Exploring Spin Glass Ground States with Extremal Optimization

Stefan Boettcher

www.physics.emory.edu/faculty/boettcher/

Find at: www.physics.emory.edu/faculty/boettcher

Collaborator:

► Allon Percus (Los Alamos/UCLA)

Funding:

NSF-DMR, Los Alamos-LDRD, Emory-URC

Find at: www.physics.emory.edu/faculty/boettcher

Exploring Spin Glass Ground States with Extremal Optimization

Oldenburg University 10-10-08

Overview:

<u>Stefan</u>

Boettcher
www.physics.emory.edu/faculty/boettcher/

Overview:

Extremal Optimization (EO) Heuristic

EO Algorithm

T-EO, optimizing at the "ergodic edge"

Overview:

Extremal Optimization (EO) Heuristic

EO Algorithm T-EO, optimizing at the "ergodic edge"

•EO Results for NP-hard Problems

Graph Partitioning
Coloring
Spin Glasses (MAX-CUT)

Overview:

Extremal Optimization (EO) Heuristic

EO Algorithm T-EO, optimizing at the "ergodic edge"

EO Results for NP-hard Problems

Graph Partitioning
Coloring
Spin Glasses (MAX-CUT)

Spin Glass Ground States with T-EO

Dilute Edwards-Anderson in d=3,...,7Mean-Field: Sherrington-Kirkpatrick & Bethe Lattice A Comprehensive View SK with Power-Law Bonds $P(J) \sim 1/|J|^{1+\mu}$

Motivated by Self-Organized Criticality

<u>Stefan</u>

Motivated by Self-Organized Criticality

Emergent Structure

- *without tuning any Control Parameters
- * despite (or because of) Large Fluctuations

Motivated by Self-Organized Criticality

Emergent Structure

- *without tuning any Control Parameters
- * despite (or because of) Large Fluctuations
- •How can we use it to optimize?

Motivated by Self-Organized Criticality

Emergent Structure

- *without tuning any Control Parameters
- * despite (or because of) Large Fluctuations

•How can we use it to optimize?

Extremal Driving:

- * Select and eliminate the "bad",
- *Replace it at random,
- ★ Eventually, only the "good" is left!

Exploring Spin Glass Ground States with Extremal Optimization

Oldenburg University 10-10-08

"Fitness" λ for various Problems:

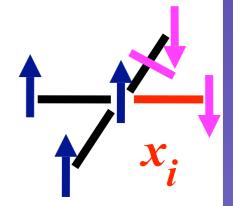
<u>Stefan</u>

<u>Boettcher</u>

"Fitness" \(\lambda\) for various Problems:

•Spin Glasses (eg. MAX-CUT):

$$\lambda_i = x_i \sum_j J_{i,j} x_j$$



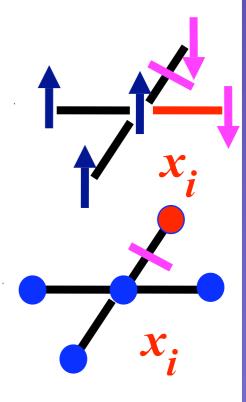
"Fitness" λ for various Problems:

•Spin Glasses (eg. MAX-CUT):

$$\lambda_i = \mathbf{x}_i \sum_i J_{i,j} \, \mathbf{x}_j$$

•Partitioning (eg. MIN-CUT):

$$\lambda_i = - (\#\text{-cut edges of } x_i)$$



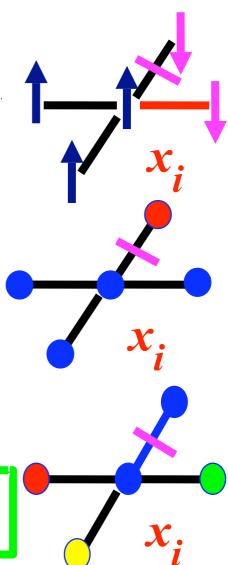
"Fitness" λ for various Problems:

•Spin Glasses (eg. MAX-CUT):

$$\lambda_i = \mathbf{x}_i \sum_{i} J_{i,j} \, \mathbf{x}_j$$

$$\lambda_i = - (\text{\#-cut edges of } x_i)$$

$$\lambda_i = - (\#\text{-monochrome edges of } x_i)$$



"Fitness" λ for various Problems:

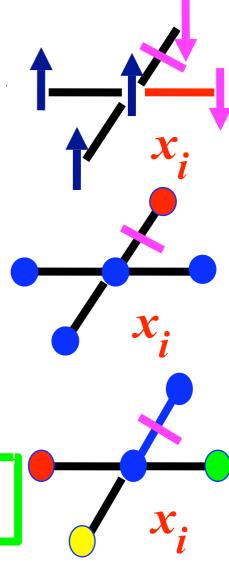
•Spin Glasses (eg. MAX-CUT):

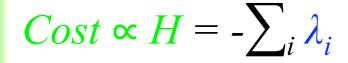
$$\lambda_i = \mathbf{x}_i \sum_{i} J_{i,j} \, \mathbf{x}_j$$

•Partitioning (eg. MIN-CUT):

$$\lambda_i = - (\#\text{-cut edges of } x_i)$$

$$\lambda_i = - (\#\text{-monochrome edges of } x_i)$$





<u>Stefan</u>

<u>Boettcher</u>

(1) Provide <u>initial</u> Configuration $S=(x_1,...,x_n)$,

- (1) Provide <u>initial</u> Configuration $S=(x_1,...,x_n)$,
- (2) Determine "Fitness" λ_i for each Variable x_i ,

- (1) Provide <u>initial</u> Configuration $S=(x_1,...,x_n)$,
- (2) Determine "Fitness" λ_i for each Variable x_i ,
- (3) Rank all $i = \prod (k)$ according to

$$\lambda_{\Pi(1)} \leq \lambda_{\Pi(2)} \leq \ldots \leq \lambda_{\Pi(n)}$$

- (1) Provide <u>initial</u> Configuration $S=(x_1,...,x_n)$,
- (2) Determine "Fitness" λ_i for each Variable x_i ,
- (3) Rank all $i = \prod (k)$ according to

$$\lambda_{\Pi(1)} \leq \lambda_{\Pi(2)} \leq \ldots \leq \lambda_{\Pi(n)}$$

(4) Select x_w , $w = \prod(1)$, i.e. x_w has worst Fitness!

- (1) Provide <u>initial</u> Configuration $S=(x_1,...,x_n)$,
- (2) Determine "Fitness" λ_i for each Variable x_i ,
- (3) Rank all $i = \prod (k)$ according to

$$\lambda_{\Pi(1)} \leq \lambda_{\Pi(2)} \leq \ldots \leq \lambda_{\Pi(n)}$$

- (4) Select x_w , $w = \prod(1)$, i.e. x_w has worst Fitness!
- (5) Update x_{w} unconditionally,

v.physics.emory.edu/faculty/boettcher/

- (1) Provide <u>initial</u> Configuration $S=(x_1,...,x_n)$,
- (2) Determine "Fitness" λ_i for each Variable x_i ,
 - (3) Rank all $i = \prod (k)$ according to

$$\lambda_{\Pi(1)} \leq \lambda_{\Pi(2)} \leq \ldots \leq \lambda_{\Pi(n)}$$

- (4) Select x_w , $w = \prod(1)$, i.e. x_w has worst Fitness!
- (5) Update x_{w} unconditionally,
- -(6) For t_{max} times, Repeat at (2),

- (1) Provide <u>initial</u> Configuration $S=(x_1,...,x_n)$,
- (2) Determine "Fitness" λ_i for each Variable x_i ,
 - (3) Rank all $i = \prod (k)$ according to

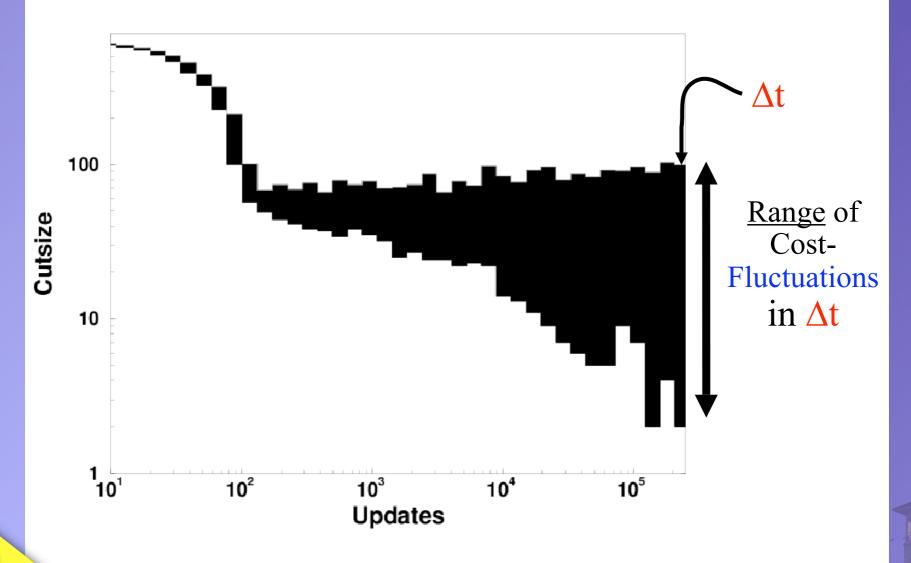
$$\lambda_{\Pi(1)} \leq \lambda_{\Pi(2)} \leq \ldots \leq \lambda_{\Pi(n)}$$

- (4) Select x_w , $w = \prod(1)$, i.e. x_w has worst Fitness!
- (5) Update x_{w} unconditionally,
- -(6) For t_{max} times, Repeat at (2),
- (7) Return: Best C(S) found along the way!

EO-run for Partitioning (n=500):

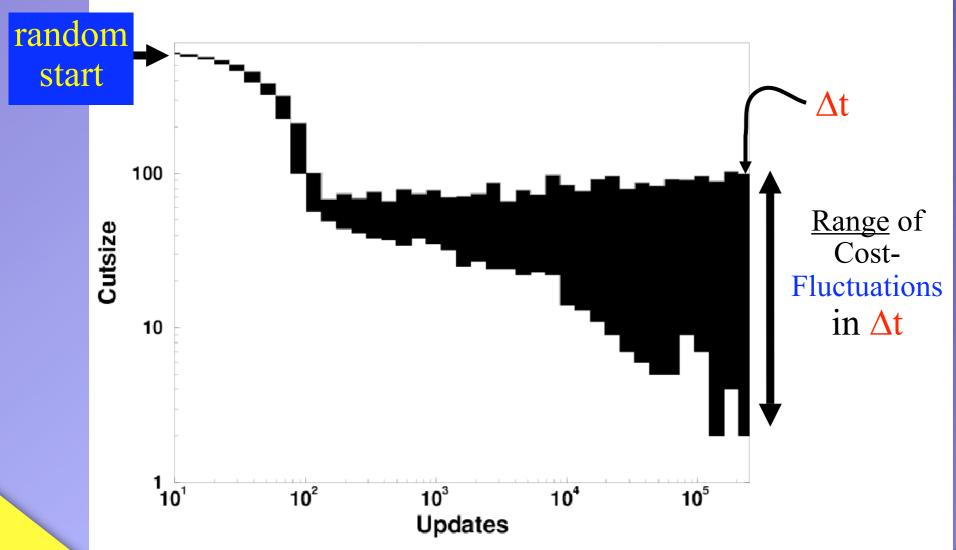
<u>Stefan</u>

EO-run for Partitioning (n=500):



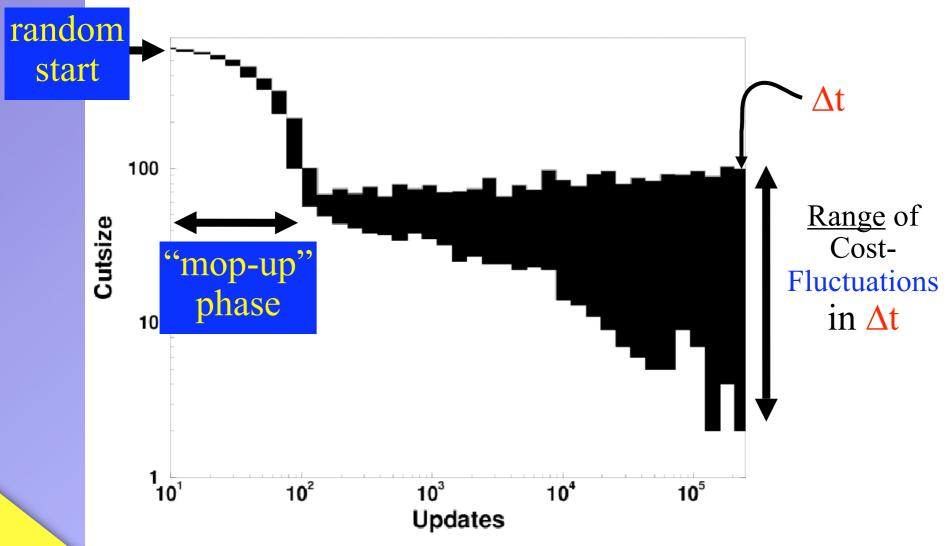
<u>Stefan</u>

EO-run for Partitioning (n=500):



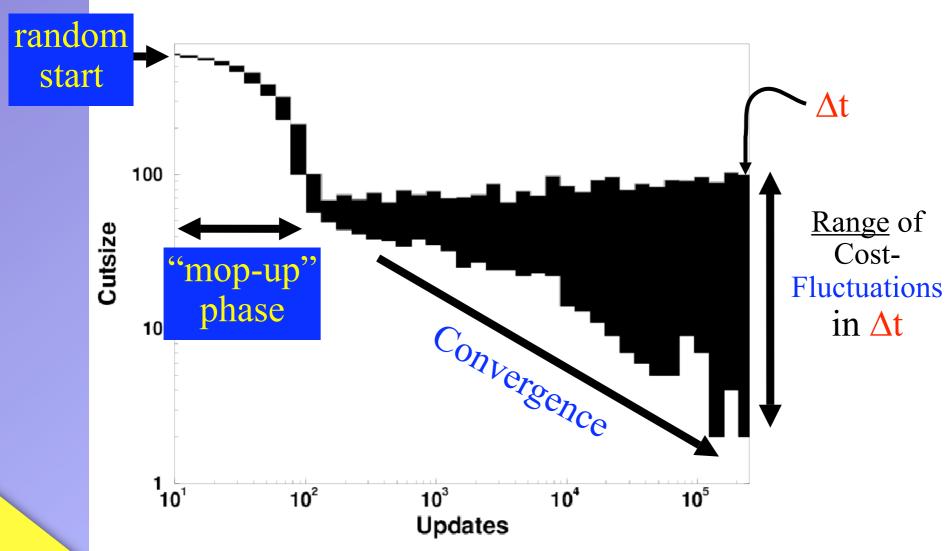
Stefan

EO-run for Partitioning (n=500):



<u>Stefan</u>

EO-run for Partitioning (n=500):



Stefan

Exploring Spin Glass Ground States with Extremal Optimization

Oldenburg University 10-10-08

τ-EO - Searching at the "Ergodic Edge":

<u>Stefan</u>

Boettcher www.physics.emory.edu/faculty/boettcher/

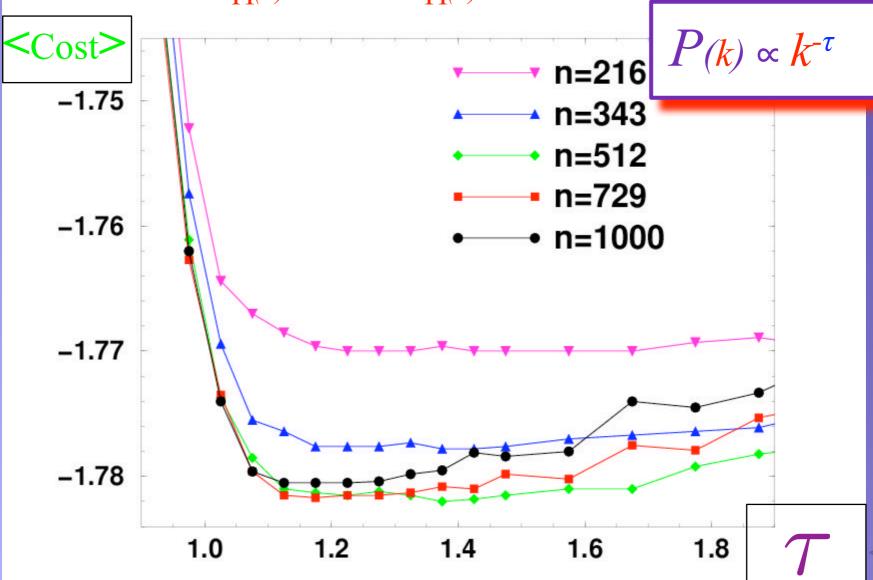
For Ranks
$$\lambda_{\prod(1)} \leq ... \leq \lambda_{\prod(n)}$$
, update $i = \prod(k)$ with

For Ranks $\lambda_{\prod(1)} \leq ... \leq \lambda_{\prod(n)}$, update $i = \prod(k)$ with

scale-free, power-law distribution

$$P(k) \propto k^{-\tau}$$

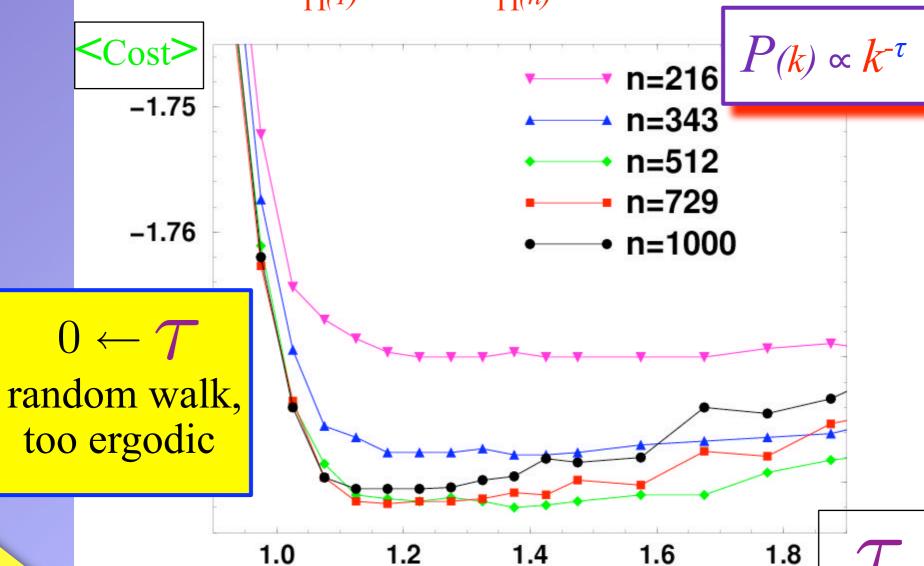
For Ranks $\lambda_{\prod(1)} \leq ... \leq \lambda_{\prod(n)}$, update $i = \prod(k)$ with



<u>Stefan</u>

<u>Boettcher</u>

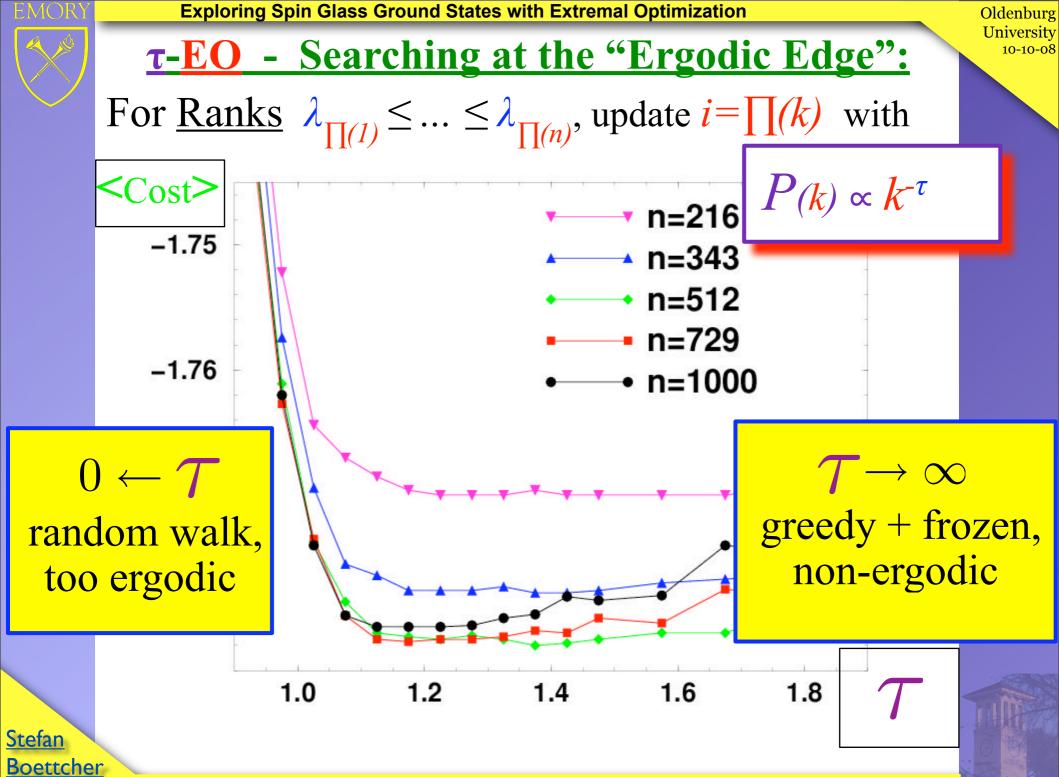
For <u>Ranks</u> $\lambda_{\prod(1)} \leq ... \leq \lambda_{\prod(n)}$, update $i = \prod(k)$ with



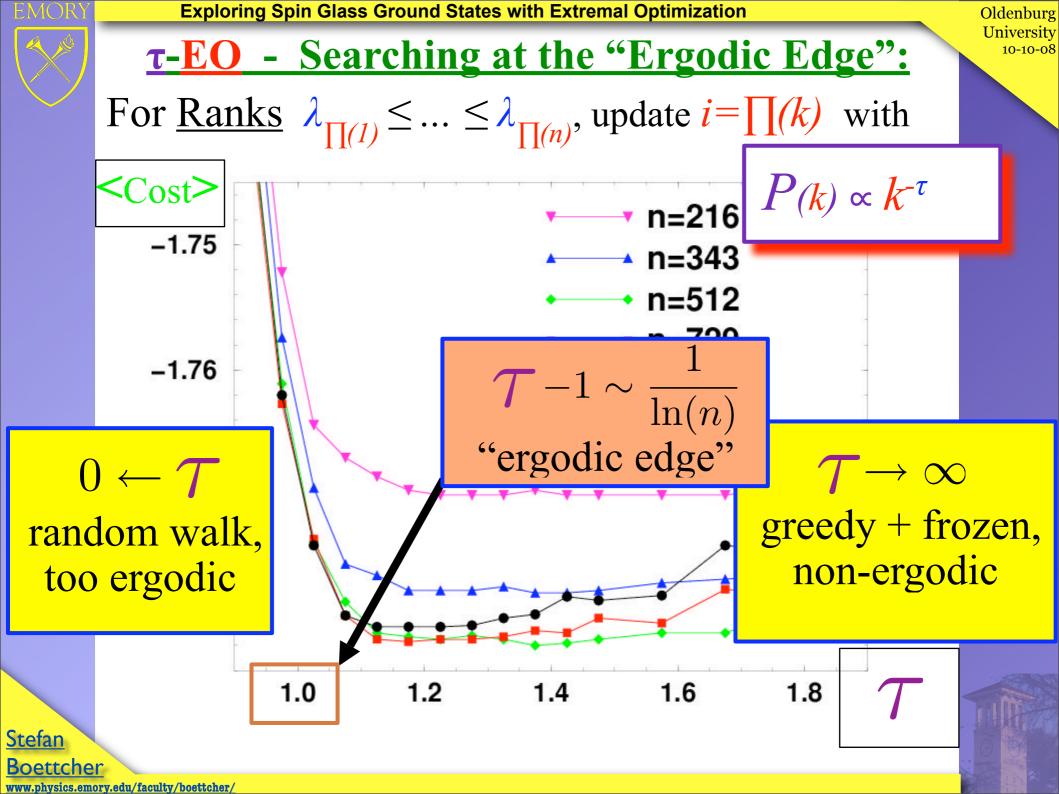
<u>Stefan</u>

Boettcher

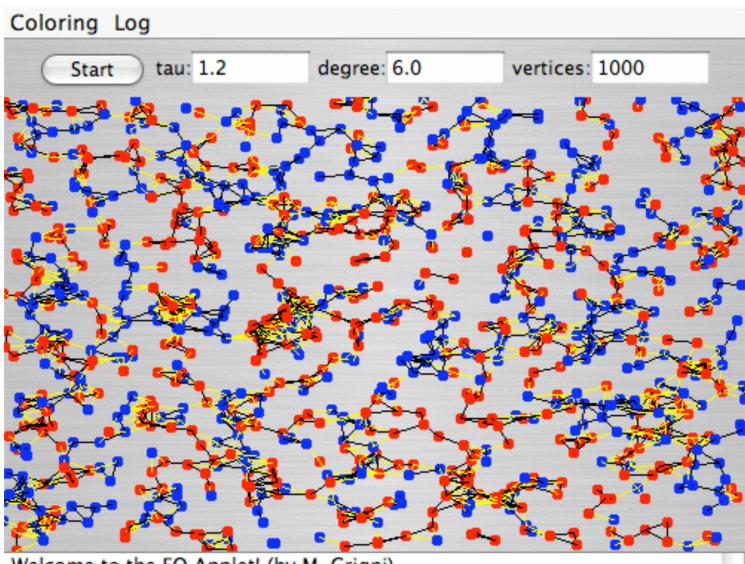
www.physics.emory.edu/faculty/boettcher/



www.physics.emory.edu/faculty/boettcher/



Animation of τ-EO for Graph-Partitioning



Welcome to the EO Applet! (by M. Grigni)
Demo for Extremal Optimization Heuristic (see LNCS1917,447'00)

• For Graph Bi-Partitioning:

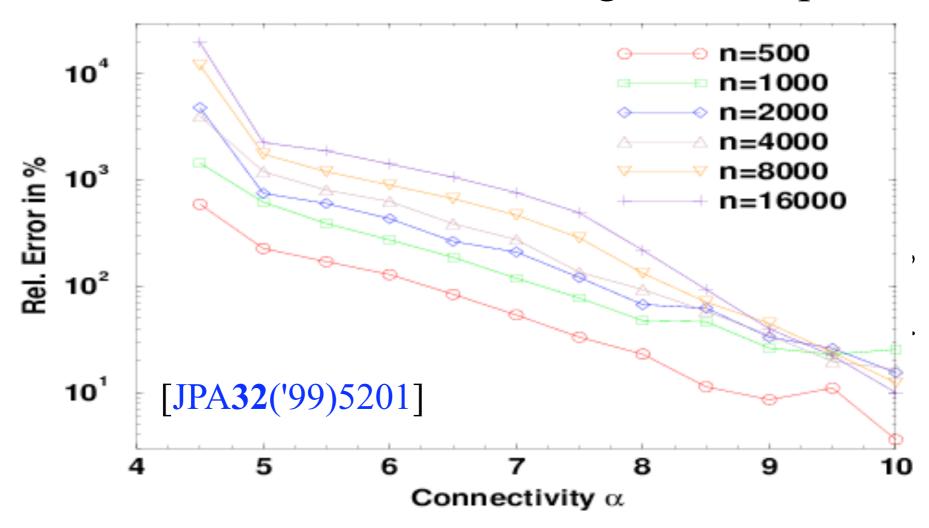
Graph	Size n	EO	GA	heuristics
Hammond	4720	90 (42s)	90 (1s)	97 (8s)
Barth5	15606	139 (64s)	139 (44s)	146 (28s)
Brack2	62632	731 (12s)	731 (255s)	_
Ocean	143437	464 (200s)	464 (1200s)	499 (38s)

Comparison on Testbed of Graphs [AI119('00)275],

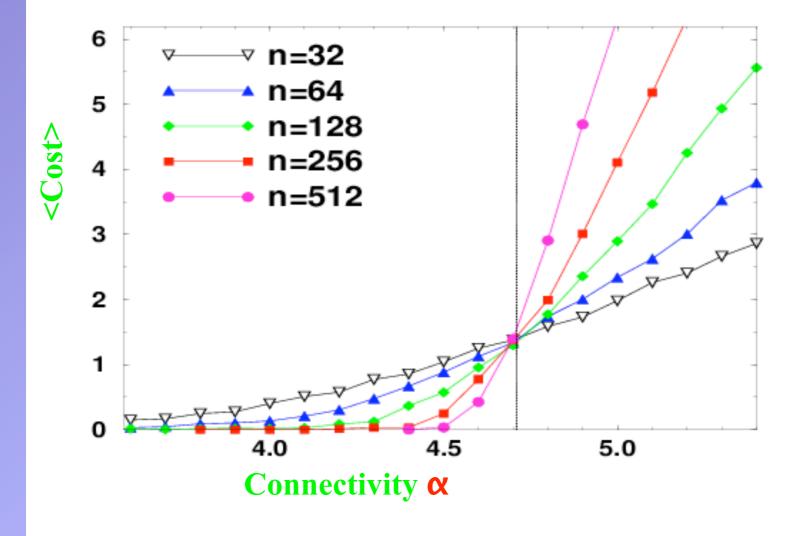
- •GA by Merz et al. [LNCS1498('98)765],
- •Spectral Heuristic by Hendrickson et al. [Supercomputing '95].

• For Graph Bi-Partitioning:

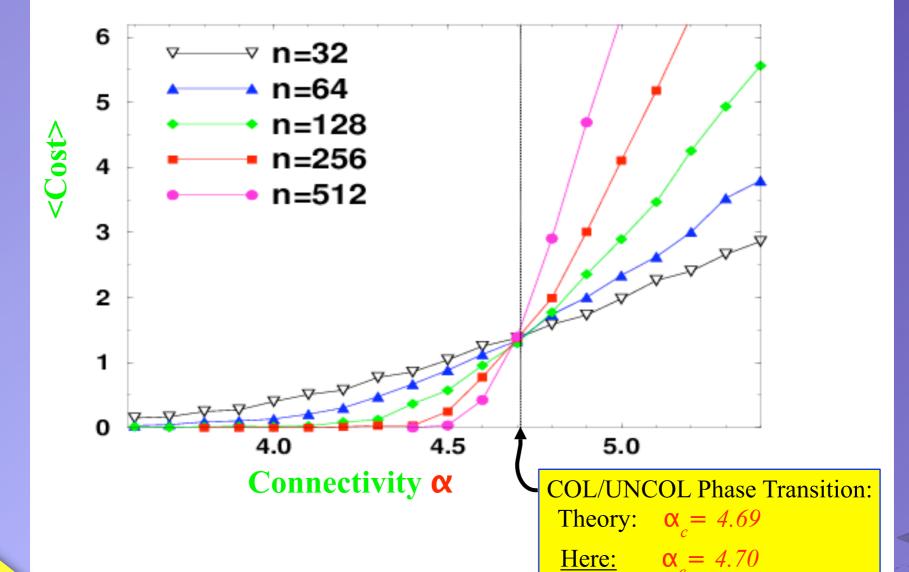
EOvsSA near Percolation for geom. Graphs:



•For Graph-Coloring (MAX-3-COL):

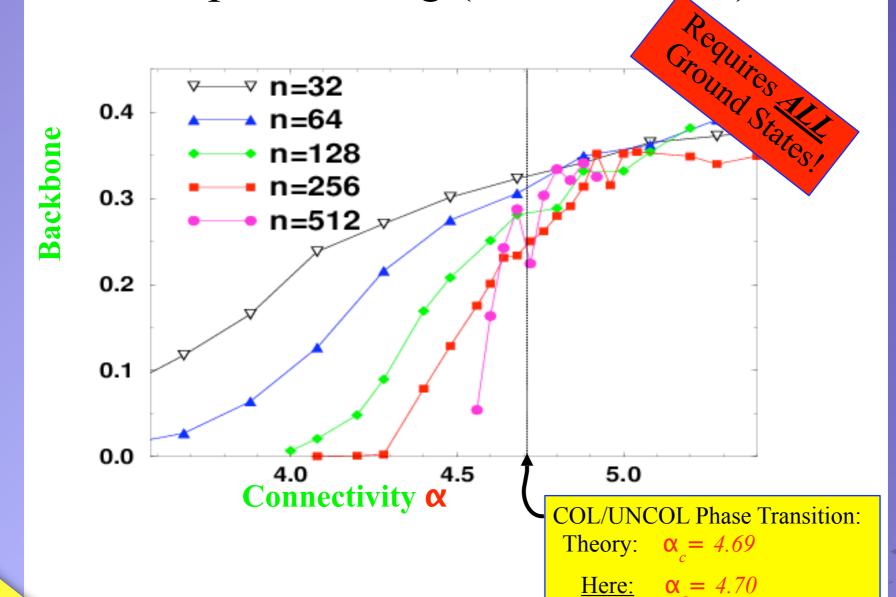


•For Graph-Coloring (MAX-3-COL):



Stefan

•For Graph-Coloring (MAX-3-CQL):

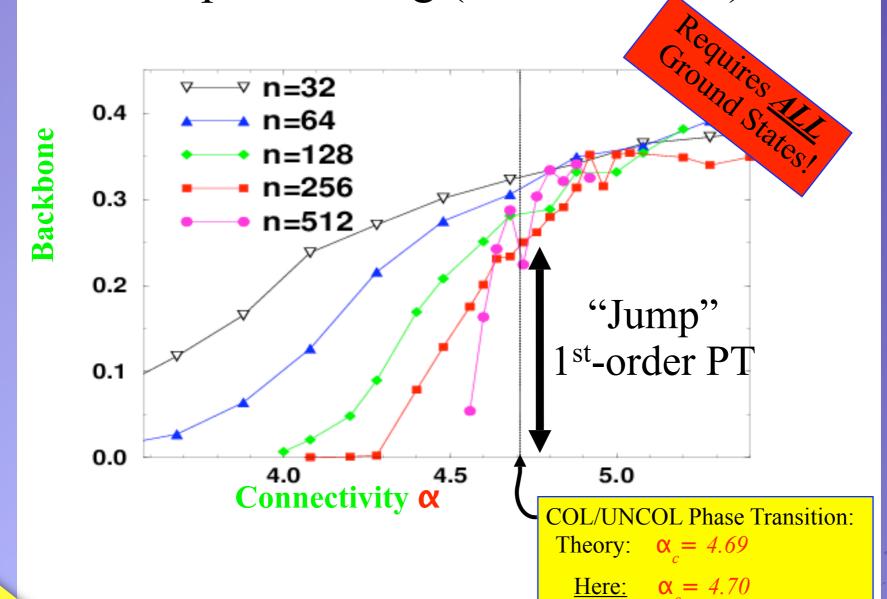


<u>Stefan</u>

Boettcher

www.physics.emory.edu/faculty/boettcher/

•For Graph-Coloring (MAX-3-CQL):



<u>Stefan</u>

•For Spin Glasses:

EO for 3d-Lattice Spin Glasses [PRL86('01)5211]

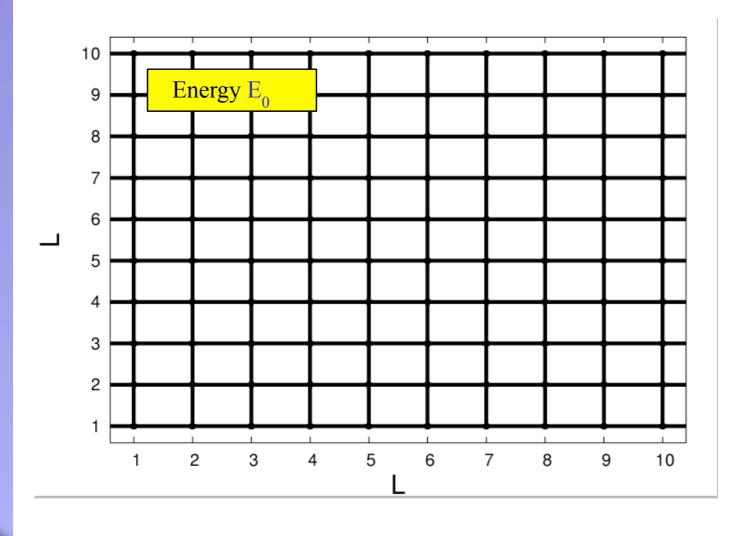
2(6) -1.67171(9) -1.6731(19)
(0) 1 70740(0) 1 7070(0)
'(3) -1.73749(8) -1.7370(9)
0(2) -1.76090(12) -1.7603(8)
2(2) -1.77130(12) -1.7723(7)
(3) -1.77706(17)
(5) -1.77991(22) -1.7802(5)
2(5).
2(5) -1.78339(27) -1.7840(4)
(16) -1.78407(121) -1.7851(4)
6(3) -1.7863(4) -1.7868(3)
09 12 54 96 22 32 57

Genetic Algorithms by Pal [PhysicaA223('96)283] and by Hartmann [EPL40('97)492]

Defect-Energy:

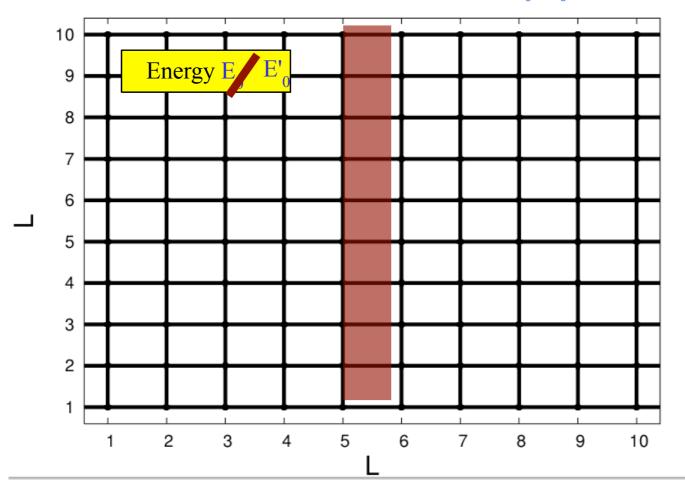
<u>Stefan</u>

Defect-Energy:

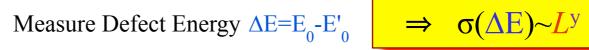


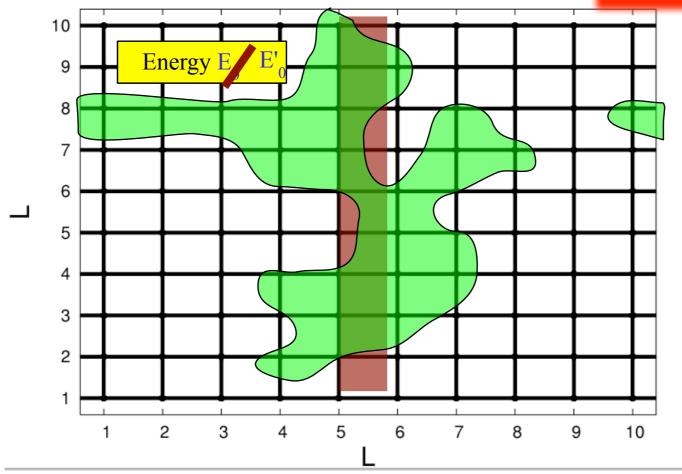
Defect-Energy:

Measure Defect Energy $\Delta E = E_0 - E'_0$



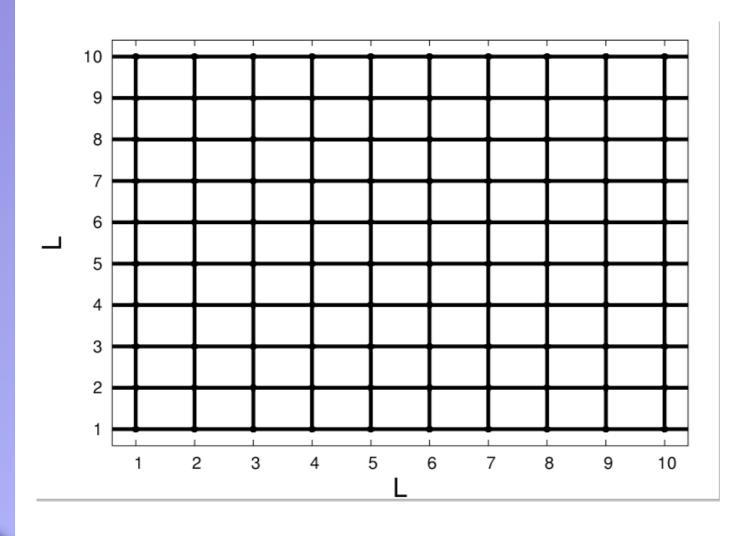
Defect-Energy:



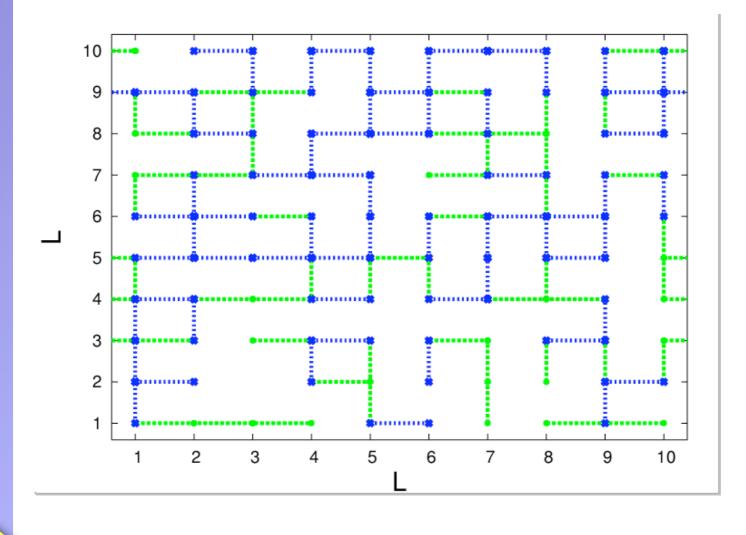


⇒ Low Energy Excitations (like "small oscillations")

Defect-Energy:



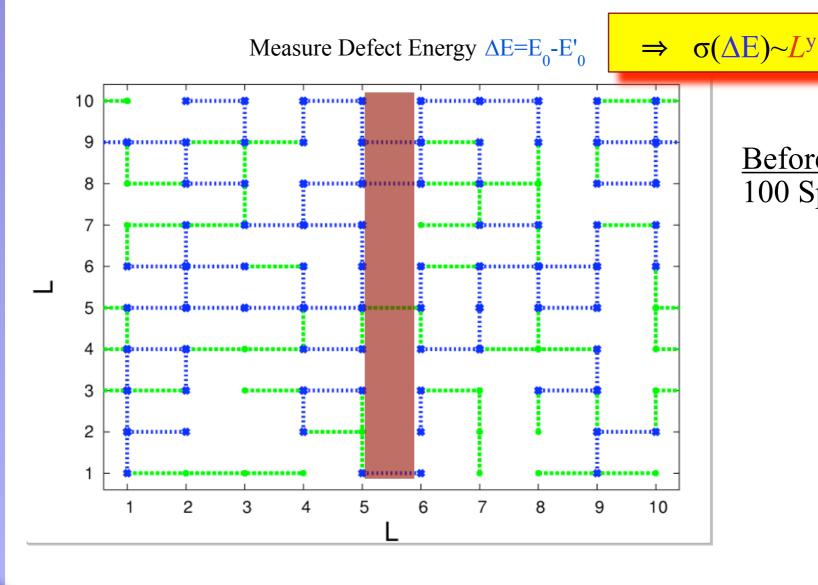
Defect-Energy:



Before: 100 Spins

<u>Stefan</u>

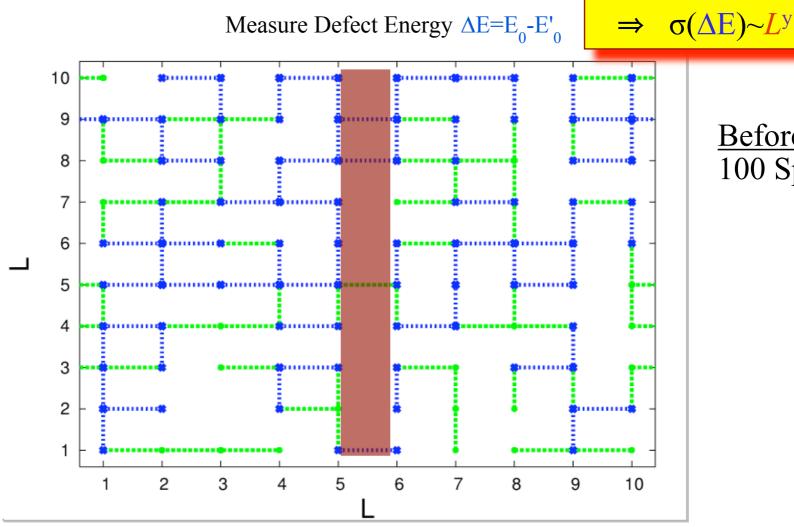
Defect-Energy:



Before: 100 Spins

<u>Stefan</u>

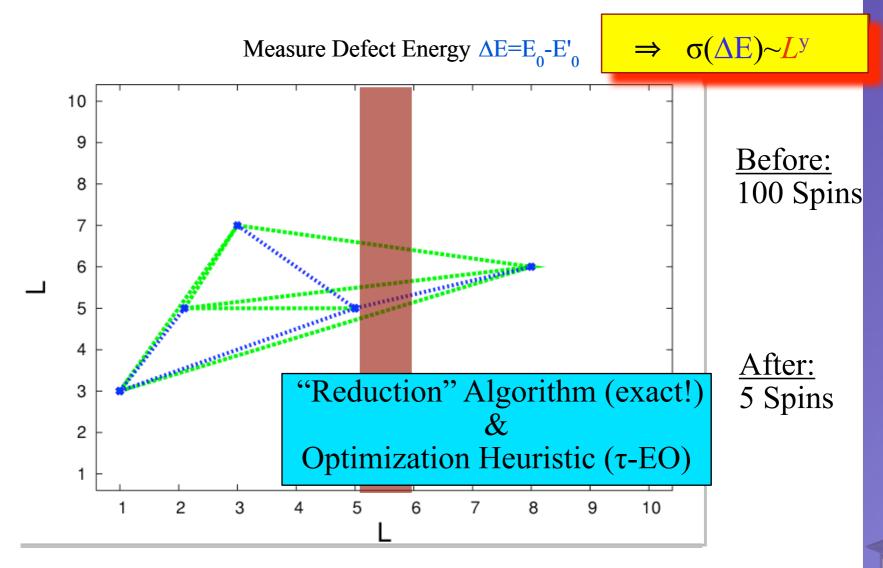
Defect-Energy:



Before: 100 Spins

⇒Low Energy Excitations of bond-diluted Lattices

Defect-Energy:



⇒Low Energy Excitations of bond-diluted Lattices

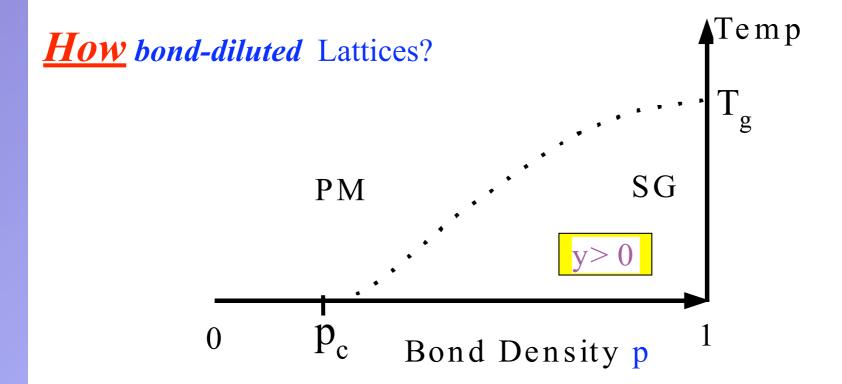
Defect-Energy: Measure "Stiffness": $\sigma(\Delta E) \sim L^{y}$

<u>Stefan</u>

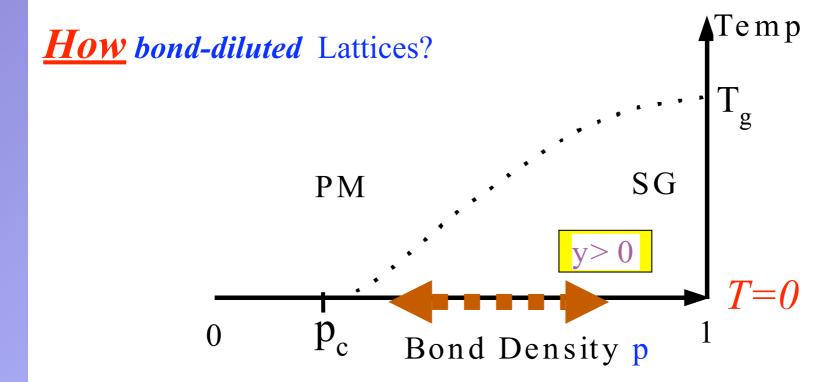
<u>Defect-Energy:</u> Measure "Stiffness": $\sigma(\Delta E) \sim L^{y}$

How bond-diluted Lattices?

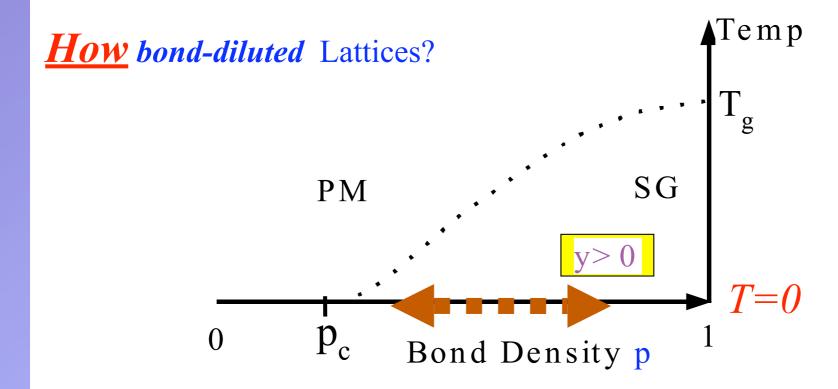
<u>Defect-Energy:</u> Measure "Stiffness": $\sigma(\Delta E) \sim L^{y}$



<u>Defect-Energy:</u> Measure "Stiffness": $\sigma(\Delta E) \sim L^{y}$

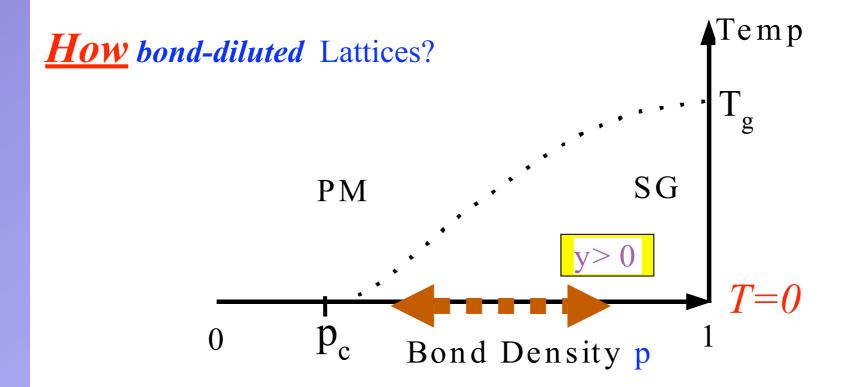


<u>Defect-Energy:</u> Measure "Stiffness": $\sigma(\Delta E) \sim L^{y}$



Why bond-diluted Lattices?

<u>Defect-Energy:</u> Measure "Stiffness": $\sigma(\Delta E) \sim L^{y}$



Why bond-diluted Lattices?

Simpler Problem Larger Sizes *L* Better Scaling

Exploring Spin Glass Ground States with Extremal Optimization

Oldenburg University 10-10-08

Defect-Energy of diluted Lattices:

<u>Stefan</u>

<u>Boettcher</u>

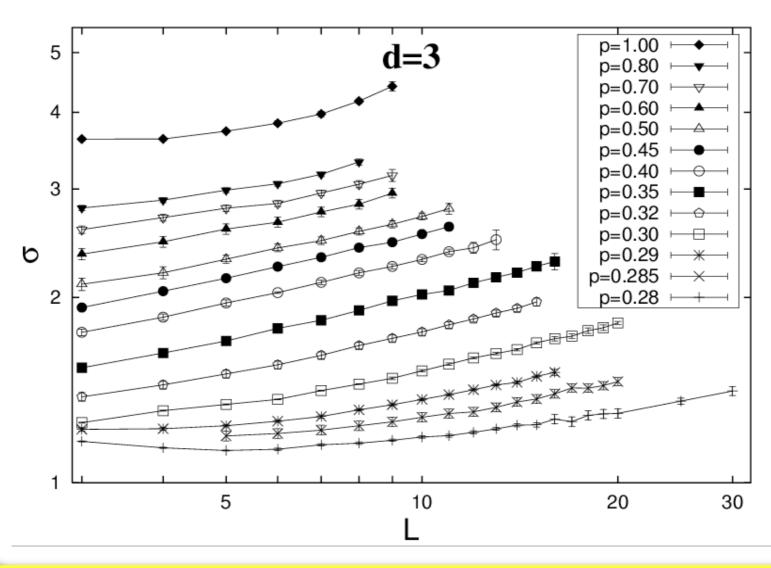
Defect-Energy of diluted Lattices:

 \pm J-Glasses on Lattices of size L and density p. Defect-Energy $\sigma(\Delta E)$ with Reduction & Heuristic (τ -EO).

<u>Stefan</u>

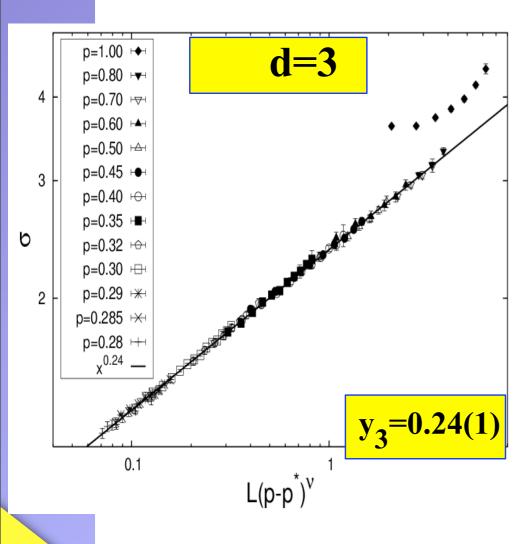
Defect-Energy of diluted Lattices:

 \pm J-Glasses on Lattices of size L and density p. Defect-Energy $\sigma(\Delta E)$ with Reduction & Heuristic (τ -EO).

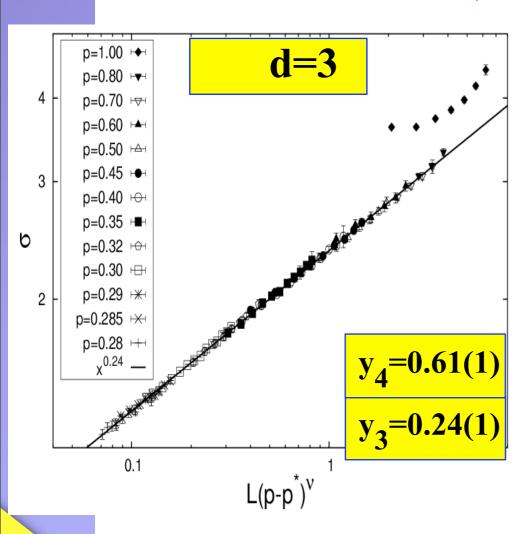


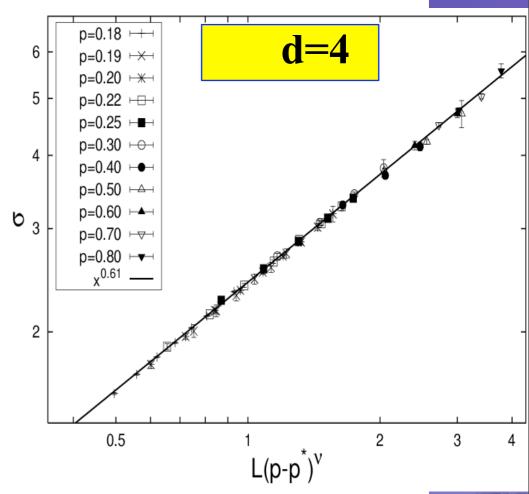
"Stiffness":
$$\sigma(\Delta E) \sim L^y$$

"Stiffness":
$$\sigma(\Delta E) \sim L^y$$

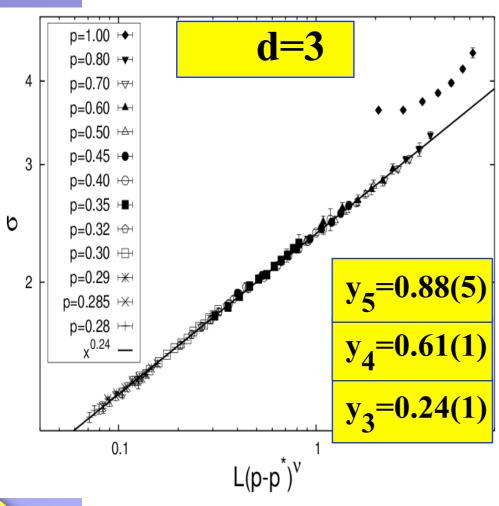


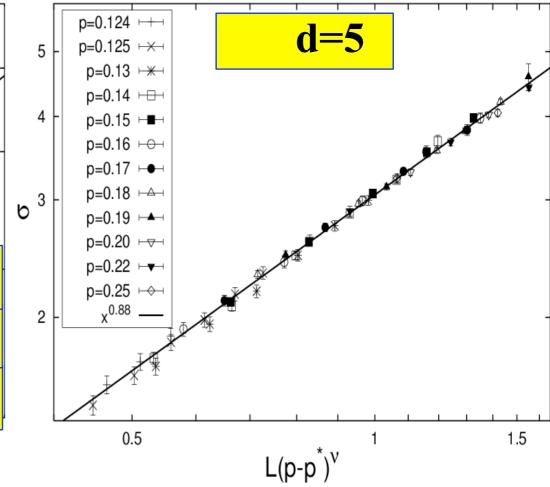
"Stiffness":
$$\sigma(\Delta E) \sim L^y$$



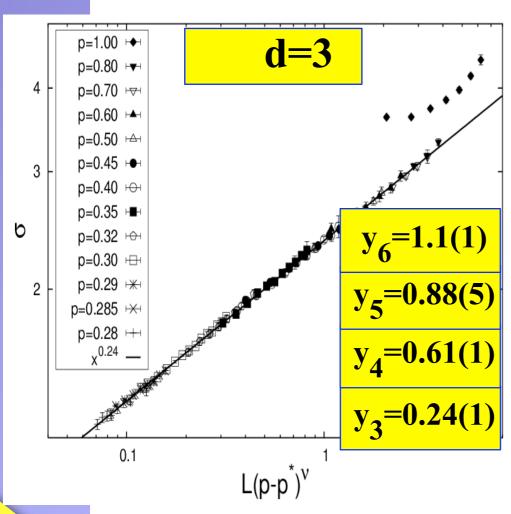


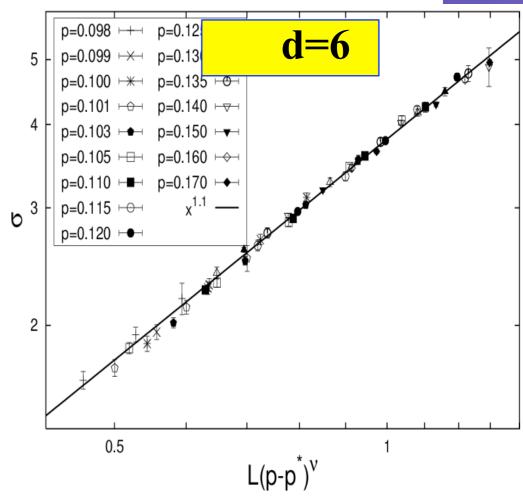
"Stiffness":
$$\sigma(\Delta E) \sim L^{y}$$



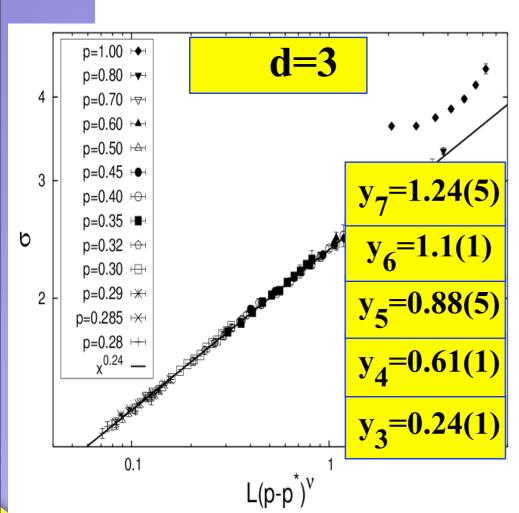


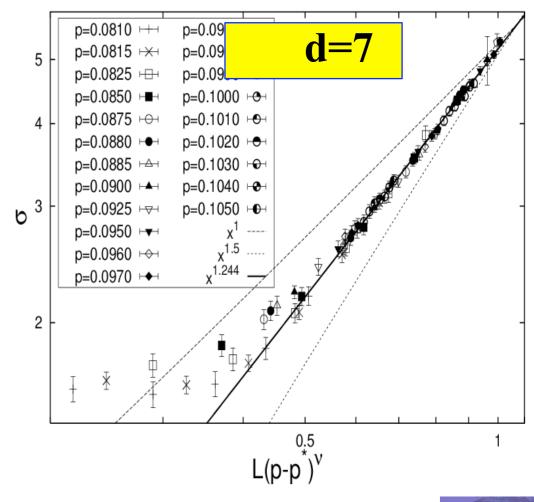
"Stiffness":
$$\sigma(\Delta E) \sim L^{\gamma}$$



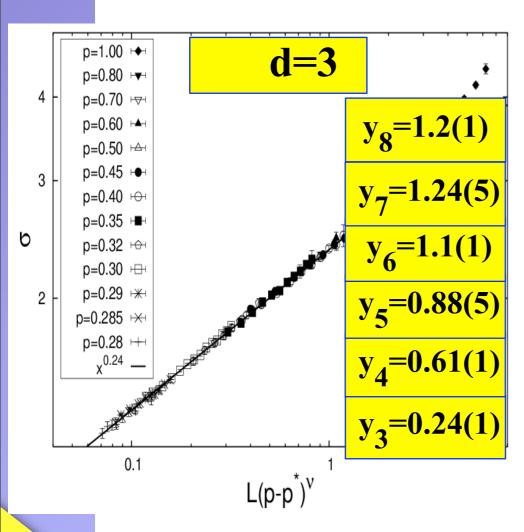


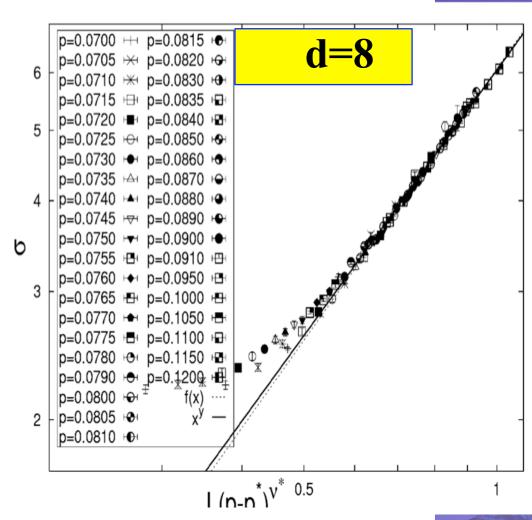
"Stiffness":
$$\sigma(\Delta E) \sim L^{y}$$





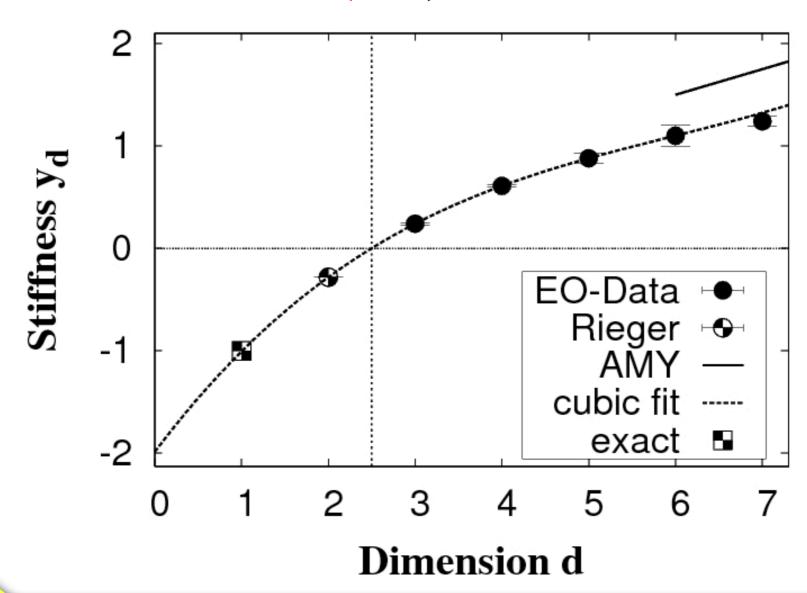
"Stiffness":
$$\sigma(\Delta E) \sim L^{\gamma}$$





Comparing with Theory:

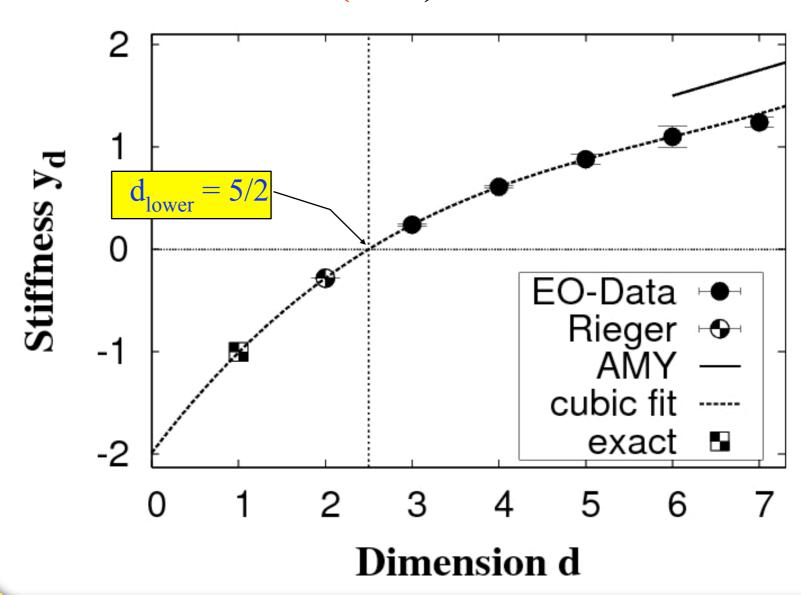
"Stiffness":
$$\sigma(\Delta E) \sim L^y$$



<u>Stefan</u>

Comparing with Theory:

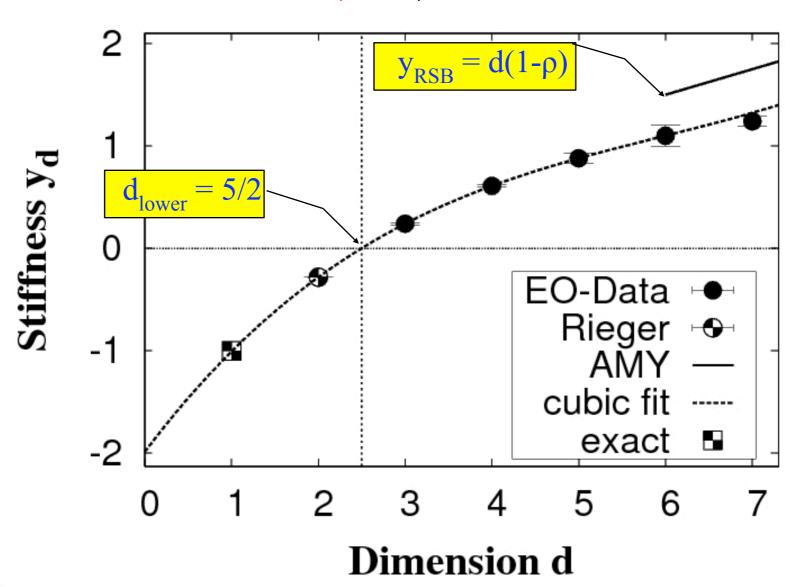
"Stiffness":
$$\sigma(\Delta E) \sim L^y$$



<u>Stefan</u>

Comparing with Theory:

"Stiffness":
$$\sigma(\Delta E) \sim L^{y}$$



Stefan

Exploring Spin Glass Ground States with Extremal Optimization

Oldenburg University 10-10-08

Other Evidence for $d_1=5/2$:

Other Evidence for $d_1=5/2$:

From Theory: (Franz, Parisi & Virasoro, J. Phys. I $\underline{4}$, 1657, '94) Effective Mean Field calculation near T_g , where Replica Symmetry Breaking (RSB) disappears (ie. $T_g \rightarrow 0$) for $d_l = 5/2$.

Other Evidence for $d_1=5/2$:

From Theory: (Franz, Parisi & Virasoro, J. Phys. I $\underline{4}$, 1657, '94) Effective Mean Field calculation near T_g , where Replica Symmetry Breaking (RSB) disappears (ie. $T_g \rightarrow 0$) for $d_l = 5/2$.

From Numerics:

Know:

$$T_g \approx \sqrt{2d}$$
 $(d \to \infty)$

$$T_q \approx \sqrt{2\mathbf{d} - d_l} \qquad (\mathbf{d} \to d_l)$$

Other Evidence for $d_1=5/2$:

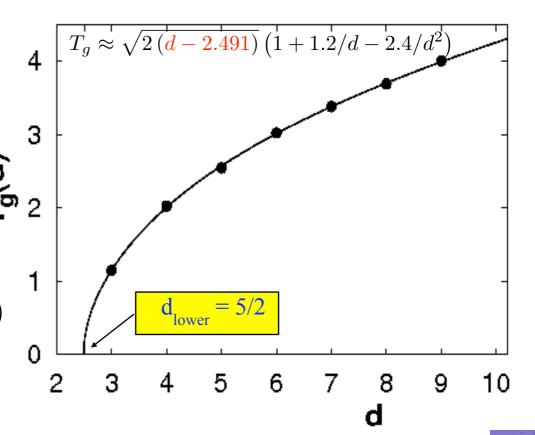
From Theory: (Franz, Parisi & Virasoro, J. Phys. I $\underline{4}$, 1657, '94) Effective Mean Field calculation near T_g , where Replica Symmetry Breaking (RSB) disappears (ie. $T_g \rightarrow 0$) for $d_l = 5/2$.

From Numerics:

Know:

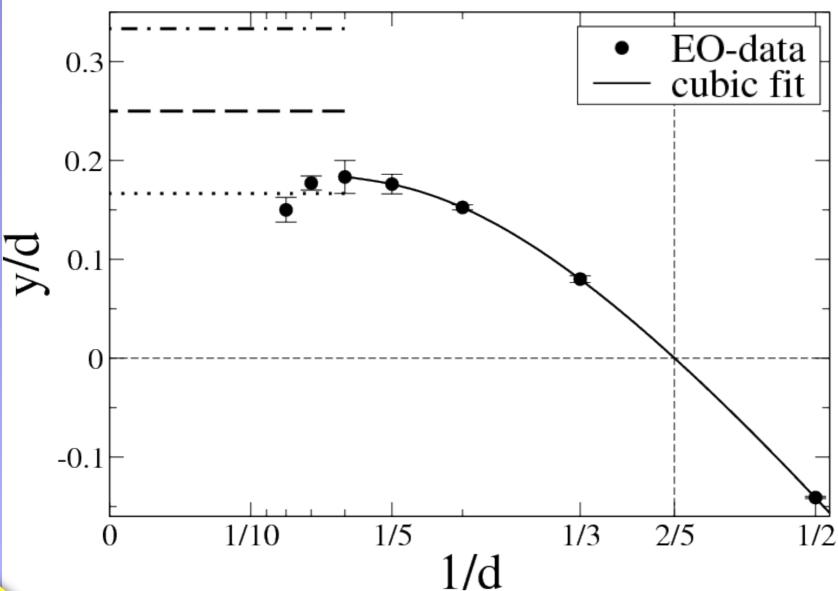
$$T_g pprox \sqrt{2 d}$$
 $(d
ightarrow \infty)$ وق ع

$$T_g \approx \sqrt{2d - d_l} \qquad (d \to d_l)$$

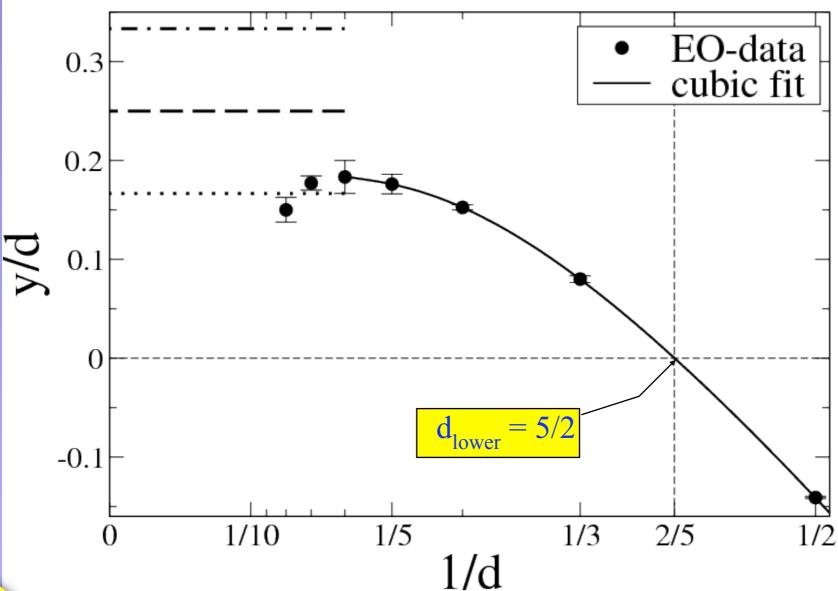


Data from:

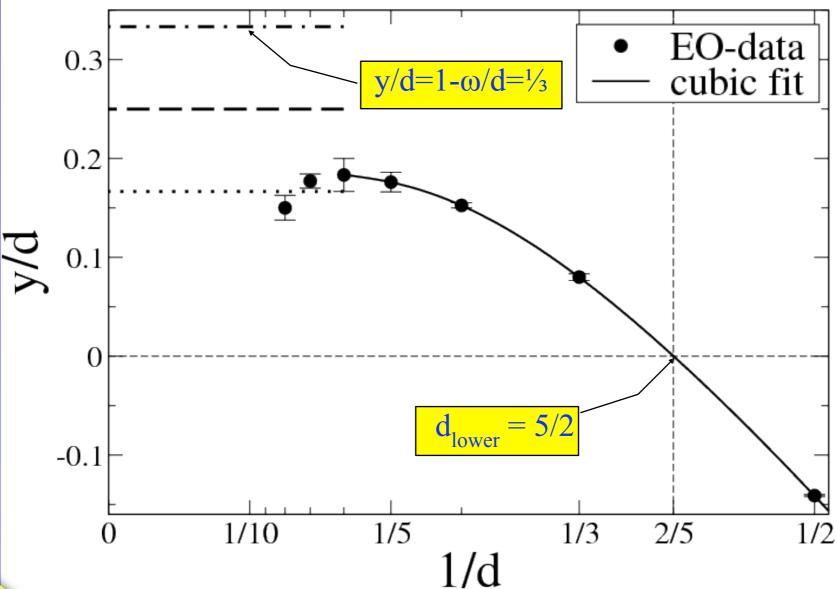
MC (Ballesteros et al) for d=3,4 High-T Series (Klein et al) for d≥5



<u>Stefan</u>

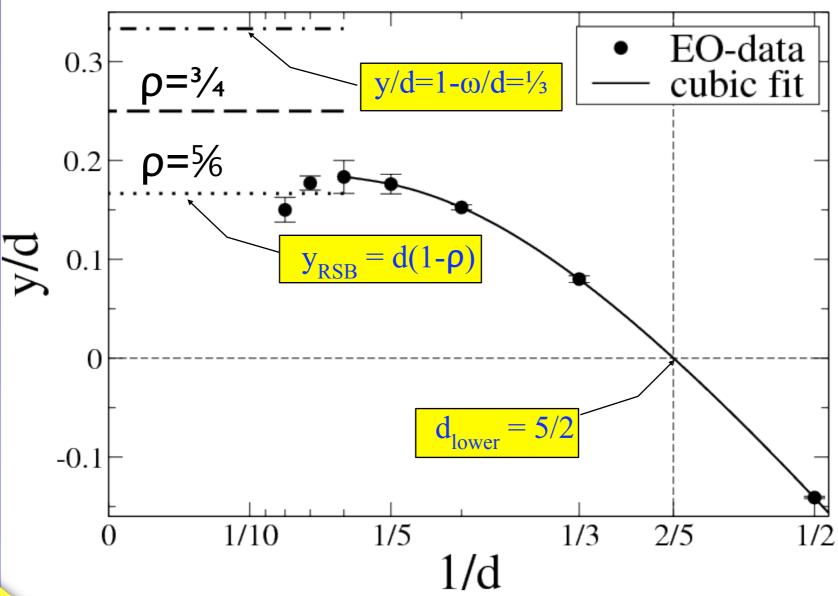


<u>Stefan</u>



<u>Stefan</u>

"Stiffness": $\sigma(\Delta E) \sim L^y$



<u>Stefan</u>

Corrections-to-Scaling in EA:

Ground State Energy:
$$E(L) \sim e_0 L^d + AL^y$$
 $(L \rightarrow \infty)$

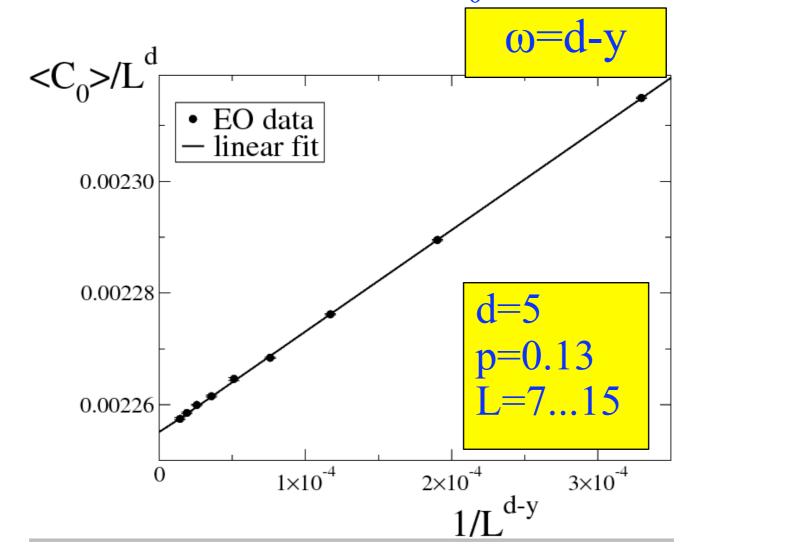
Corrections-to-Scaling in EA:

Ground State Energy:
$$E(L)/L^d \sim e_0 + A/L^{d-y} (L \rightarrow \infty)$$

$$\omega = d-y$$

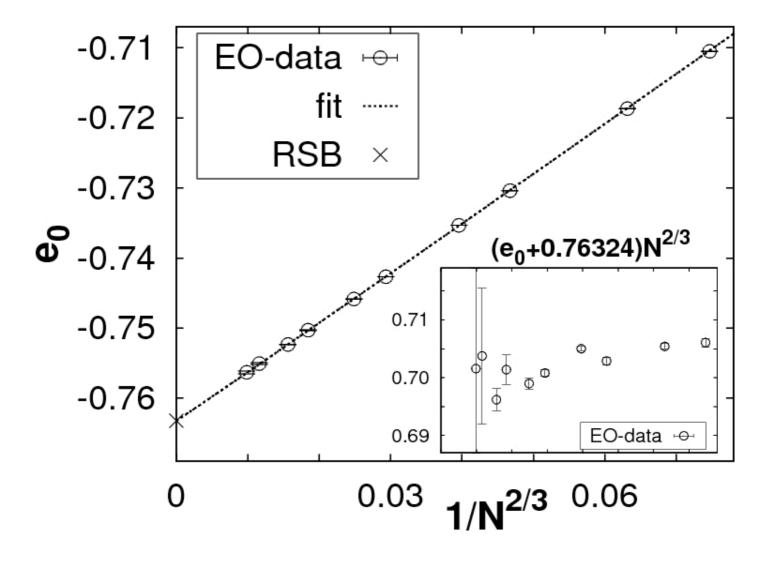
Corrections-to-Scaling in EA:

Ground State Energy: $E(L)/L^d \sim e_0 + A/L^{d-y} (L \rightarrow \infty)$

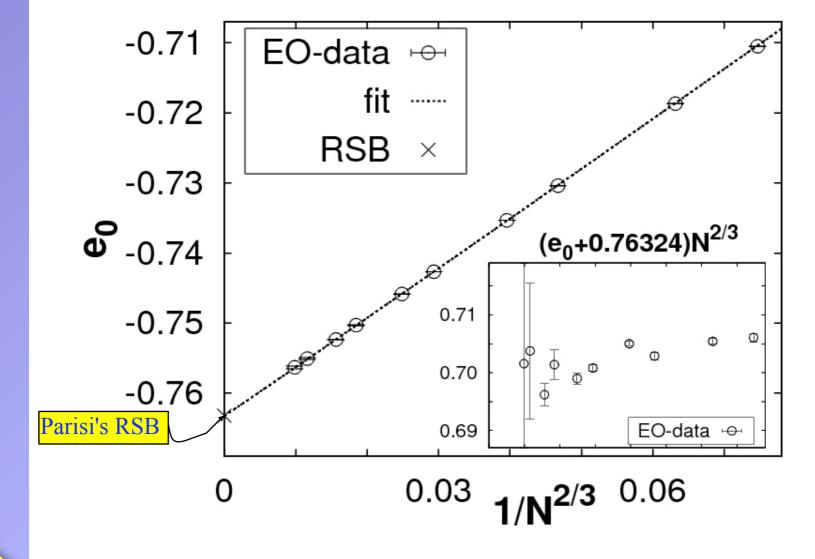


<u>Stefan</u>

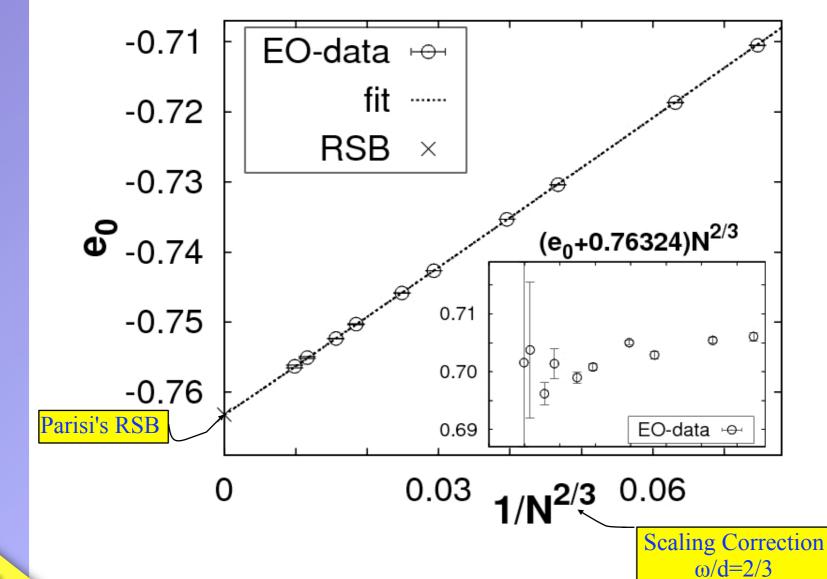
Mean-Field ($d \rightarrow \infty$) Spin Glasses:



Mean-Field ($d \rightarrow \infty$) Spin Glasses:

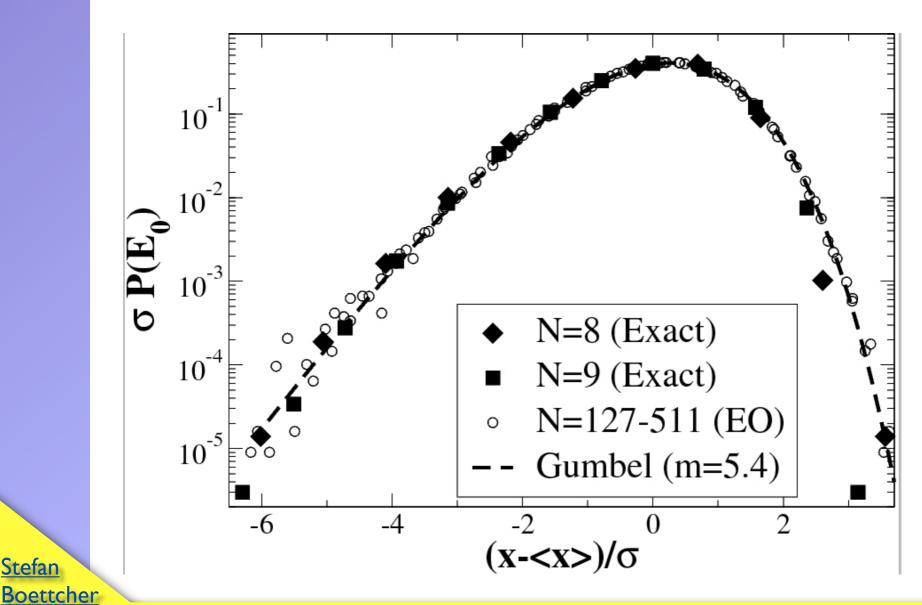


Mean-Field ($d \rightarrow \infty$) Spin Glasses:



<u>Stefan</u>

Mean-Field ($d \rightarrow \infty$) Spin Glasses:

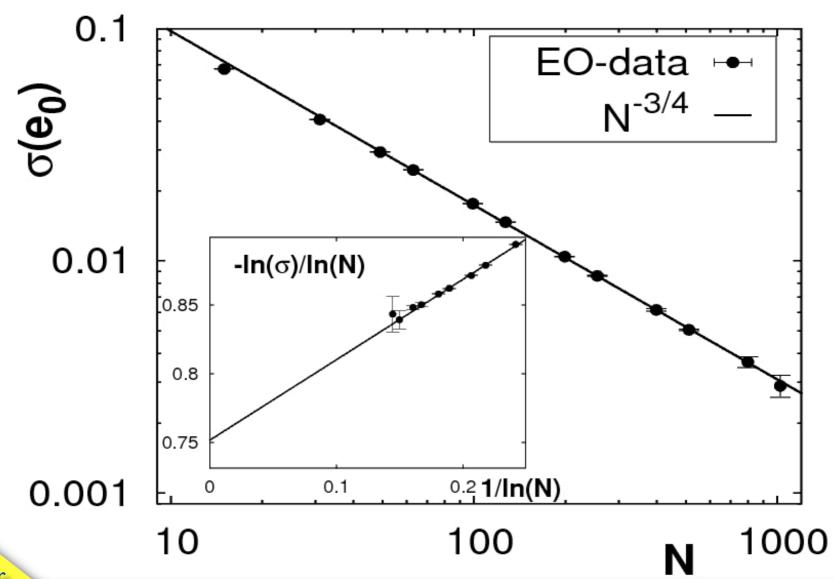


<u>Stefan</u>

Mean-Field ($d \rightarrow \infty$) Spin Glasses:

<u>Stefan</u>

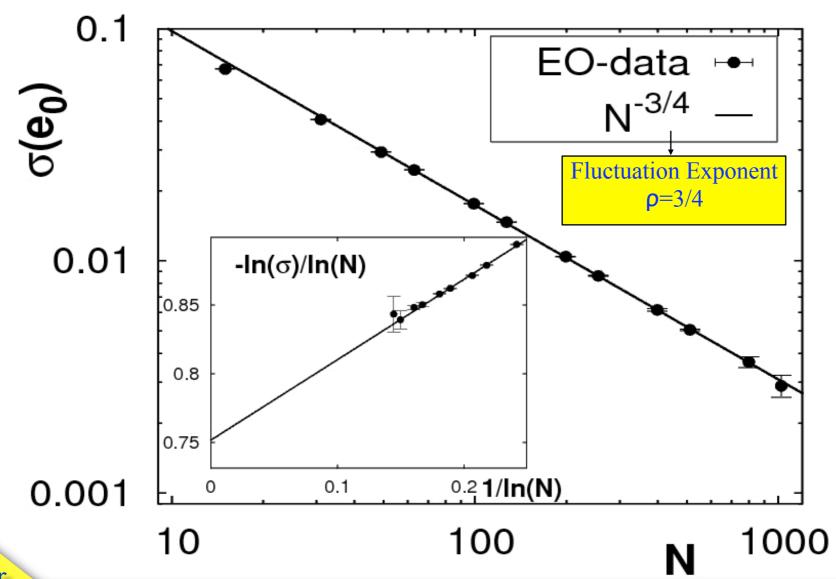
Mean-Field ($d \rightarrow \infty$) Spin Glasses:



Stefan Boettcher

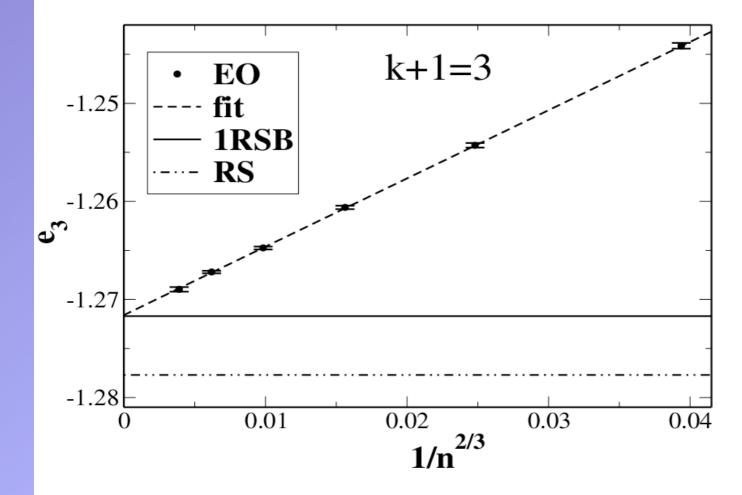
www.physics.emory.edu/faculty/boettcher/

Mean-Field ($d \rightarrow \infty$) Spin Glasses:

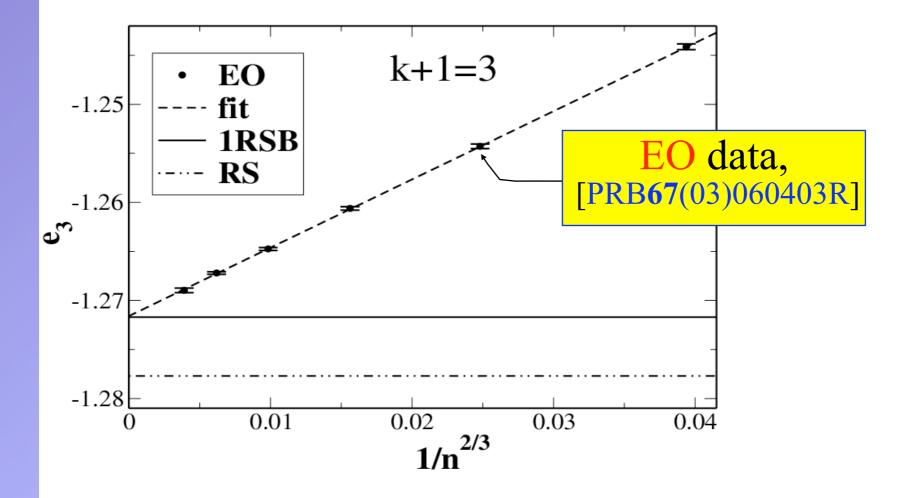


Stefan Boettcher

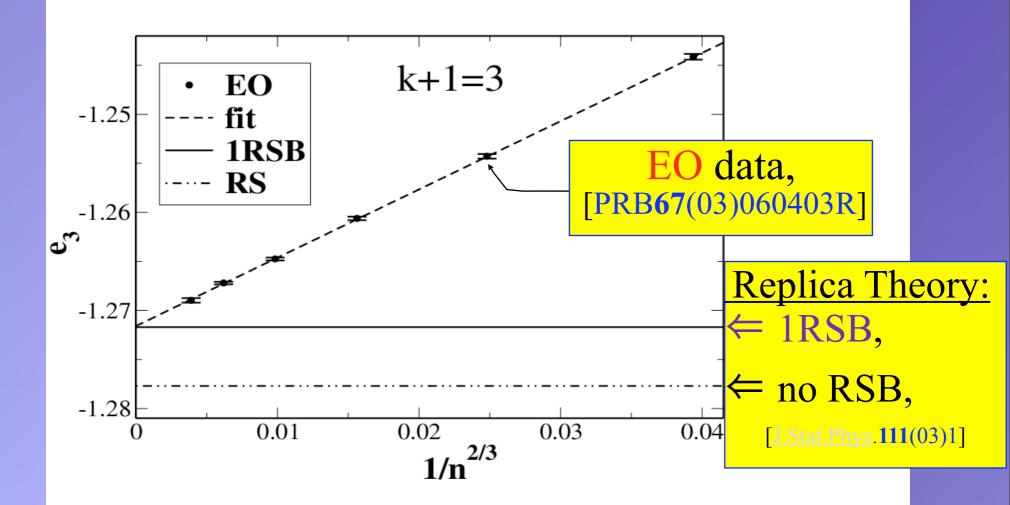
EO for 3-connected Bethe Lattice Glass w/ Replica Sym. Breaking:



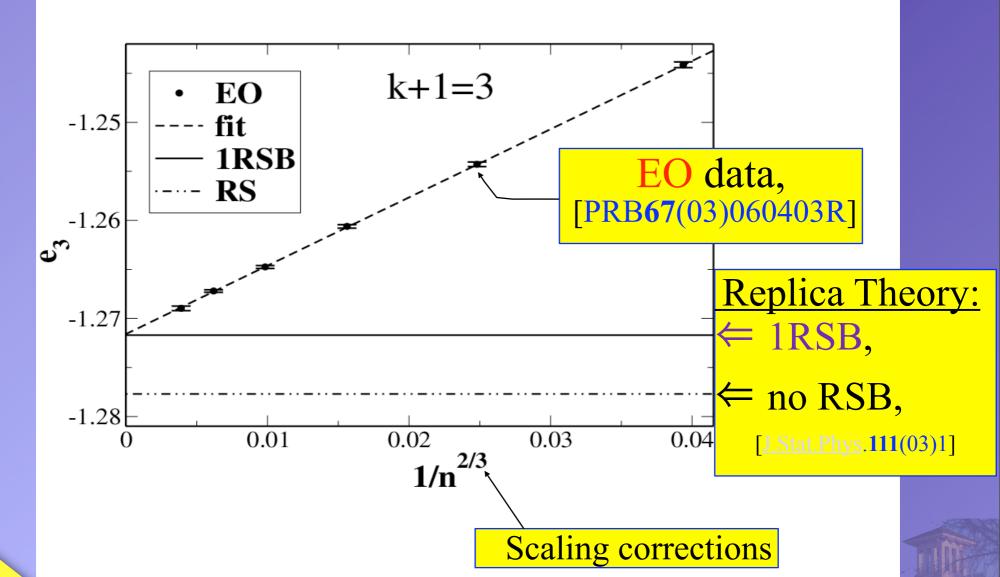
EO for 3-connected Bethe Lattice Glass w/ Replica Sym. Breaking:



EO for 3-connected Bethe Lattice Glass w/ Replica Sym. Breaking:

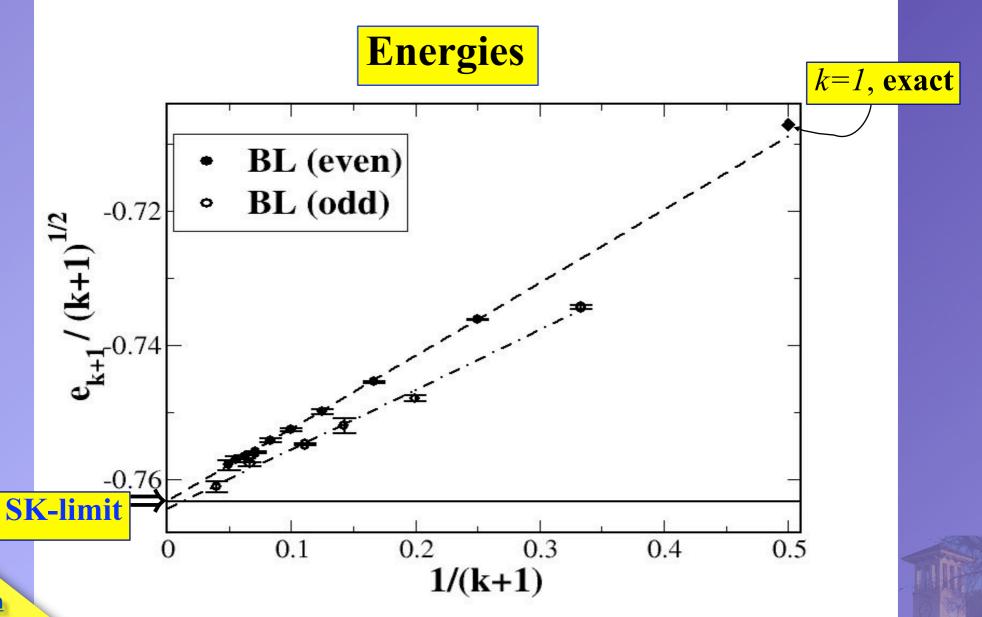


EO for 3-connected Bethe Lattice Glass w/ Replica Sym. Breaking:



<u>Stefan</u>

EO for (k+1)-connected Bethe Lattice Glasses for $(k+1) \rightarrow \infty$:

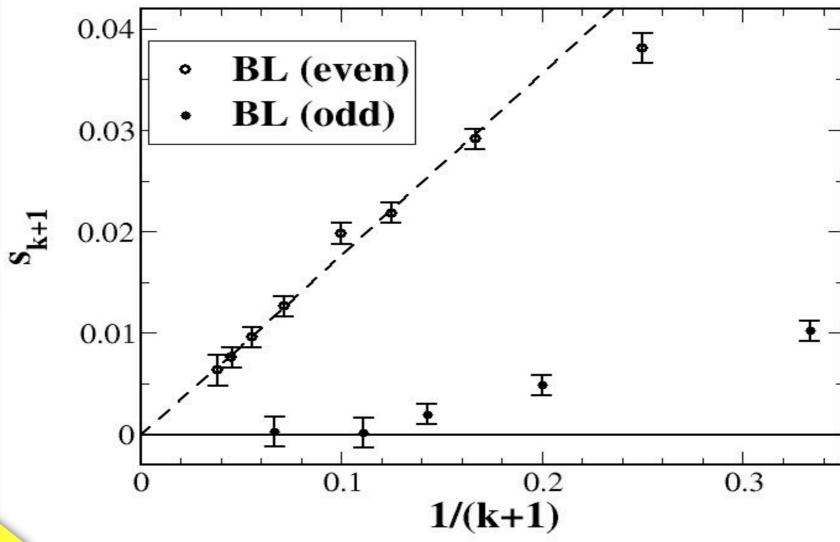


<u>Stefan</u>

<u>Boettcher</u>

EO for (k+1)-connected Bethe Lattice Glasses for $(k+1) \rightarrow \infty$:

Entropies



<u>Stefan</u>

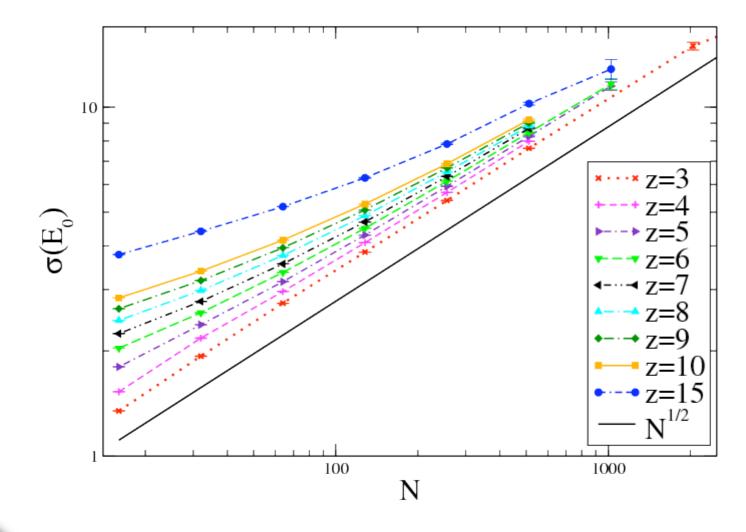
<u>Boettcher</u>

Distribution of Ground State Energies:

Deviation $\sigma(e_0)$ of PDF for Bethe Lattices of Degree z(=k+1):

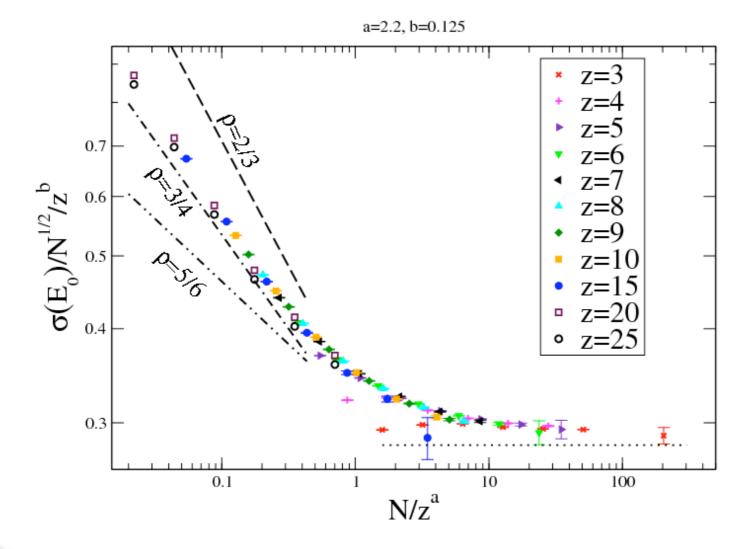
Distribution of Ground State Energies:

Deviation $\sigma(e_0)$ of PDF for Bethe Lattices of Degree z(=k+1):



Distribution of Ground State Energies:

Deviation $\sigma(e_0)$ of PDF for Bethe Lattices of Degree z(=k+1):



A Set of Models:

d: dimension,

p: bond density,

z: bond degree

<u>Stefan</u>

A Set of Models:

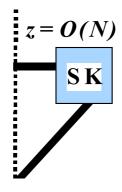
d: dimension,

p: bond density,

z: bond degree

Sherrington-Kirkpatrick (**SK**)

→ dense Graph



A Set of Models:

d: dimension,

p: bond density,

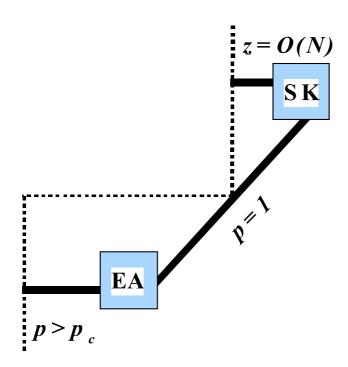
z: bond degree

Sherrington-Kirkpatrick (**SK**)

→ dense Graph

Edwards-Anderson Model (**EA**)

→hyper-cubic Lattice, dilute



A Set of Models:

d: dimension,

p: bond density,

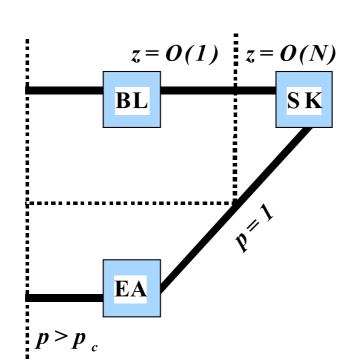
z: bond degree

Sherrington-Kirkpatrick (**SK**)

→ dense Graph

Edwards-Anderson Model (**EA**)

→hyper-cubic Lattice, dilute



Bethe "Lattice" (**BL**)

→randomly diluted Graph

A Set of Models:

d: dimension,

p: bond density,

z = O(1) z = O(N)

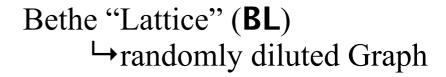
z: bond degree

Sherrington-Kirkpatrick (**SK**)

→ dense Graph

Edwards-Anderson Model (**EA**)

→hyper-cubic Lattice, dilute



Dilute Lattice (**DL**) \rightarrow **EA** at p_c

Erdös-Renyi Graph (**ER**) \rightarrow Random Graph at p_c

ER BL SK d = O(N) d = O(1) $p = p_c \quad p > p_c$

A Set of Models:

d: dimension,

p: bond density,

z: bond degree

Sherrington-Kirkpatrick (**SK**)

→ dense Graph

Edwards-Anderson Model (**EA**)

→hyper-cubic Lattice, dilute

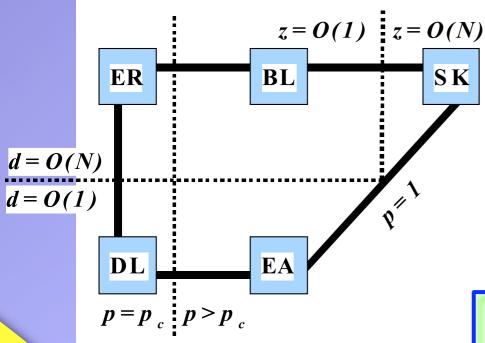
Bethe "Lattice" (**BL**)

→randomly diluted Graph

Dilute Lattice (**DL**) \rightarrow **EA** at p_c

Erdös-Renyi Graph (**ER**) \rightarrow Random Graph at p_c

$$H = \frac{1}{\sqrt{2dp}} \sum_{\langle i,j \rangle} J_{i,j} x_i x_j$$



Exploring Spin Glass Ground States with Extremal Optimization

Oldenburg University 10-10-08

Comprehensive View on Spin Glasses:

A Set of Exponents:

<u>Stefan</u>

Boettcher

www.physics.emory.edu/faculty/boettcher/

A Set of Exponents:

1) Distribution
$$P(e_0)$$
, width $\sigma(e_0) \sim N^{-\rho} = L^{-d\rho}$
In **EA**: $\rho = \frac{1}{2}$ (Wehr&Aizenman: ρ exact!)

A Set of Exponents:

1) Distribution
$$P(e_0)$$
, width $\sigma(e_0) \sim N^{-\rho} = L^{-d\rho}$
In **EA**: $\rho = \frac{1}{2}$ (Wehr&Aizenman: ρ exact!)

2) Distribution $P(\Delta E_0)$, width $\sigma(\Delta E_0) \sim N^{y/d} = L^y$ In **EA**: $y \approx 0.24,...,1.2$ for d=3,...,7

A Set of Exponents:

1) Distribution $P(e_0)$, width $\sigma(e_0) \sim N^{-\rho} = L^{-d\rho}$ In **EA**: $\rho = \frac{1}{2}$ (Wehr&Aizenman: ρ exact!)

2) Distribution $P(\Delta E_0)$, width $\sigma(\Delta E_0) \sim N^{y/d} = L^y$ In **EA**: $y \approx 0.24,...,1.2$ for d=3,...,7

A Set of Exponents:

1) Distribution $P(e_0)$, width $\sigma(e_0) \sim N^{-\rho} = L^{-d\rho}$ In **EA**: $\rho = \frac{1}{2}$ (Wehr&Aizenman ρ exact!)

2) Distribution $P(\Delta E_0)$, width $\sigma(\Delta E_0) \sim N^{y/d} = L^y$ In **EA**: $y \approx 0.24,...,1.2$ for d=3,...,7

A Set of Exponents:

1) Distribution $P(e_0)$, width $\sigma(e_0) \sim N^{-\rho} = L^{-d\rho}$

In **EA**: $\rho = \frac{1}{2}$ (Wehr&Aizenman ρ exact!)

In **SK**: $\rho \approx \frac{3}{4}$ (Highly Skewed)

2) Distribution $P(\Delta E_0)$, width $\sigma(\Delta E_0) \sim N^{y/d} = L^y$

In **EA**: $y \approx 0.24,...,1.2$ for d=3,...,7

A Set of Exponents:

1) Distribution $P(e_0)$, width $\sigma(e_0) \sim N^{-\rho} = L^{-d\rho}$

In **EA**: $\rho = \frac{1}{2}$ (Wehr&Aizenman ρ exact!)

In **SK**: $\rho \approx \frac{3}{4}$ (Highly Skewed)

2) Distribution $P(\Delta E_0)$, width $\sigma(\Delta E_0) \sim N^{y/d} = L^y$

In **EA**: $y \approx 0.24,...,1.2$ for d=3,...,7

In **SK**: $y/d = 1 - \rho \rightarrow 1/4$, too high for **EA** at $d \ge 6$

A Set of Exponents:

1) Distribution $P(e_0)$, width $\sigma(e_0) \sim N^{-\rho} = L^{-d\rho}$

In **EA**: $\rho = \frac{1}{2}$ (Wehr&Aizenman ρ exact!)

In **SK**: $\rho \approx \frac{3}{4}$ (Highly Skewed)

2) Distribution $P(\Delta E_0)$, width $\sigma(\Delta E_0) \sim N^{y/d} = L^y$

In **EA**: $y \approx 0.24,...,1.2$ for d=3,...,7

In **SK**: $y/d = 1 - \rho \rightarrow 1/4$, too high for **EA** at $d \ge 6$

3) Corrections-to-Scaling: $e_0(N)-e_0(\infty) \sim N^{-\omega/d} = L^{-\omega}$

In **EA**: $\omega/d = 1 - y/d$

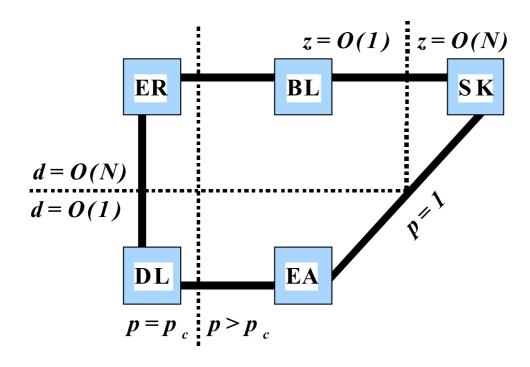
In **SK**: $\omega/d \approx 2/3 \neq 1 - y/d$

A Set of Models:

d: dimension,

p: bond density,

z: bond degree



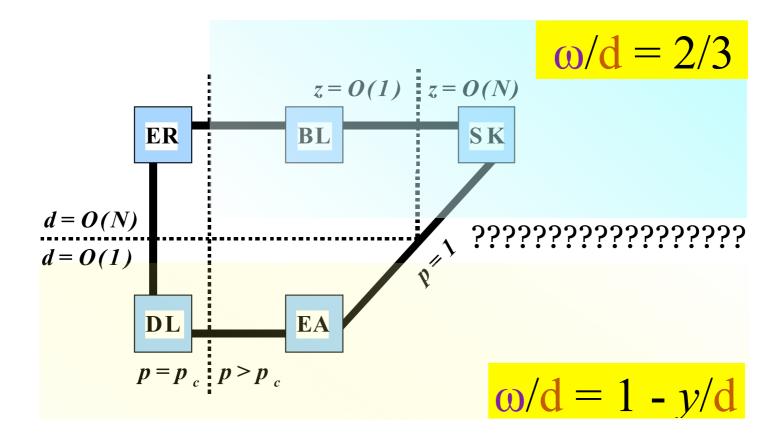
A Set of Models:

d: dimension,

p: bond density,

z: bond degree

• Corrections-to-Scaling: ω



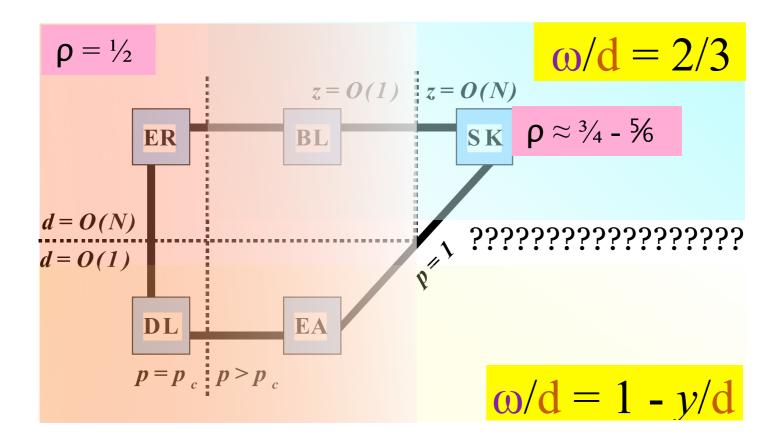
A Set of Models:

d: dimension,

p: bond density,

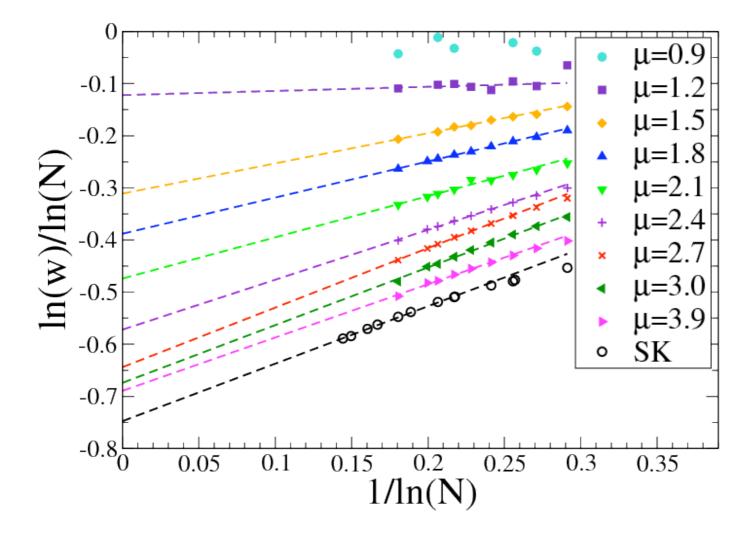
z: bond degree

- Corrections-to-Scaling: ω
- Energy Fluctuations: ρ



SK with Power-Law Bonds:

Power-Law Bonds: $P(J) \sim 1/|J|^{1+\mu}$ (|J|>1)



SK with Power-Law Bonds:

Power-Law Bonds: $P(J) \sim 1/|J|^{1+\mu}$ (|J|>1)

