Ground state properties of the SOS model on a disordered substrate dislocations and flat-to-superrough transition

Frank Oliver Pfeiffer 3. November 2004

Content

- Introduction
- SOS Model with dislocations
- Algorithms: min-cost-flow, loop detection
- Results: transition, dislocations
- Summary & Outlook

Introduction

randomly pinned elastic medium models ...

- crystal surface on disordered substrates [Toner et al. 1990]
- flux-line arrays in dirty superconductors [Blatter et al.1994]
- charge density waves (CDW) [Grüner1990]

superrough-to-rough (log²-log) transition at T_c [Toner et al.1990]

at low T: randomness >> thermal fluc.

ground state:

superrough-to-flat transition at σ_c ? dislocation proliferation (difficult for RG)?

$$\begin{array}{ll} H_{SOS} &= \sum_{\langle k,l \rangle} (h_k - h_l)^2 & h_k = u_k + d_k & \text{height-profile} \\ \\ \text{contour loops} &= \text{lines of equal height: } \nabla x \nabla u = x & => & \nabla x = 0 \end{array}$$

 $\begin{array}{ll} \mathsf{H}_{SOS} &= \sum_{\langle \ k,l \rangle} \ (\mathbf{x}_{kl} \mbox{-} \mathbf{b}_{kl})^2 & \mbox{s. t. } \nabla \cdot \mathbf{x}_i \mbox{=} \mathbf{0} & \mbox{contour profile} \\ \mbox{height difference} & x_{kl} \mbox{=} u_k \mbox{-} u_l \mbox{\in} \ integer \\ \mbox{offset-difference} & b_{kl} \mbox{=} d_k \mbox{-} d_l \mbox{\in} \ [-2\sigma \ , \ 2\sigma] & \mbox{uniform, uncorrelated} \\ \mbox{parameter:} & \mbox{disorder strength} \ \sigma \mbox{\in} \ [0,1/2] \\ \end{array}$

Extreme cases at T=0

$$\begin{split} \sigma &= \textbf{0}: \text{ flat case} \\ \sigma &= \textbf{1/2}: \text{ superrough, i.e.} \\ C(r) &\sim \log^2(r) \\ & \text{for} \qquad r \to \infty \end{split}$$

[Rieger et al. 1996]

calculation of **exact** ground state with **min-cost-flow algorithm** from combinatorial optimization **finite system size**: lattice propagator $C(r) \rightarrow P(r)$

FIG. 1. The site averaged correlation function $\overline{C}(r)$ versus the lattice propagator $\overline{P}_L(r)$ for L=128 and averaged over 2000 samples. The broken line is a least square fit to $\overline{C}(r) = 0.008 + 0.21\overline{P}_L(r) + 0.57\overline{P}_L(r)^2$. The inset shows $\overline{C}(r)/\overline{P}_L(r)$ versus $\overline{P}_L(r)$, and the straight line indicates the amount of curvature of the data.

[Rieger et al. 1996]

disorder-driven phase transition

Percolation transition of contour loops

typical ground state configurations for increasing disorder strength $\boldsymbol{\sigma}$

=> critical threshold $\sigma_c \approx 0.45$

Loop detection algorithm

algorithm depth-first search along bonds; begin create a loop configuration $x(e) \in \{0, \pm 1, \pm 2, ...\}$ label(e) := 0 and size(e) := 0 for all $e \in E$; t := 1;forall $e \in E$ do if $x(e) \neq 0$ and label(e) = 0 then depth-first(e); t = t + 1: endif: enddo; end:

subroutine depth-first(e); begin label(e) = t;size(e) = size(e) + |x(e)|;forall neighbors $\tilde{e} \in E$ of e do if $x(\tilde{e}) \neq 0$ and $label(\tilde{e}) = 0$ then depth-first(\tilde{e}); endif: enddo; end:

Finite-Size Scaling

 \Rightarrow critical threshold $\sigma_c = 0.458 \pm 0.001$

$$\mathsf{P}_{\mathsf{perco}} = \mathsf{P}[\mathsf{L}^{1/\mathsf{v}}(\sigma - \sigma_{\mathsf{c}})] \qquad \mathsf{P}_{\infty} = \mathsf{L}^{-\mathfrak{K}/\mathsf{v}} \mathsf{P}[\mathsf{L}^{1/\mathsf{v}}(\sigma - \sigma_{\mathsf{c}})] \qquad \mathsf{n}_{\mathsf{m}} \sim \mathsf{m}^{-\tau}$$

* in phase far from critical point

Universality class

geometrical exponents

$$d_f = d - \beta/v$$

Model for d=2	d _f	τ
Solid-on-solid (SOS) at σ_{c}	1.45±0.05	2.38±0.17
Random elastic medium (REM)* [Zeng et al.1998]	1.46±0.01	2.32±0.01
Random Gaussian surface (RGS)* [Kondev et al. 1995]	1.49±0.01	2.35±0.03

FIG. 1. Contour plot of a $\zeta = 0$ random Gaussian surface.

RGS model

dislocations in superrough phase

Dislocations at σ = 1/2

example of disordered substrate with a single **dislocation pair**

optimal configuration: n_i=0 dislocation => lower ground state

implementation LxL lattice with p.b.c.

- 1. fixed pair
- 2. partially opt. pair
- 3. completely opt. pair

Single defect pair (N=1)

fixed pair

partially opt. pair

completely opt. pair

 $\begin{array}{ll} \mbox{defect energy} \\ [\Delta E]_{\rm dis} \sim \begin{cases} \ln(L) & \mbox{fixed derect pair} \\ -0.27(7) \times \ln^{3/2}(L) & \mbox{partially optimized} \\ -0.73(8) \times \ln^{3/2}(L) & \mbox{completely optimiz} \end{cases}$

fixed defect pair $\sim E_{el} \sim E_{el}^{pure}(T)$ completely optimized $\sim E_{pin}$

variance

$$\sigma(\Delta E) \sim \begin{cases} \ln(L) & \text{fixed defect pair} \\ \ln^{2/3}(L) & \text{partially optimized} \\ \ln^{1/2}(L) & \text{completely optimized} \end{cases}$$

Multi-defect pairs (N>1) vortex core energy E_c

Extra defect pair

ground state saturated with N pairs

perturbation by fixed extra pair

$$\Delta E_{fix} = E_{N+1} + 2 E_c - E_N$$

=>
$$\Delta E_{fix} \sim E_c$$
 screening

Summary phase transition

Our study on Solid-on-Solid model exhibits ...

- 1. disorder-driven flat-to-superroughtransition
- 2. remarkable large correlation length exponent $v \approx 3.3$
- 3. same **universality class** as from geometrical study of contour loops
 - O on random Gaussian Surfaces [Kondev et al. 1995]
 - O in random elastic medium [Zeng et al. 1998]
 - (FPL model critical independent of disorder

[Zeng et al.1998])

Summary disloactions

Our study on **Solid-on-Solid model** exhibits ...

4. defect energy of fixed and optimized pair scales like in the sine-Gordon model

[LeDoussal et al. 1998, Zeng et al. 1999]

5. vortex core energy exponential decay

[Middleton 1998], ρ scales as ξ_D (< I: unpairing [LeDoussal etal.98])

6. screening of extra pair [Middleton 1998]

Outlook

- study for unique height profile
- defect energy and dislocation analysis at σ_c (c.f. 3D strongly screened gauge glass model)

finite low temperature regime:

combinatorial optimization + MC simulation (Schehr & Rieger in progress)

Thanks to ...

... my colleagues

Prof. Dr. Heiko Rieger (supervisor) Prof. Dr. Jaeh Dong Noh Dr. Grégory Schehr

... Alexander Hartmann for the invitation

The work was supported financially by the Deutsche Forschungsgemeinschaft (DFG)

ENIAC