Understanding Search Trees Via Statistical Physics

Satya N. Majumdar
CNRS, Orsay and Toulouse, FRANCE

Collaborators: E. Ben-Naim (Los Alamos, USA), D.S. Dean (Toulouse, FRANCE) and P.L. Krapivsky (Boston, USA)

The Goal: Store data efficiently so that the search time is minimum Ex: A random sequence of $N=10$ integers: $\quad\{6,4,5,8,9,1,2,10,3,7\}$

Linear Sorting: Store the data sequentially onto a linear table

$$
[6,4,5,8,9,1,2,10,3,7]
$$

Search for 7: Search proceeds sequentially by comparison

$$
t_{\text {search }}=10 \sim O(N) \rightarrow \mathrm{BAD}
$$

Tree Sorting: of $\quad\{6,4,5,8,9,1,2,10,3,7\}$

Figure 1: Binary Search Tree with $N=10$ Elements. search $=$ Depth $=D$. Roughly $2^{D} \sim N$ implying: $t_{\text {search }} \sim O(\log N) \rightarrow$ BETTER

HEIGHT $H=5$: Distance of the farthest node from the root= Maximum oossible time to search an element \rightarrow WORST CASE SCENARIO

BALANCED HEIGHT $h=3$: Depth upto which the tree is balanced

Generalization to m-ary Search Trees
$n=2 \rightarrow$ Binary Tree
Random Sequence: $\{6,4,5,8,9,1,2,10,3,7\}$
Each node can contain atmost $(m-1)$ elements.

Figure 2: $m=3$-ary Search Tree with $N=10$ Elements $H=3$ is the HEIGHT. $h=2$ is the BALANCED HEIGHT.

No. of NON-EMPTY nodes: $n=7 \rightarrow$ No. of nodes required to store the data

$\underbrace{\text { Random } m \text {-ary Search Tree Model: } R m S T ~}$

$N=10$ data elements: $\{1,2,3,4,5,6,7,8,9,10\}$
Each permutation \rightarrow an m-ary tree.

$$
\{6,4,5,8,9,1,2,10,3,7\} \quad\{8,6,9,2,1,5,3,4,7,10\}
$$

$$
\mathrm{H}=3, \mathrm{~h}=2, \mathrm{n}=7
$$

$$
\mathrm{H}=4, \mathrm{~h}=2, \mathrm{n}=6
$$

n the RmST model: All N ! permuations are equally likely \rightarrow RANDOM DATA.
Q: Statistics of HEIGHT H_{N}, BALANCED HEIGHT h_{N} and the no. of NON-EMPTY NODES n_{N} for RANDOM data of size N ?

Asymptotic Results for RmST: for large data size N

1) Height H_{N} :
$\left\langle H_{N}\right\rangle \approx a_{m} \log (N)+b_{m} \log (\log (N))(? ?)+\ldots$

- $\operatorname{Var}\left(H_{N}\right) \approx O(1)$

2) Balanced Height h_{N} : Depth upto which the tree is balanced.
$\left\langle h_{N}\right\rangle \approx c_{m} \log (N)+d_{m} \log (\log (N))(? ?)+\ldots$

- $\operatorname{Var}\left(h_{N}\right) \approx O(1)$

Binary Tree $(m=2): a_{2}=4.31107 \ldots$ and $c_{2}=0.3733 \ldots$ (Devroye, 87$)$. The correction terms \rightarrow conjectured by Hattori and Ochiai (simulations, 2001).

Other results by Robson (2001), Reed (2001), Drmota (2001-2003).

Asymptotic Results for RmST: for large data size N...continued
3) No. of NON-EMPTY Nodes n_{N} : No. of nodes required to store the data of size N.

$$
\left\langle n_{N}\right\rangle \approx \alpha_{m} N+\ldots .
$$

A striking PHASE TRANSITION occurs for the Variance: $\nu_{N}=\left\langle\left(n_{N}-\left\langle n_{N}\right\rangle\right)^{2}\right\rangle$.

$$
\begin{aligned}
\nu_{N} & \sim N & \text { for } m \leq 26 \\
& \sim N^{2 \theta(m)} & \text { for } m>26 \text { (Chern \& Hwang, 2001). }
\end{aligned}
$$

Q: Why 26? What is the mechanism of this Phase Transition and how generic is
t ? Can one calculate $\theta(m)$ exactly?

Our Results:

- Mapping to a FRAGMENTATION Process \rightarrow Dynamical Process
- Analysis of the FRAGMENTATION process using a variety of statistical physics echniques such as the Travelling Front method (for HEIGHTS and BALANCED HEIGHTS) and a Backward Fokker-Planck approach (for the no. of NON-EMPTY Nodes).
\rightarrow A number of asymptotically EXACT results.
Ex: we calculate the constants $a_{m}, b_{m}, c_{m}, d_{m}$ EXACTLY for all m as roots of ranscendental equations. Scaling Relation between a_{m} and b_{m} :

$$
b_{2}=-3 a_{2} /\left[2\left(a_{2}-1\right)\right] .
$$

We show that $m_{c}=26.0461 \ldots$: Find $\lambda(m)$ from $m(m-1) \mathrm{B}(\lambda+1, m-1)=1$. The critical value m_{c} is obtained by setting, $\operatorname{Re}[\lambda(m)=1 / 2]$. For $m>m_{c}=26.0461 \ldots$, $\theta(m)=\lambda(m) .(D$. Dean and S.M., 2002).

Various other generalizations: Vector Data

The Mapping to a Fragmentation Process

Construction of the Tree \rightarrow Dynamical Fragmention Process: Split an interval into ($m-1$) pieces with the break points chosen randomly. An interval can split iff it contains atleast one point.

Ex: Consider the data: $\{6,4,5,8,9,1,2,10,3,7\}$

NOTE:
No. of NONEMPTY nodes $n=7=$ No. of SPLITTING EVENTS

Fragmentation Process:

1. Start with a stick of length N.
2. Choose ($m-1$) break points randomly and split the stick into m pieces.
3. Examine each piece and if its length $>N_{0}=1$, again split it randomly into further m pieces. Stop splitting if length <1.
4. Repeat the process till all pieces have length <1 and then STOP.

DICTIONARY Between the Search Tree and the Fragmentation Process:

Height H_{N} :
$\operatorname{Prob}\left[H_{N}<n\right]=\operatorname{Prob}\left[l_{1}<1, l_{2}<1, \ldots\right.$ after n steps $]$

Balanced Height h_{N} :

$$
\operatorname{Prob}\left[h_{N}>n\right]=\operatorname{Prob}\left[l_{1}>1, l_{2}>1, \ldots \text { after } n \text { steps }\right]
$$

Number of Nonempty Nodes $n_{N}(m>2)$:

- Prob $\left[n_{N}=n\right]=\operatorname{Prob}[$ there are n SPILLITING EVENTS till the end of the Fragmentation process].
Analysis of HEIGHT H_{N}
$\mathrm{P}(\mathrm{n}, \mathrm{N})=\operatorname{Prob}\left[H_{N}<n\right]=\operatorname{Prob}\left[l_{1}<1, l_{2}<1, \ldots\right.$ after n steps $]$

Recursion: $P(n, N)=\int_{0}^{1} P(n-1, r N) P(n-1,(1-r) N) d r$ starting with $P(n, 1)=\theta(n-1)$.

Travelling Front in Fisher Equation
$\partial_{t} \phi(x, t)=\partial_{x}^{2} \phi(x, t)+\phi-\phi^{2}$.
$\phi(x)=1 \rightarrow$ STABLE Fixed point. $\phi(x)=0 \rightarrow$ UNSTABLE Fixed point.

Travelling Front: $\phi(x, t)=f\left(x-x_{f}(t)\right)$ for large t, where the front position

$$
x_{f}(t) \sim \mathrm{v} t+\ldots .
$$

Q: How to determine the Front Velocity v ?

Kolmogorov's Velocity Selection Principle:

Linearize near the tail $\rightarrow \phi(x, t) \sim \exp [-\lambda(x-v t)]$

DISPERSION RELATION: $\quad v(\lambda)=\lambda+\frac{1}{\lambda}$
\rightarrow minimum at $\lambda^{*}=1$. For sharp initial condition, $v=v\left(\lambda^{*}\right)=2$.

More generally,
$c_{f}(t) \approx v\left(\lambda^{*}\right) t-\frac{3}{2 \lambda^{*}} \log t+\ldots($ Bramson, Brunet \& Derrida, van Saarloos,)

Travelling Front Solution to Search Tree Height:
$P(n, N)=\operatorname{Prob}\left[H_{N}<n\right] \approx f\left[n-n_{f}(N)\right]$ asymptotically. $t \equiv \log N \rightarrow$ correct variable.

Cinearize near the tail: $P(n, N) \approx 1-\exp [-\lambda(n-v(\lambda)) \log N]$
\rightarrow DISPERSION RELATION: $\quad v(\lambda)=\frac{2 e^{\lambda}-1}{\lambda}$ for $m=2$.
Minimize $v(\lambda) \rightarrow \lambda^{*}=0.76804 \ldots$

$$
\begin{aligned}
& \left\langle H_{N}\right\rangle \approx n_{f}(N) \approx v\left(\lambda^{*}\right) \log (N)-\frac{3}{2 \lambda^{*}} \log (\log (N))+\ldots \\
& a_{2}=v\left(\lambda^{*}\right)=4.31107 \ldots \text { and } b_{2}=-\frac{3}{2 \lambda^{*}}=-1.95303 \ldots
\end{aligned}
$$

Similarly one gets a_{m} and b_{m} for all m.
Same strategy holds for the Balanced Height h_{N}.

No of Non-Empty Nodes:

$\frac{\mathrm{N}}{\mathrm{r}_{1} \mathrm{~N}, \mathrm{r}_{2} \mathrm{~N}}, \mathrm{r}_{3} \mathrm{~N}$
$\mathrm{r}_{1}+\mathrm{r}_{2}+\mathrm{r}_{3}+\ldots \ldots+\mathrm{r}_{\mathrm{m}}=1$

No. of Non-empty nodes $n(N)$ in the tree \equiv Total no. of Splitting Events in the ragmentation process till the end, starting with the initial length N

Recursion:

$$
n(N) \equiv n\left(r_{1} N\right)+n\left(r_{2} N\right)+n\left(r_{3} N\right)+\cdots+n\left(r_{m} N\right)+1 ; \quad \sum_{i}^{n} r_{i}=1
$$

The marginal distribution of any fragment: $\eta(r)=(m-1)(1-r)^{m-2}$

Integral Equations for Average and Variance:
Average: $\mu(N)=\langle n(N)\rangle$ satisfies an integral equation:

$$
\mu(n)=m \int_{1 / N}^{1} \mu(r N) \eta(r) d r+1
$$

Variance: $\nu(N)=\left\langle(n(N)-\mu(N))^{2}\right\rangle$ satisfies another integral equation:

$$
\nu(n)=m \int_{1 / N}^{1} \nu(r N) \eta(r) d r+\left\langle(S-\langle S\rangle)^{2}\right\rangle
$$

where the Source Function $S=\sum_{i=1}^{n} \mu\left(r_{i} N\right)$.
These integral equations can be solved analytically: for large N,

$$
\begin{aligned}
\nu_{N} & \sim N & & \text { for } m \leq m_{c} \\
& \sim N^{2 \theta(m)} & & \text { for } m>m_{c}
\end{aligned}
$$

where m_{c} is determined as:
Find $\lambda(m)$ from $m(m-1) \mathrm{B}(\lambda+1, m-1)=1$. The critical value m_{c} is obtained by setting, $\operatorname{Re}[\lambda(m)=1 / 2]$. For $m>m_{c}=26.0461 \ldots, \theta(m)=\lambda(m)$. (D. Dean and S.M., 2002).

Generalization to Vector Data:
Scalar Sequence: $\{6,4,5,8,9,1,2,10,3,7\}$
Vector Sequence: $\{(6,4),(4,3),(5,2),(8,7) \ldots\} \rightarrow D=2$ vector.
Mapping to the Fragmentation Process:

Q: What are the statistics of Height H_{N}, Balanced Height h_{N} and the no. of Non-empty nodes n_{N} for a given vector data of $N D$-tuples?
s there a PHASE TRANSITION in the variance of n_{N} ?

Exact Results for Vector Data of N D-tuples for Large N :

Height H_{N} :
$\left\langle H_{N}\right\rangle \approx 4.31107 \ldots \log (N)-\frac{1.95303 \ldots}{D} \log (D \log (N))+\ldots$
Balanced Height h_{N} :
$\left\langle h_{N}\right\rangle \approx 0.37336 \ldots \log (N)+\frac{0.89374 \ldots}{D} \log (D \log (N))+\ldots$
No. of Non-empty Nodes $n_{N}:\left\langle n_{N}\right\rangle \approx \frac{2}{D} V$ where $V=N^{D}$.
Variance ν_{N} has a Phase Transition

$$
\begin{align*}
\nu_{N} & \sim V \quad \text { for } D \leq D_{c} \\
& \sim V^{2 \theta(D)} \quad \text { for } D>D_{c} \\
D_{c} & =\frac{\pi}{\arcsin \left(\frac{1}{\sqrt{8}}\right)}=8.69362 \ldots \\
\theta(D) & =2 \cos \left(\frac{2 \pi}{D}\right)-1 \rightarrow \text { increases continuously with } D \tag{c}
\end{align*}
$$

Probability Distribution of the no. of Non-Empty Nodes n_{V} :

$$
\begin{aligned}
& P\left[n_{V}\right] \rightarrow \text { GAUSSIAN for } D<D_{c}=8.69362 \ldots \\
& P\left[n_{V}\right] \rightarrow \text { NON-GAUSSIAN for } D>D_{c}=8.69362 \ldots
\end{aligned}
$$

Summary and Conclusion:

- Analysis of m-ary search trees via techniques of statistical physics \rightarrow Exact asymptotic results.

Going beyond Random m-ary search trees...Digital Search Trees.. interesting connections to Diffusion Limited Aggregation (DLA) on the Bethe lattice and also o the Lempel-Ziv Data Compression Algorithm (S.M., 2003).

Application of the Travelling Front technique in computer science problem.

- A simple mechanism for the peculiar Phase Transition in the fluctuation of the number of non-empty nodes
\rightarrow A rather Generic phase transition \rightarrow New Exact Results for Vector Data.
The same mechanism is also responsible for the phase transition in a Growing Tree Model of Aldous \& Shields (1988)...Explicit Results (S.M. and D.S. Dean, 2004).

Perspectives: Lots of beautiful open problems in Sorting and Search that may be oossible to handle by using statistical physics techniques.

References:

Collaborators: E. Ben-Naim, D.S. Dean and P.L. Krapivsky
PRL, 85, 5492 (2000)
PRE, 62, 7735 (2000)
PRE, 63, 045101 (R) (2001)
PRE, 64, 046121 (2001)
PRE, 64, 035101 (R) (2001)
PRE, 65, 036127 (2002)
J-Phys A: Math-Gen, 35, L501 (2002)
PRE, 68, 026103 (2003)
For a short Review see: S.N.M. and P.L. Krapivsky, Procedings of the sTATPHYS-KOLKATA IV (2002), published in Physica A 318, 161 (2003).

