ with $b = \exp\left(-\left[\operatorname{erfc}^{-1}(2\alpha)\right]^2\right)/\sqrt{4\pi D}$
- Edge: Prob. $[d_k = g] \approx \frac{1}{I_N(k)} h\left(\frac{g}{I_N(k)}\right)$ where $I_N(k) = \sqrt{\frac{D}{r k^2 \ln N}}$



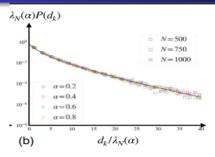
$$M_k \Longrightarrow k$$
-th maximum k -th gap: $d_k = M_k - M_{k+1}$ Set $k = \alpha N$ $\alpha \sim O(1) \Longrightarrow \mathbf{bulk}$ $\alpha \sim O(1/N) \Longrightarrow \mathbf{edge}$

- Bulk: Prob. $[d_k = g] \approx \frac{1}{\lambda_N(\alpha)} h\left(\frac{g}{\lambda_N(\alpha)}\right)$ where $\lambda_N(\alpha) = \frac{1}{b\sqrt{r}N}$ with $b = \exp\left(-\left[\operatorname{erfc}^{-1}(2\alpha)\right]^2\right)/\sqrt{4\pi D}$
- Edge: Prob. $[d_k = g] \approx \frac{1}{I_N(k)} h\left(\frac{g}{I_N(k)}\right)$ where $I_N(k) = \sqrt{\frac{D}{r k^2 \ln N}}$

The scaling function
$$h(z) = 2 \int_0^\infty du \, e^{-u^2 - z/u} \quad (z \ge 0)$$

 \implies universal (indep. of α)

M. Biroli, H. Larralde, S. M., G. Schehr, PRL, 130, 207101 (2023)



The gap scaling function:

$$h(z) = 2 \int_0^\infty du \, e^{-u^2 - z/u}$$

$$h(z) \to \sqrt{\pi} \quad \text{as } z \to 0$$

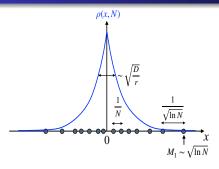
$$h(z) \sim \exp[-3(z/2)^{2/3}] \text{ as } z \to \infty$$

- Bulk: Prob. $[d_k = g] \approx \frac{1}{\lambda_N(\alpha)} h\left(\frac{g}{\lambda_N(\alpha)}\right)$ where $\lambda_N(\alpha) = \frac{1}{b\sqrt{r}N}$ with $b = \exp\left(-\left[\operatorname{erfc}^{-1}(2\alpha)\right]^2\right)/\sqrt{4\pi D}$
- Edge: Prob. $[d_k = g] \approx \frac{1}{I_N(k)} h\left(\frac{g}{I_N(k)}\right)$ where $I_N(k) = \sqrt{\frac{D}{r k^2 \ln N}}$

The scaling function
$$h(z) = 2 \int_0^\infty du \, e^{-u^2 - z/u} \quad (z \ge 0)$$

 \implies universal (indep. of α)

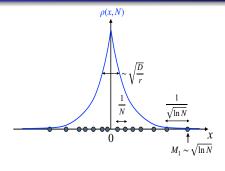
M. Biroli, H. Larralde, S. M., G. Schehr, PRL, 130, 207101 (2023)



 $N_L \Longrightarrow$ number of particles in [-L, L]

Clearly, $0 \le N_L \le N$

$$P(N_L, N) = ?$$

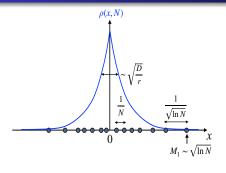


 $N_L \Longrightarrow$ number of particles in [-L, L]

Clearly, $0 \le N_L \le N$

$$P(N_L, N) = ?$$

Full Counting Statistics:
$$P(N_L, N) \approx \frac{1}{N} H(\frac{N_L}{N} = \kappa)$$
 $(0 \le \kappa \le 1)$



 $N_L \Longrightarrow$ number of particles in [-L, L]

Clearly, $0 \le N_L \le N$

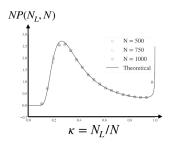
$$P(N_L, N) = ?$$

Full Counting Statistics: $P(N_L, N) \approx \frac{1}{N} H\left(\frac{N_L}{N} = \kappa\right) \quad (0 \le \kappa \le 1)$ where the scaling function:

$$H(\kappa) = \gamma \sqrt{\pi} \left[u(\kappa) \right]^{-3} \exp \left[-\gamma u^{-2}(\kappa) + u^{2}(\kappa) \right]$$

with
$$\gamma = r L^2/(4D)$$
 and $u(\kappa) = \operatorname{erf}^{-1}(\kappa)$

M. Biroli, H. Larralde, S. M., G. Schehr, PRL, 130, 207101 (2023)



The scaling function $H(\kappa)$

$$H(\kappa) o rac{8\gamma}{\pi \, \kappa^3} \, \exp\left[-rac{4\gamma}{\pi \, \kappa^2}
ight] \, {
m as} \, \, \kappa o 0$$

$$H(\kappa) o rac{\gamma \sqrt{\pi}}{(1-\kappa)[\ln(1-\kappa)]^{3/2}}$$
 as $\kappa o 1$

Full Counting Statistics: $P(N_L, N) \approx \frac{1}{N} H\left(\frac{N_L}{N} = \kappa\right) \quad (0 \le \kappa \le 1)$ where the scaling function:

$$H(\kappa) = \gamma \sqrt{\pi} \left[u(\kappa) \right]^{-3} \exp \left[-\gamma u^{-2}(\kappa) + u^{2}(\kappa) \right]$$

with
$$\gamma = r L^2/(4D)$$
 and $u(\kappa) = \operatorname{erf}^{-1}(\kappa)$

M. Biroli, H. Larralde, S. M., G. Schehr, PRL, 130, 207101 (2023)

Generalisations

The structure of the joint distribution for *N* independent particles driven by simultaneous resetting is very general:

$$P_r^{\text{st}}(\lbrace x_i \rbrace) = r \int_0^\infty d\tau \, e^{-r\tau} \prod_{i=1}^N p_0(x_i, \tau)$$

where $p_0(x, \tau)$ can represent **any** single particle motion, not necessarily diffusion

Generalisations

The structure of the joint distribution for *N* independent particles driven by simultaneous resetting is very general:

$$P_r^{\text{st}}(\lbrace x_i \rbrace) = r \int_0^\infty d\tau \, e^{-r\tau} \prod_{i=1}^N p_0(x_i, \tau)$$

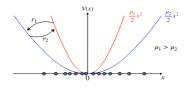
where $p_0(x, \tau)$ can represent **any** single particle motion, not necessarily diffusion

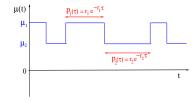
Ex: ballistic motion, Lévy flights etc.

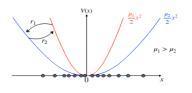
- ⇒ a whole class of **solvable** correlated gases in their nonequilibrium stationary state
- ⇒ a new application of stochastic resetting

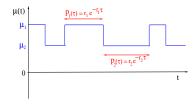
M. Biroli, H. Larralde, S. M., G. Schehr, Phys. Rev. E 109, 014101 (2024)

Other models with CIID stationary state







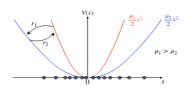


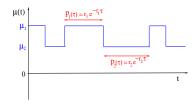
$$\frac{dx_i}{dt} = -\mu(t)x_i + \sqrt{2D}\,\eta_i(t)$$

$$\eta_i(t) \longrightarrow \text{Gaussian white noise with zero mean}$$

and correlator $\langle \eta_i(t) \eta_j(t') \rangle = \delta_{i,j} \, \delta(t-t')$

The stiffness $\mu(t)$ of the harmonic trap changes from $\mu_1 \to \mu_2 < \mu_1$ with rate r_1 and $\mu_2 \to \mu_1$ with rate $r_2 \Longrightarrow$ dichotomous telegraphic noise





$$\frac{dx_i}{dt} = -\mu(t)x_i + \sqrt{2D}\eta_i(t)$$

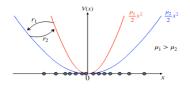
$$\eta_i(t) \longrightarrow \text{Gaussian white noise with zero mean}$$

and correlator $\langle \eta_i(t) \eta_j(t') \rangle = \delta_{i,j} \, \delta(t-t')$

The stiffness $\mu(t)$ of the harmonic trap changes from $\mu_1 \to \mu_2 < \mu_1$ with rate r_1 and $\mu_2 \to \mu_1$ with rate $r_2 \Longrightarrow$ dichotomous telegraphic noise

 \implies drives the system into a correlated NESS with a stationary joint distribution $P(x_1, x_2, ..., x_N, t \to \infty) = P(\vec{x}, t \to \infty) = ?$

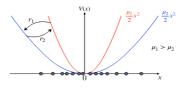
Biroli, Kulkarni, S.M., Schehr, PRE, 109, L032106 (2024)



The limit

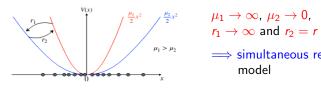
$$\mu_1 \to \infty$$
, $\mu_2 \to 0$, $r_1 \to \infty$ and $r_2 = r$

$$\implies$$
 simultaneous resetting model



The limit

 $P_{1,2}(\vec{x},t) \longrightarrow \text{Prob.}$ that the position is \vec{x} and the stiffness is μ_1 (or μ_2) at time t



The limit

$$\mu_1
ightarrow \infty, \; \mu_2
ightarrow 0, \ r_1
ightarrow \infty \; ext{and} \; r_2 = r$$

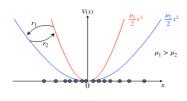
 \Longrightarrow simultaneous resetting model

$$P_{1,2}(\vec{x},t) \longrightarrow \text{Prob.}$$
 that the position is \vec{x} and the stiffness is μ_1 (or μ_2) at time t

They satisfy a pair of coupled Fokker-Planck equations:

$$\begin{split} \partial_t P_1 &= D \sum_{i=1}^N \partial_{x_i}^2 P_1(\vec{x},t) + \mu_1 \sum_{i=1}^N \partial_{x_i} \left(x_i \, P_1 \right) - r_1 \, P_1 + r_2 \, P_2 \\ \partial_t P_2 &= D \sum_{i=1}^N \partial_{x_i}^2 P_2(\vec{x},t) + \mu_2 \sum_{i=1}^N \partial_{x_i} \left(x_i \, P_2 \right) - r_2 \, P_2 + r_1 \, P_1 \\ \text{with initial conditions: } P_1(\vec{x},0) &= \frac{1}{2} \, \delta(\vec{x}) \text{ and } P_2(\vec{x},0) = \frac{1}{2} \, \delta(\vec{x}) \end{split}$$

S.N. Majumdar



Fourier transforms:

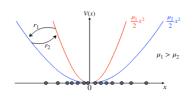
$$\tilde{P}_{1,2}(\vec{k},t) = \int P_{1,2}(\vec{x},t) \, e^{i\,\vec{k}\cdot\vec{x}} \, d\vec{x}$$

Rotational symmetry

$$\implies \tilde{P}_{1,2}(\vec{k},t) = \tilde{P}_{1,2}(k,t)$$

where

$$k^2 = k_1^2 + k_2^2 + \ldots + k_N^2$$



Fourier transforms:

$$\tilde{P}_{1,2}(\vec{k},t) = \int P_{1,2}(\vec{x},t) \, e^{i\,\vec{k}\cdot\vec{x}} \, d\vec{x}$$

Rotational symmetry

$$\implies \tilde{P}_{1,2}(\vec{k},t) = \tilde{P}_{1,2}(k,t)$$

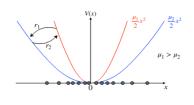
where

$$k^2 = k_1^2 + k_2^2 + \ldots + k_N^2$$

Exact stationary solution in terms of $R_1=rac{r_1}{2\mu_1}$ and $R_2=rac{r_2}{2\mu_2}$

$$\begin{split} \tilde{P}_{1}(k) &= \tfrac{r_{2}}{r_{1} + r_{2}} \, e^{-D \, k^{2}/(2\mu_{1})} \, M\left(R_{1}, 1 + R_{1} + R_{2}, -\tfrac{D \, k^{2} \, (\mu_{1} - \mu_{2})}{2 \, \mu_{1} \, \mu_{2}}\right) \\ \tilde{P}_{2}(k) &= \tfrac{r_{1}}{r_{1} + r_{2}} \, e^{-D \, k^{2}/(2\mu_{2})} \, M\left(R_{2}, 1 + R_{1} + R_{2}, -\tfrac{D \, k^{2} \, (\mu_{2} - \mu_{1})}{2 \, \mu_{1} \, \mu_{2}}\right) \end{split}$$

where $M(a, b, z) \longrightarrow \text{Kummer's function}$



Fourier transforms:

$$\tilde{P}_{1,2}(\vec{k},t) = \int P_{1,2}(\vec{x},t) e^{i \vec{k} \cdot \vec{x}} d\vec{x}$$

Rotational symmetry

$$\implies \tilde{P}_{1,2}(\vec{k},t) = \tilde{P}_{1,2}(k,t)$$

where

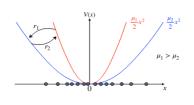
$$k^2 = k_1^2 + k_2^2 + \ldots + k_N^2$$

Exact stationary solution in terms of $R_1=rac{r_1}{2\mu_1}$ and $R_2=rac{r_2}{2\mu_2}$

$$\begin{split} \tilde{P}_{1}(k) &= \tfrac{r_{2}}{r_{1} + r_{2}} \, e^{-D \, k^{2}/(2\mu_{1})} \, M\left(R_{1}, 1 + R_{1} + R_{2}, -\tfrac{D \, k^{2} \, (\mu_{1} - \mu_{2})}{2 \, \mu_{1} \, \mu_{2}}\right) \\ \tilde{P}_{2}(k) &= \tfrac{r_{1}}{r_{1} + r_{2}} \, e^{-D \, k^{2}/(2\mu_{2})} \, M\left(R_{2}, 1 + R_{1} + R_{2}, -\tfrac{D \, k^{2} \, (\mu_{2} - \mu_{1})}{2 \, \mu_{1} \, \mu_{2}}\right) \end{split}$$

where $M(a, b, z) \longrightarrow \text{Kummer's function}$

The full solution: $\tilde{P}(k) = \tilde{P}_1(k) + \tilde{P}_2(k)$



Fourier transforms:

$$\tilde{P}_{1,2}(\vec{k},t) = \int P_{1,2}(\vec{x},t) \, e^{i\,\vec{k}\cdot\vec{x}} \, d\vec{x}$$

Rotational symmetry

$$\implies \tilde{P}_{1,2}(\vec{k},t) = \tilde{P}_{1,2}(k,t)$$

where

$$k^2 = k_1^2 + k_2^2 + \ldots + k_N^2$$

Exact stationary solution in terms of $R_1=rac{r_1}{2\mu_1}$ and $R_2=rac{r_2}{2\mu_2}$

$$\begin{split} \tilde{P}_{1}(k) &= \tfrac{r_{2}}{r_{1} + r_{2}} \, e^{-D \, k^{2}/(2\mu_{1})} \, M\left(R_{1}, 1 + R_{1} + R_{2}, -\tfrac{D \, k^{2} \, (\mu_{1} - \mu_{2})}{2 \, \mu_{1} \, \mu_{2}}\right) \\ \tilde{P}_{2}(k) &= \tfrac{r_{1}}{r_{1} + r_{2}} \, e^{-D \, k^{2}/(2\mu_{2})} \, M\left(R_{2}, 1 + R_{1} + R_{2}, -\tfrac{D \, k^{2} \, (\mu_{2} - \mu_{1})}{2 \, \mu_{1} \, \mu_{2}}\right) \end{split}$$

where $M(a, b, z) \longrightarrow \text{Kummer's function}$

The full solution: $\tilde{P}(k) = \tilde{P}_1(k) + \tilde{P}_2(k)$

Not **obvious** if the inverse Fourier transform $P(\vec{x})$ has a CIID structure

Using an integral representation of M(a, b, z) one can express

$$\tilde{P}_1(k) = A_1 \int_0^1 du \, u^{R_1 - 1} (1 - u)^{R_2} e^{-V(u) k^2/2}$$

where
$$A_1 = \frac{r_2}{r_1 + r_2} \frac{\Gamma(1 + R_1 + R_2)}{\Gamma(R_1) \Gamma(1 + R_2)}$$
 and $V(u) = D\left(\frac{u}{\mu_2} + \frac{1 - u}{\mu_1}\right)$

Using an integral representation of M(a, b, z) one can express

$$\tilde{P}_1(k) = A_1 \int_0^1 du \, u^{R_1 - 1} (1 - u)^{R_2} e^{-V(u) \, k^2 / 2}$$

where
$$A_1 = \frac{r_2}{r_1 + r_2} \frac{\Gamma(1 + R_1 + R_2)}{\Gamma(R_1) \Gamma(1 + R_2)}$$
 and $V(u) = D\left(\frac{u}{\mu_2} + \frac{1 - u}{\mu_1}\right)$

Inverting the Fourier transform one finds a hidden CIID representation

$$P(\vec{x}) = \int_0^1 du \, h(u) \prod_{i=1}^N p(x_i|u)$$

Using an integral representation of M(a, b, z) one can express

$$\tilde{P}_1(k) = A_1 \int_0^1 du \, u^{R_1 - 1} (1 - u)^{R_2} e^{-V(u) k^2/2}$$

where
$$A_1 = \frac{r_2}{r_1 + r_2} \frac{\Gamma(1 + R_1 + R_2)}{\Gamma(R_1) \Gamma(1 + R_2)}$$
 and $V(u) = D\left(\frac{u}{\mu_2} + \frac{1 - u}{\mu_1}\right)$

Inverting the Fourier transform one finds a hidden CIID representation

$$P(\vec{x}) = \int_0^1 du \, h(u) \prod_{i=1}^N p(x_i|u)$$

where
$$h(u) = A u^{R_1 - 1} (1 - u)^{R_2 - 1} \left[\frac{u}{\mu_2} + \frac{1 - u}{\mu_1} \right]$$
 with $A = \frac{r_1 r_2}{2(r_1 + r_2)} \frac{\Gamma(1 + R_1 + R_2)}{\Gamma(1 + R_1) \Gamma(1 + R_2)}$
and $p(x_i | u) = \frac{1}{\sqrt{2\pi V(u)}} e^{-x_i^2/(2V(u))}$

Using an integral representation of M(a, b, z) one can express

$$\tilde{P}_1(k) = A_1 \int_0^1 du \, u^{R_1 - 1} (1 - u)^{R_2} e^{-V(u) k^2/2}$$

where
$$A_1 = \frac{r_2}{r_1 + r_2} \frac{\Gamma(1 + R_1 + R_2)}{\Gamma(R_1)\Gamma(1 + R_2)}$$
 and $V(u) = D\left(\frac{u}{\mu_2} + \frac{1 - u}{\mu_1}\right)$

Inverting the Fourier transform one finds a hidden CIID representation

$$P(\vec{x}) = \int_0^1 du \, h(u) \prod_{i=1}^N p(x_i|u)$$

where
$$h(u) = A u^{R_1 - 1} \left(1 - u \right)^{R_2 - 1} \left[\frac{u}{\mu_2} + \frac{1 - u}{\mu_1} \right]$$
 with $A = \frac{r_1 r_2}{2(r_1 + r_2)} \frac{\Gamma(1 + R_1 + R_2)}{\Gamma(1 + R_1)\Gamma(1 + R_2)}$

and
$$p(x_i|u) = \frac{1}{\sqrt{2\pi V(u)}} e^{-x_i^2/(2V(u))}$$

Since $\int_0^1 h(u)du = 1$, the function h(u) can be interpreted as the PDF of the random variable $u \in [0,1] \longrightarrow$ the fraction of time each particle spends in μ_2 phase

Biroli, Kulkarni, S.M., Schehr, PRE, 109, L032106 (2024)

All observables → exactly solvable

Using the explicit CIID structure of the stationary joint PDF

$$P(\vec{x}) = \int_0^1 du \, h(u) \prod_{i=1}^N p(x_i|u)$$

all observables in the correlated **NESS** can be computed explicitly and they exhibit rich and interesting behaviors

Biroli, Kulkarni, S.M., Schehr, PRE, 109, L032106 (2024)

All observables \rightarrow exactly solvable

Using the explicit CIID structure of the stationary joint PDF

$$P(\vec{x}) = \int_0^1 du \, h(u) \prod_{i=1}^N p(x_i|u)$$

all observables in the correlated **NESS** can be computed explicitly and they exhibit rich and interesting behaviors

Biroli, Kulkarni, S.M., Schehr, PRE, 109, L032106 (2024)

For example, the extreme value statistics:

$$P(M_1 = w, N) \rightarrow \frac{1}{\sqrt{\ln N}} f\left(\frac{w}{\sqrt{\ln N}}\right)$$

All observables \rightarrow exactly solvable

Using the explicit CIID structure of the stationary joint PDF

$$P(\vec{x}) = \int_0^1 du \, h(u) \prod_{i=1}^N p(x_i|u)$$

all observables in the correlated **NESS** can be computed explicitly and they exhibit rich and interesting behaviors

Biroli, Kulkarni, S.M., Schehr, PRE, 109, L032106 (2024)

For example, the extreme value statistics:

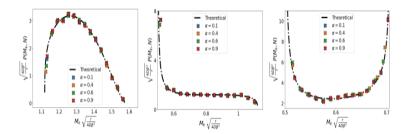
$$P(M_1 = w, N) \rightarrow \frac{1}{\sqrt{\ln N}} f\left(\frac{w}{\sqrt{\ln N}}\right)$$

where the exact scaling function (with $R_1 = \frac{r_1}{2\mu_1}$ and $R_2 = \frac{r_2}{2\mu_2}$):

$$f(z) = B z^3 \left(1 - \frac{z^2}{R_2}\right)^{R_2 - 1} \left(\frac{z^2}{R_1} - 1\right)^{R_1 - 1} \text{ with } \sqrt{R_1} \le z \le \sqrt{R_2}$$

→ a new extreme value distribution of strongly correlated random variables with a finite support

EVS with a finite support: Universality



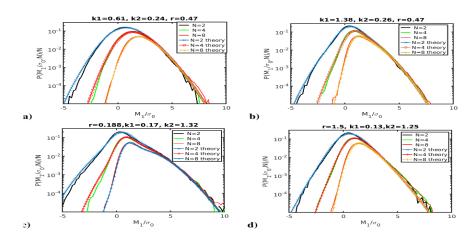
The exact scaling function for the distribution of the scaled k-th maximum M_k

$$f(z) = B z^3 \left(1 - \frac{z^2}{R_2}\right)^{R_2 - 1} \left(\frac{z^2}{R_1} - 1\right)^{R_1 - 1} \text{ with } \sqrt{R_1} \le z \le \sqrt{R_2}$$

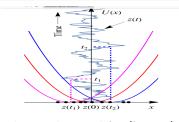
The scaling function $f(z) \longrightarrow \text{universal}$, i.e,., same for all M_k 's in d=1 and also for all $d \ge 1$

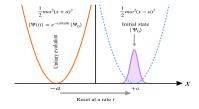
Biroli, Kulkarni, S.M., Schehr, PRE, 109, L032106 (2024)

Experimental results:

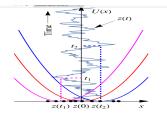


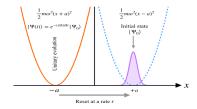
Experiments with a finite number of colloidal particles in an optical trap \implies up to N=8 particles [S. Ciliberto, unpublished data]





 ${\it N}$ noninteracting particles (bosons) in a harmonic trap

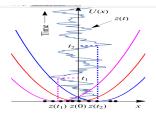


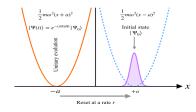


N noninteracting particles (bosons) in a harmonic trap

(1) Model 1 (Classical): The center of the harmonic trap performs a stochastic motion \implies drives the system into a correlated NESS

Sabhapandit & S.M. J. Phys. A.: Math. Theor. 57, 335003 (2024)





N noninteracting particles (bosons) in a harmonic trap

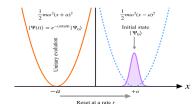
(1) Model 1 (Classical): The center of the harmonic trap performs a stochastic motion \implies drives the system into a correlated NESS

Sabhapandit & S.M. J. Phys. A.: Math. Theor. 57, 335003 (2024)

(2) Model 2 (Quantum): N noninteracting bosons in the ground state of a harmonic trap whose center is quenched from +a to -a, evolves unitarily for a random time and then the state is reset to the ground state with center at +a \implies drives the system into a correlated NESS

Kulkarni, S.M. & Sabhapandit & S.M., J. Phys. A: Math. Theor. 58, 105003 (2025).





In both models, the NESS has the **CIID** (conditionally independent and identically distributed) structure

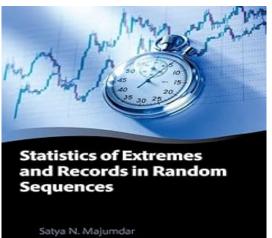
$$P_{\rm st}(x_1,x_2,\ldots,x_N)=\int_{-\infty}^{\infty}du\,h(u)\prod_{i=1}^Np(x_i|u)$$

This **CIID** structure makes the problem **solvable** for various observables such as average density, spacing distribution, extreme statistics, full counting statistics etc.

Summary and Conclusion

- A simple solvable model of a correlated gas of N diffusing particles in their nonequilibrium stationary state driven by simultaneous stochastic resetting
- The NESS has a CIID structure
 - ⇒ Several physical observables are exactly computable and have rich interesting behaviors, despite being a **strongly correlated** system
- Easily generalisable to a whole new class of solvable correlated gases in their nonequilibrium stationary state
 — ballistic particles, Lévy flights, particles in a switching harmonic potential etc.
 - \implies all have this CIID structure \implies Exactly solvable

```
Biroli, Larralde, S.M., Schehr, PRL, 130, 207101 (2023); Phys. Rev. E 109, 014101 (2024); Biroli, Kulkarni, S.M., Schehr, PRE, 109, L032106 (2024); Sabhapandit, S.M., J. Phys. A: Math. Theor. 57, 335003 (2024); Kulkarni, S. M. & S. Sabhapandit, J. Phys. A: Math. Theor. 58, 105003 (2025).
```



Grégory Schehr

OXFORD GRADUATE TEXTS