Improved Linear Programming applied to the Vertex Cover Problem
 DY 31.10

Timo Dewenter

with Alexander K. Hartmann

Institut für Physik
Universität Oldenburg

March 30th, 2012

Outline

Theory and Algorithms
The Vertex Cover Problem
VC as Linear Programming Problem
Cutting Plane approach Node heuristic

Results

CP approach with subgraphs Phase diagram

Summary

The Vertex Cover Problem

- Undirected graph $G=(V, E)$ with nodes V and edges E
- $N=|V|$ and $M=|E|$

Definition [GareyTheoCompSc76]:
A Vertex Cover (VC) is a subset $V_{C} \subset V$ of vertices, such that each edge $\{i, j\} \in E$ is at least incident to one node of V_{C} $\rightarrow i \in V_{C}$ or $j \in V_{C}$.

Minimum VC: minimum cardinality $X_{C}=\left|V_{C}\right|$

(a) VC

(b) minimum VC

VC Problem \rightarrow NP-hard optimization problem

VC as Linear Programming Problem (LP)

VC studied in physics with B\&B algorithm or stochastic methods \rightarrow here: Linear Programming
Each node i of graph is represented by variable $x_{i} \in[0,1]$: $x_{i}=1 \leftrightarrow$ covered
$x_{i}=0 \leftrightarrow$ uncovered
$\left.x_{i} \in\right] 0,1[\leftrightarrow$ undecided
Each of the M edges $\{j, k\} \rightarrow$ constraint $x_{j}+x_{k} \geq 1$
Objective function: $x \rightarrow$ min
VC as LP:
Minimize $\quad x=\sum_{i=1}^{N} x_{i}$
Subject to $\quad 0 \leq x_{i} \leq 1 \quad \forall i \in V$

$$
x_{j}+x_{k} \geq 1 \quad \forall\{j, k\} \in E
$$

Use Simplex algorithm to solve LP [DantzigBullAmerMathSoc48], [http://lpsolve.sourceforge.net/5.5/].

Example

Corresponding LP:
Minimize $\quad x=x_{1}+x_{2}+x_{3}+x_{4}+x_{5}$
Subject to $\quad 0 \leq x_{i} \leq 1 \quad \forall i \in V$

$$
\begin{aligned}
& x_{1}+x_{2} \geq 1 \\
& x_{2}+x_{3} \geq 1 \\
& x_{2}+x_{4} \geq 1 \\
& x_{3}+x_{4} \geq 1 \\
& x_{4}+x_{5} \geq 1
\end{aligned}
$$

Example

Corresponding LP:
Minimize $\quad x=x_{1}+x_{2}+x_{3}+x_{4}+x_{5}$
Subject to $\quad 0 \leq x_{i} \leq 1 \quad \forall i \in V$

$$
\begin{aligned}
& x_{1}+x_{2} \geq 1 \\
& x_{2}+x_{3} \geq 1 \\
& x_{2}+x_{4} \geq 1 \\
& x_{3}+x_{4} \geq 1 \\
& x_{4}+x_{5} \geq 1
\end{aligned}
$$

$$
\text { Solution: } \begin{aligned}
& x_{1}=0 \\
& \\
& x_{2}=1 \\
& \\
& x_{3}=0 \\
& \\
& x_{4}=1 \\
& \\
& x_{5}=0
\end{aligned}
$$

Figure: Minimum VC
\rightarrow Minimum VC with cardinality: $X_{c}=x=2$

Cutting Plane (CP) approach

Aim: Reduce number of undecided variables $\left.x_{i} \in\right] 0,1[$
Idea: Limit solution space by adding extra constraints (CPs)

Two algorithms:

Loops: [arXiv:1201.1814v1]
Search random loop of length l

- Add constraint (CP) to LP:
if loop has odd length and (*) is not fulfilled yet.

Subgraphs:

- Search random subgraph $G_{S}=\left(U, E_{S}\right)$ with $|U| \leq 10$
Calculate minimum VC of size $X_{C}=\left|V_{C}\left(G_{S}\right)\right|$
- Add constraint (CP) to LP:

$$
\sum_{i \in U} x_{i} \geq X_{C}, \quad(\star)
$$

if (\star) is not fulfilled yet.

Example for CP approach

Node Heuristic (NH)

Aim: Get complete solution \rightarrow all $x_{i} \in\{0,1\}$
Algorithm:
Set the smallest undecided variable $\left.x_{j} \in\right] 0,1[$ to zero

- Add $x_{j}=0$ to LP and solve it again
\rightarrow Sets variables of adjacent nodes k to $x_{k}=1$
\rightarrow Repeated execution yields VC, but not necessarily of minimum size

General remarks

Used graph ensemble:

Erdős-Rényi (ER) random graph ensemble: $\mathcal{G}(N, M)$ [ErdösMagTudAkMatKulntKö60]
All graphs with same N and M equiprobable

Important variables for graphs/VC:
Connectivity (average number of neighbors): $c=2 \mathrm{M} / \mathrm{N}$

- Minimum relative cover size $x_{c}=X_{C} / N$

Details of simulations:
Bland's first-index pivoting [BlandMathOperRes77]

- 10^{3} realisations of random graphs
- Graph sizes up to $N=570$

Phase transition in CP approach

Figure: Fraction p_{f} of complete solutions for CP approach with subgraphs as a function of connectivity c and for CP approach with loops (inset). Vertical line denotes $c=e \approx 2.718$.

Phase diagram

Figure: Phase diagram for the fraction of covered vertices x. Minimum VC found with exact branch-and-bound algorithm/analytics [HartmannPRL00]. Vertical line denotes $c=e \approx 2.718$, where RSB occurs. Inset: Finite-size scaling for CPs with subgraphs and $c=3$

Summary/Conclusion

Mapping of VC on ER random graphs on LP

- CP approach shows "easy-hard" transition close to $c=e$
\rightarrow Phase transition (PT) not only for configuration-spacebased algorithms (e.g. branch-and-bound), but also for LP/CP approach (outside of feasible solutions)
\rightarrow Hardness of VC Problem is intrinsic property of problem

Thank you for your attention!

Announcements

Open access summary database:

```
www.papercore.org
```

Modern Computational Science Summerschool

$$
\begin{gathered}
\text { August } 20-31,2012 \text { : } \\
\text { www.mcs.uni-oldenburg.de }
\end{gathered}
$$

DPG Physics School: Efficient Algorithms in Computational Physics, September 9 -14, 2012:

www.p.bh.de

References：

㞒 A．K．Hartmann and M．Weigt：Phase Transitions in Combinatorial Optimization Problems，Wiley－VCH， 2005

國 W．H．Press，B．P．Flannery，S．A．Teukolsky，W．T．Vetterling： Numerical Recipes in C：The Art of Scientific Computing， 3. Edition，Cambridge University Press， 2002
围 R．G．Bland，Mathematics of Operations Research，2， 2 （1977）
目 M．Berkelaar，K．Eikland and P．Notebaert，Ip＿solve： http：／／lpsolve．sourceforge．net／5．5／， 2010
R P．Erdős and A．Rényi，Magyar Tud．Akad．Mat．Kutat Int．Közl．5， 10 （1960）

R．B．Dantzig，Bull．Amer．Math．Soc．54， 1 （1948）
（R）M．Weigt and A．K．Hartmann，Phys．Rev．Lett．84， 6118 （2000）
R M．R．Garey，D．S．Johnson，Theoretical Computer Science 1， 237－267（1976）
围 T．Dewenter and A．K．Hartmann，arXiv：1201．1814v1

